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Abstract—This paper develops and demonstrates a guaranteed a-priori error bound for the Taylor
polynomial approximation of any degree to the solution of initial value ordinary differential equations.
The error bound is explicit and does not require upper bounds on the potentially complicated and
intrinsically unknown right-hand side nor on any of its higher-order derivatives as with existing
bounds, and thus it provides a valuable tool for the numerous applications in which initial value ode
problems arise and for which approximate solutions must be sought. © 2006 Elsevier Ltd. All rights
reserved.
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1. INTRODUCTION

The purpose of this paper is to develop and demonstrate an explicit, a-priori error bound for the
k*® degree Taylor polynomial approximation to the solution of a system of ordinary differential
equations of the form

X/(t) = £(x(t),t),  x(a) = xo, (1)

where f is real-analytic in each component, a € R, and xo € R”. We also show that our bound
is exact for a particular case of (1) and thus a comprehensively tighter bound is not possible.
Since systems of the form (1) can always be translated to the origin with a change of independent
variable t — t + a, we concentrate on equations of the form

X'(t) =f(x(t),1),  x(0) = xo, (2)

and the Maclaurin polynomial approximation to the solution.
Many algorithms for approximating solutions of differential systems generate the Maclaurin
approximation to the solution to a given degree at each step. Traditional error bounds for
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such approximations, however, generally involve bounds on potentially complicated higher-order
derivatives of the right-hand side which most often depend precariously on the unknown solution x
itself. For example, a standard Taylor series method error bound (about ¢ = 0) for the system (2)
is
k k+1
. Ng |t
x(t) = > x;t! < Neltf (3)

RCESE

=0 It|€[0,T)

where each component of Z?:o x;t7 is the k' degree Maclaurin polynomial for the corresponding
component of x(t), and the constant Ny is an upper bound on the norm of the kth derivative
of f, i.e.,

Nk 2 [0 (x(6),)

. 4
It|€[0,T] @
The inequality (4) can be quite burdensome. For example, to bound the error in the 7t degree
Maclaurin series approximation to z(t) for the following problem with relatively modest right-
hand side

(1) = f(x(t),t) = sin (m(t)et2> =172, (5)

the standard error bound requires analysis of f(7 which contains 135 distinct terms, each of
which depends on z(t). To illustrate,

10395

5
£ (2(t),t) = 3936 sin ($(t)et2> 712 4 —sin (x(t)etz) t13/2

3 4
+---—179sin (.r(t)etz) cos (x(t)et2) et/

whereas for the 12" degree Taylor error estimate, f(1?) involves over 1000 terms. It is worth
noting that an accurate numerical algorithm for computing any-order Maclaurin polynomial
approximation to the solution of a system of differential equations was developed in [1,2], and
has been further explored for a variety of problems (see, e.g., [3,4]).

The above underscores two salient features of a more attractive, useful, and versatile error
bound. Such a bound would ideally be

(i) independent of derivatives of the right-hand side of the differential equation and
(ii) easy to recalculate for higher-order approximations.

This paper will develop such an error bound.

Of course, estimates on error and step size can be made with next term extrapolation in the
course of a numerical computation, however these estimates are neither a-priori nor guaranteed,
which is the purpose here. Error bounds for differential systems of the form (2) have been in-
vestigated by various authors, and as models of physical systems continue to become more and
more complex, the role of guaranteed analytical and computational results cannot be overstated.
Previous work includes a-posteriori estimates developed in [5], where it is remarked that a satis-
factory theory of adaptive error control does not exist in part due to insufficient knowledge on the
critical relationship between error and step size, a characterization widely considered impossible
for broadly general nonlinear systems. We remark here that a simple and explicit relationship of
this sort is one consequence of our error bound (see the discussion following our proof of Theo-
rem 3). Interval analysis is employed in [6] to develop a-priori error bounds for initial value ode
systems. Also, Chebyshev polynomials were employed in a series of papers [7-9] to determine
a-priori error bounds for solutions of nonlinear initial value differential equations of the form
2’ = f(t,x) where the right-hand side is a real-valued function of the two variables that is not
required to be analytic. While here we will assume analyticity, our results are not restricted to
n = 2 nor do they rely on bounds involving unknown functions or derivatives. Our interest is thus
to develop the tightest bound possible under the constraints (i) and (ii) above for all systems of
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the form (2) (and thus (1)) for general n. With the framework to be established here, special
classes of initial value ode problems can then lead to tighter bounds holding on larger intervals,
and thus to increasing the step-size for which desired accuracy is guaranteed (and so decreasing
the computational effort required to march across an interval at guaranteed error controls).

Before proceding to the development of our error bound, we discuss and illustrate the following
simple but critical idea: recasting a system of the form (2) as an equivalent autonomous ode
system with polynomial right-hand side (polynomial projection).

1.1. Polynomial Projections of (2)

As any system of the form (2) can be written as an autonomous system by introducing the
additional “unknown” w, say, so that w(t) = t, replacing t everywhere with w, and augmenting (2)
with the equation w’(t) = 1 and initial condition w(0) = 0, we need only consider autonomous
systems

x' = f(x) (6)

with initial conditions as in (2). In addition, [1] and [2] establish that, by a suitable introduction
of new dependent variables, a large class of differential equations and systems can be recast as
first-order systems such that the right-hand side of each component equation contains terms
involving only nonnegative integer powers and products of the new dependent variables. Thus,
many systems of differential equations (for example, those encountered in classical mechanics)
can be rewritten as an equivalent system of equations with a polynomial right-hand side by
an appropriate change of variables (polynomial projection, in the terminology of [1,2]). In [3],
properties of solutions of (6) for f : R® — R™ such that each component of f is a polynomial
functional on R™ are explored, and numerical results for several differential equations recast as
polynomial systems are given. Another recent paper [4] exploits this idea for the N-body problem
of classical physics by projecting the (nonpolynomial) system of differential equations modeling
the motion of N particles as a polynomial system. A change of variables sufficient to project an
ODE to polynomial form is generally evident from the form of the equation itself, as illustrated
with our examples. For the ODE (5),

z1(t) = z(t), xo(t) = sin(:v(t)etz), z3(t) = cos(g:(t)et2),
x4(t) = et27 ws(t) = t, wo(t) = =/,

(7)

is one possible projection which produces the autonomous polynomial system

! / /
] = ZoTs, zh = z324(22125 + T2T6), x5 = —xox4(22125 + T2T6),
8
Tl = 2z4x =1 m’——lmB (®)
4 — 4L5, 5 — 4 6 — 2 67

with proper initial conditions. The solution component z; of the system (8) is equivalent to the
solution of (5). Other projections are also possible.

In light of the above discussion, Section 2 (Theorem 3) develops an explicit, general, a-priori
error bound for the k* degree Maclaurin polynomial approximation to the solution of (6), where
f : R® — R" is such that each component of f is a polynomial functional on R™. We also show
that this bound is exact for at least one such system (Theorem 3), and thus any improvement on
this error bound necessarily requires consideration of special cases. In Section 3, we demonstrate
our error bound with three example problems.

2. ERROR BOUND: POLYNOMIAL SYSTEMS

Given the discussion in Section 1.1, we need only consider systems for which the right-hand
side is a polynomial in the dependent variables. We begin a theorem that facilitates the proof of
our main result (Theorem 3).
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THEOREM 1. Let r,s,n € N with s > r. Let {z}{_, and {u;};_; be analytic functions such
that, for t in the interval of convergence, z;(t) = Z;‘;o zijth,i=1,...,s and u;(t) = Z?io uitd,
i =1,...,r. Also, for s = [[i_, zi and p, = [[}_, us, let qsx and p,i, denote the k'™ degree
coefficients in the series expansions of qs and p,, respectively. If z;; > 0 and zo =1V j € N and
1=1,...,s, and if

zij > |uijl, fori=1,...,7and j =0,...,n, (9)

then
Gk > pel,  fork=0,...,n. (10)

Proor.

CASE 0 s = r = 1. By definition, we have only two analytic functions z;, u; with Maclaurin
coefficients z1;, uy;, respectively, (j € N), and thus, g1 = 21, p1 = u1 and (10) is exactly (9).
CASE 1 s = r = 2. Using Cauchy products to form the coefficients of a series resulting from the
product of two series, we have that for k € {0,1,...,n},

k k k
ol = | wjuse—j| <D Jual fusk—i| <Y 2152065 = ok
j=0 j=0 j=0
CASE 2 s =7 > 2. We proceed by induction. By definition and Case 1, go = z122 and ps = ujus
are analytic functions such that gor > |pak| for £ = 0,...,n. The analytic functions ¢;,p; for
t € {3,...,r} are defined recursively as

qi = qi—1%; and Pi = Pi—1Uq,

so that on assuming g;_1x > |pi—1x| for k =0,...,n, the hypothesis (9) and the Case 1 result for
two functions give
Qik > |Pik] for k=0,...,n,

validating the induction. Thus,
@k > |prk|,  fork=0,...,n (11)

CASE 3 s > r. Using the recursive definitions of ¢; and p;, we have that ¢, = g, H:=r+1 z;
where (11) holds since r < s. Also, the coefficients g5, for each k € {0,...,n} contain a term fol-
lowing from the product of the k" degree coefficient of ¢, with the remaining constant coefficients,
that is, of the form

s
qrk H Zi0 = Qrk,
i=r+1

where the equality follows from the hypotheses of Theorem 1. In addition, as all remaining terms
contributing to gsi are positive, it follows that

Gsk > Grk > |Pri, fork=0,...,n. 1

With Theorem 1 in hand, we next exploit the simple idea of rescaling an IVODE system to
further facilitate our error bound (Theorem 3). Let n, N € N and consider the constant coeflicient
first-order autonomous polynomial system

x' = h(x), x(0) = a, (12)
where x,a € R” and h is a polynomial functional. Then (12) has the form

N N
I = S SR J (0) = a:. 4=
;= Z Z Al!]lv]?vn';]nxl ,.’E2 PR ;xnny 1171(0) = a;, 1= 1, P N (13)
Jj1=0 j2=0 Jn=0

N
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The change of dependent variables
h { a;, if |az| > 1, (14)
x; = c;y; where ¢; =
Py ' 1, if Jai| <1,

for i = 1,...,n leads to the equivalent (scaled) system

N N N
yi = Z Z e Z Bidl;jzn-any{l’y?w : '7y£1"7 y1(0) = by, (15)

Jj1=0 j2=0  jn=0

where L
A . . 1 2 Jn 1, if ai>1,
Bi,jl,jz,-u,jn — 1,]17]25-“,]7161 )20 ) Cn ; bz — { ' | (16)
C; a;, if |a;| < 1.
We denote the nonlinear transformation By : R® — R”, by
where with (15),
y;:fi(y17y27"'ayn)7 (18)

and each f; is clearly a polynomial function of its arguments. Then the L., subordinate norm
for the transformation defined by

Byl = sup {||Bn [u]

| :u € R"™ where ||ul| =1} (19)
is equivalent to

N N N
Bl = g 1 20 2+ 2 Bl (20)

that is, ||Bn|| is the largest row sum of the absolute value of the coefficients of the transformation.
Let m represent the largest degree of any single term in f with nonzero coefficient. Both f and
its partials are bounded on the convex set ||y —b|| < L, with b defined in (16), where

I <IBxl@ 4" and 2L <B4 (21)

thus a unique solution of (15) for ¢t € (—=L/(||Bn|[(L +1)™), L/(||Bn||(L + 1)™)) exists by stan-
dard analysis. The interval length is maximized for m > 2 at L = 1(m — 1) yielding,

() ()

M = (m—1)|By|. (23)

where

In addition, the sequence of Picard iterates converges uniformly to the unique solution of (15)
on the interval in (22). Further, since f is polynomial these iterates also produce the power series
representation of the solution about ¢ = 0 (see [1,2]), implying that the solution y to (15) is
analytic about ¢ = 0 with an interval of convergence at least that given by (22). Since

y'=Bnlyl,  y(0)=b, (24)

has analytic solution y, a series expansion of the form

oo
y=Y_ yt (25)
j=0
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exists and then f has a similar expansion

o0

f=Y £t (26)

j=0

where for consistency and ease of notation here and subsequently, we denote the constant co-
efficients of the above series by y; and f;. Since the transformation By is polynomial, for a
given k € N the coefficient fi, only depends on the coefficients {y; }§=0. This makes it possible to
generate {y;}32, recursively using (24) by the recursion

Yo =D, fo = f(yo),

_ & (27)
Yk+1 = k+ 1’
and (27) indicates that
5
= —. 28
Iyesrll = 2 1 (28)

Examine the real positive sequence {z;}%2, defined by the coefficients from

oo

z:sztj, (29)

§=0
where z is the unique (analytic) solution to the IVP
' =|By] 2™, z(0) = 1. (30)

The positive coefficients {z;}52, can also be determined recursively using (30). On defining
g=2z",
zZ0 = 1

zk+1 = gk B |l/(k + 1),

where gj is the coefficient of the k" degree term in the series expansion of g. Again since g is
polynomial g only depends on the coefficients {z; };?:0.

We are now in a position to state and prove the second theorem. Theorem 2 will set up the
framework to prove our error bound (Theorem 3) which is the primary result of this paper, while
Theorem 5 establishes that there is no universally finer error bound than that of Theorem 3.

1)

THEOREM 2. The y; as defined through (27) and the z; as defined through (31) are such that
”yj” < zj, vjeN.
Proor. The proof for j = 0 is immediate from (15),(16) and (31) as

[yoll = bl <1 = z. (32)
Thus, we need only show that
lyvill <z, j=0,...,k = lyill <z, 7=0,...,k+1. (33)
From (28),
Ivesal = 2l (34

and by the induction hypothesis

lyiil < Nyl < 2, for j=0,...,kandi=1,...,n, (35)
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where y;; represents the j' degree coefficient of the series of y;. Since zp = 1, Theorem 1 and
the knowledge that the highest degree term with nonzero coefficient for any ¢ = 1,...,n in f; is
m, gives that for each term in f, the k" degree coefficient of the product series is such that

‘ [y{‘y? --~y2;‘"}k‘ < gk, (36)
where again g = 2z™. Using (15), (20), and (36),
N N

N
il D03 > [Biguiarinl 95 < IBwllgk, (37)

j1=0 j2=0 Jn=0

for i =1,...,n, which implies

el < IBnIl gk- (38)

Finally, (27) and (31) imply that

IBw|l gk
1Ykl < TRyl kD (39)
which establishes (33) and thus completes the induction. ]
On solving (30),
elBwllt, for m =1,

z(t) = 1 (40)

WW"—I)’ for m > 2,
where M is given by (23). Theorem 2 along with (14), (25), (29), and (40) thus establish our
main result.

THEOREM 3. The series expansion E;io x; tJ of the solution x(t) to the initial value system (12),
or equivalently (12), is such that

k )
HCH (e“BNllltI — z Zj lt|]> , fOI' m = 1’
i=o

k
x(t) = Y _x;t’|| < (41)
j=0

1 k ,
c — zi [t |, form>2,
el ( e~ 5] |>
for any k € N, where ¢ = [c1, ..., cy] is defined in (14) and t is such that |t| < 1/M.

PROOF. We remark first that it is straightforward to demonstrate explicitly that the power series
for x(t) converges and satisfies the IVODE system (13). Using Theorem 2,

k A
X elBnlltl — 5™ 20 ¢, form =1,
. §=0
vit) =D _wit’| < X ‘ (42)
j=0 (T_-W-ﬂ— > oz |t), form >2.
j=0

Multiplying both sides of (42) by |¢;|, using (14), and noting that

oo

z;(t) = ciyi(t) = ZQZJz’jtj, where z;; = ¢;ys;, (43)
=0

establishes the result (41). |
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COROLLARY 4. A simpler but slightly less tight bound than that given in Theorem 3 is the
following:

k k+1
: Mt
x(t) — E x;t || < %, form > 2, (44)
§=0

for any value of k € N, with |t| < 1/M. A component form of (44) is

- 1Mt

k ) k+1
z;(t) — injtj < leif [MeE]" for m > 2. (45)
j=0

PRrROOF. A standard series technique easily generates the coefficients {Zj}?io by the linear recur-

m-—1)k+1 M
2yl = <( k'+)1 )m—lzk’ zo = 1. (46)

sion,

Thus, while the coefficients z; in (41) may at first glance appear computationally expensive to
generate, (46) shows that this is not the case. Also, since

(m-1k+1
T <m-1 47
K+l ST (47)
for K € N and m > 2, the positive sequence defined by the recursion
up1 = Mug,  uo = |c]|, (48)

is such that z; < uy for all k € N. The series expansion of the function u(t) = ||c||/(1 — M¢t) has
coefficients uy, generated by (48), and thus is a geometric series. As such, the well-known closed
form formula for the tail of the series allows for the corollary’s alternative to (41). |

Computing the bound of Corollary 4 is immediate upon setting up the scaled polynomial system
as opposed to the tighter Theorem 3 bound, however it is worth remarking that even the error
bound (41) is far more computationally friendly than error bounds currently in the literature.
We also remark that the interval of convergence developed in the proof of Theorem 3 is larger
than that in (22) as the bound employed there for ||f(y)||, while sufficient for our purposes, is
not the least upper bound.

The error bound of Theorem 3 for the Maclaurin approximation to the solution of (12), or
equivalently, (13), is noteworthy as it depends strictly on the known coefficients and given initial
conditions of the system and not on potentially complicated higher-order derivatives of the right-
hand side, as with traditional error bounds. Nor does it depend on any bounds of any sort on the
unknown(s). Also, to achieve a bound on higher-degree Taylor approximations of the solution,
recomputing the error bound of Theorem 3 simply requires a change in the parameter k. As
illustrated in the Introduction, to accomplish this with (3),(4) or similar traditional error bounds,
analysis of higher-order right-hand side derivatives which often grow exponentially in number of
terms per differentiation can be tedious if not prohibitive.

As mentioned in section 1, many numerical algorithms used for approximating solutions of
differential systems generate the Maclaurin approximation to the solution to a given degree at
each step. Thus the error bound here is a powerful computational tool, allowing the numerical
analyst potentially for the first time to explicitly calculate a step size for the given degree, so
that with the exception of round-off error, the accuracy in the approximation is guaranteed a-
priori to be less than a desired tolerance at a given step. Once a step is taken the error bound
is recomputed based on the updated initial conditions to choose a subsequent step-size. This
error bound is particularly useful for the Algebraic Maclaurin Method discussed in [3], which
generates the Maclaurin approximation to the solution at each step and allows the user to choose
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independently an arbitrary step-size and degree in the Maclaurin approximation at each step.
Having step-by-step direct control over the step-size is typical, but having step-by-step ability
to choose an arbitrary degree (order of accuracy) is much less common and has tremendous
benefits. In addition, the error bound of Theorem 3 has enormous potential to provide analogous
results for the multitude of numerical algorithms used for approximating solutions of differential
systems which, at each step, are derived to be theoretically equivalent to the desired degree to
the Maclaurin approximation to the solution. Runge-Kutta algorithms are one such example. To
conclude this section, we establish the following theorem.

THEOREM 5. There is no error bound that is universally finer than that of Theorem 3 for all
systems of the form (12).

Proor. Consider the IVODE problem whose solution is easily computed to be z1(t) = 1/(1 —t)
zp =22, z,(0) =1 (49)

From (13)-(20), n =1, m =2, N =2, |B;|| =1, and so from (23), M = 1. The error bound of
Theorem 3 for (49) is then

| <
zy(t) = Y a1t < - for |t| < 1, (50)
j=0

where the x1; are coeflicients of the Maclaurin series of z1(t) = 1/(1 — t), a well-known series
with all coefficients identically equal to 1. This however implies that strict equality holds in (50),
and so for the special case (49) of (12), the error bound (41) is exact and cannot be improved
upon. Thus, a universally finer general error bound applicable to all systems of the form (12) is
not possible. 1

Table 1. Comparison of error bounds for 1/(1 — t).

k=10 k =100

t Taylor Theorem 3 Taylor Theorem 3

0.1 0.35407E — 10 0.11111E — 10 0.46480E — 96 0.11111E — 100

0.5 2.0 0.000978 1.99999 0.78886E — 30
0.9 0.31381E + 12 3.13811 0.23905E + 98 0.00239
0.95 0.23298E + 16 11.3760 0.28520E + 131 0.11249

The proof of Theorem 5 also brings to light another potential asset of the error bound estab-
lished in this paper. While the standard Taylor series error bound for the k" degree Maclaurin
polynomial approximation to z1(t) = 1/(1 —t) is easily calculated to be |z1(t) — Z?:o x; ] <
|t|k+1/(1 — |t)**2, it is also well-known to grow rapidly for ¢t away from zero within the interval
of convergence (—1,1) and thus is not particularly useful. Table 1 demonstrates this, compar-
ing this standard Taylor Series error bound with our Theorem 3 error bound in (50) for several
values of t. As noted above, here the bound of Theorem 3 gives the exact absolute error in the
approximation.

A similar comparison can be made for the two error bounds in the Maclaurin polynomial
approximation for any functions built from the elementary functions. For another simple example,
consider f o g where f(t) =Int, g(t) =t + 1. On letting z; = In(t + 1) and x5 = 1/(t + 1), the
corresponding polynomial IVODE system with In(¢ + 1) as its first solution component is

xll = T2, $1(0) =0, IIQ = _1'37 x2(0) =1 (51)
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It follows from (13)-(20) that n = 2,m = 2,N = 2,||Bs|| = 1, and so here again (23) gives
M = 1. The error bound of Theorem 3 for the first component of (51) is then

k k+1

n(0) = o] < P (52)

=0

where the z;; are the coefficients of the Maclaurin series of In(¢ +1). The standard Taylor series
error bound for the k*"' degree Maclaurin polynomial approximation to the function z;(t) =
In(t + 1) is easily calculated to be

1 [tlk+1

k
D D S s T )

and is also well-known to grow rapidly for ¢t away from zero within the interval of convergence
(=1,1]. Table 2 demonstrates this, comparing the standard Taylor Series error bound in (53),
our Theorem 3 error bound in (52), and the exact error in the k*" degree Maclaurin polynomial
approximation to In(¢ 4+ 1) for several values of t. While this dramatic improvement over the
Taylor bound is clearly not realized for all functions (for example, €*), the potential impact of
Theorem 3 in the approximation of a function by its Taylor series is evident.

Table 2. Comparison of error bounds and exact error for In(t + 1).

k=10 k =100
t Taylor Theorem 3 Exact Taylor Theorem 3 Exact
0.1 0.29E — 11 0.111E—10 0.833E — 12 0.414E — 98 0.111E — 100 0.901E — 103
0.5 0.09091 0.00098 0.00003 0.00990 0.789E — 30 0.261E — 32
0.9 0.285E+10 3.1381 0.0157 0.237E 4 95 0.0024 0.125E — 6
0.95 0.106E + 14 11.376 0.0277 0.141E + 128 0.1125 0.00003

3. ERROR BOUND EXAMPLES

We conclude with three illustrative examples: a representative test problem from the literature,
a return to the example (5) from the Introduction, and a problem with known exact solution
from nonlinear solid mechanics.

EXAMPLE 1. A test problem considered by a number of authors (see e.g., [5,10-12]) is given by

1

o) =2 otr, 2,(0) =1,
2t+1 (54)
1 Io

Th = 3711 + 2tz x9(0) =0,

and has explicit solution

z1(t) = Vt + Lcos(t?), To(t) = Vt + Lsin(t?). (55)
It is remarked in [10] that this problem becomes increasingly difficult to solve as t increases due
to the increasing frequency of oscillation inherent in the solution components, and that a fairly
difficult example demonstrating the use of the error estimates based on extrapolation in [10] is
to numerically solve (54) on the interval [0,10]. (The interval [0,3] was employed in [5,11,12]).
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On letting z3 =t and x4 = 1/(t + 1), the solutions 21, z2 of the nonautonomous, non-polynomial
system (54) are equivalent to the solutions z1, 25 of the autonomous polynomial system

1
) = ST1%4 — 2x3zy, 1(0) =1; xy =1, z3(0) = 0;

2 (56)
Th = %24 +2z371, 22(0) =0; zh = —22, 24(0) = 1.

To apply Theorem 3, (13)—(23) give n=4, m =2, N =2,¢,=1,1<i <4, and |Bz|| =M =
5/2. On assuming z;(t) = Y72, 2t/ is the Maclaurin expansion of each solution component
z; and taking t € (—2/5,2/5), (45) gives the following bounds on the absolute errors in the k!
degree Maclaurin polynomial approximations to the solutions of (54) for ¢ in this interval:

k

‘ k+1
|z (t) —jzzzoxij 7] < % i=1,2. (57)

The bounds in (57) are useful in a variety of ways. First, pick T in the interval (0,2/5). It is
then a simple exercise to determine the degree k of the Taylor polynomial that is guaranteed to
approximate the solution on (=7, T) to any desired accuracy, with the numerical computation
restricted only by machine epsilon and machine round-off error. As remarked earlier, the Algebraic
Maclaurin Method rapidly computes this polynomial for very large k; programming this example
in double precision Fortran 90 with a 32 bit processor and machine epsilon € = 2752, we obtain
the following results (Table 3) which demonstrate extraordinary accuracy for the representative
step size and degree pairs shown.

Table 3. Errors in approximating the solution z1 of Example 1.

t Degree k = Relative Error Absolute Error
0.0025 5 <e <e
0.25 60 <e <e€
0.375 471 <e€ <e€
0.399 13432 <e€ <e

We also graphically illustrate the error bound for several values of k for this example. Figures 1
—4 plot the log of the absolute error in the Maclaurin approximation of =1 (t) (the left-hand side of
(57)1) against the log of the error bound (the right-hand side of (57)1) over the interval t € [0,2/5)
with a maximum allowed error of 1075,

5 k=4
8
-10

log
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-14 4
01 02 03 04
t
----------------- error bound
absolute error

Figure 1.
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Note that in each plot, the error bound (dotted curves) lies clearly above the actual absolute
error curves for each value of k. Also note that as k increases, for a chosen error tolerance, the
stepsize computed from the error bound increases toward its limiting value of 1/M. Figures 3
and 4 also show that even an error tolerance of 10732 is achievable for the range of stepsizes
below where the dotted curve intersects the ¢ axis. Thus, this also indicates the potential for
remarkable accuracy with the error bound if a high enough degree k for the Maclaurin polynomial
approximation is chosen, despite the intrinsic singularity in the error bound at +1/M.

The step size t computed from the error bound which guarantees the desired accuracy also
increases dramatically with the degree to which one computes the Maclaurin polynomial ap-
proximation to the solution z;. From Figures 1-4 for example, an error of less than 10~ is
guaranteed by the error bound for step sizes of ~ 0.025,0.17,0.26, and 0.32 for k& = 4,16, 32,and
64, respectively. When k = 64, Figure 4 shows that a stepsize of ~ 0.13 produces accuracy to
within approximately 1073°. The numerics corresponding to Figures 3 and 4 were computed
with MAPLE 9.5, as the necessary precision for this example exceeded that available with double
precision FORTRAN 90 on a 32-bit machine. As k increases, Figures 1-4 also show that the step
size t computed from the error bound of Theorem 3 for a particular desired accuracy can be
significantly smaller than the actual step one could take. Similar results hold for the Maclaurin
series and error bound for x5(t). Of course, the ability to compute higher degree Maclaurin poly-
nomial approximations to solutions of differential equations is crucial to fully exploit the power
of our error bound. The beauty of the Algebraic Maclaurin Method [3] is the algorithmic ease
at which such increased-order approximations can be achieved (a simple parameter that can be
altered on-the-fly controls the order of the method), especially in comparison with other schemes
such as Taylor Series methods or Runge-Kutta where a fixed order (e.g., 4*" or 5*") is standard,
and computing higher-order algorithms is formidable, if not prohibitively cumbersome.

Further, it is straightforward to obtain an accurate numerical solution on an interval [0,7]
with T > 2/5 by stepping out to T', where a k*" degree Taylor polynomial of the solution at the
current step is used to approximate the solution at the next step. The calculated solutions at
the step value then serve as initial conditions for generating the Taylor polynomial of the next
step, and the value of M is recalculated. For example, if a step size of 1/(2M) is taken, solving
(45) < € for k shows that any degree k Maclaurin polynomial approximation with

—11'1(6/|01|) (58)

> o)

provides an absolute error at that step which is less than €, with the exception of machine round-
off error. There is still of course propagation error of O(¢€) per step resulting from using initial
conditions that are calculated approximations at each step, but the step error from solving the
differential system at the machine numbers for the system coeffiecients and initial conditions at
the given step is guaranteed a-priori to be less than €. Table 4 demonstrates our results on using
this procedure to approximate the solution to Example 1.

Table 4. Errors in approximating the solution z; of Example 1.

t Steps Average Degree k Relative Error Absolute Error
5 93 53 0.9145E — 15 0.222E — 14
10 421 53 0.5885E — 13 0.1683E — 12
100 67542 54 0.6939E — 11 0.664E — 10
300.1 730001 55 0.5383E — 10 0.9338E — 9

We first remark that previous studies in the literature for this problem were restricted to ¢ € [0, 3],
or more recently ¢ € [0,10], due to computational difficulties arising for large t. Thus, Table 4
demonstrates that large intervals for ¢ are not problematic here. It is also interesting to note
that the value ¢ = 300.1 was chosen to emphasize that even the FORTRAN 90 compiler does not
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evaluate the function z1(t) = v/t + Lcos(t?) at t = 300.1 to within double precision machine
epsilon €, but has relative error of 0.25E — 12 and absolute error of 0.433E — 11 due to problems
inherent in evaluating library functions at large argument values. (The FORTRAN 90 compiler
more accurately handles large integer values of ¢). In this light as well, our stepping algorithm
based on the error bound of Theorem 3 to solve this intial value differential system on [0, T for
large T shows remarkable accuracy.

Since the Algebraic Maclaurin Algorithm relies solely on the four basic machine arithmetic
operations +, —, %, / and none of the compiler’s intrinsic numerical functions, including exponen-
tiation, it is not difficult to accurately determine the algortihm’s computational cost or to analyze
round-off error. The computational cost amounts to the total number of long operations (ops)
required to approximate the solution given the degree k at each step. For the system in (56),
this is (5/2)(k? + 5k)(ops). The largest cost comes from ops involving machine multiplication
specifically related to the Cauchy products involved in generating the Maclaurin coefficents of
the nonlinear terms in the system.

Given a fixed-order k£ and a known e we could also solve (57) for a step size t*. Assuming that

t* < 1/(2M) and choosing
1 € 1/(k+1)
P 9
<o (527) 0

provides an a-priori step error less than e. This use of the bound would be more attractive
in fixed-order algorithms such as traditional Taylor series methods, and requires no analysis of
higher-order derivatives of the system. Further, there is potential to determine both an ideal
step size and order so that processing time is minimized and the desired accuracy is achieved.
This of course would depend on the structure of the numerical algorithm implemented to create
the Taylor approximation and the given problem. If a high degree of guaranteed accuracy is the
ultimate goal, it is difficult to conceive of a stepping algorithm where a-priori bounds at each
step are not useful.

EXAMPLE 2. We reconsider our sample equation (5) augmented by the initial condition z(1) =1
for another demonstration of salient features of the error bound developed in this paper, that is,
(i) its independence of bounds on the intrinsically unknown right-hand side of the differential
equation and its derivatives
(ii) its ease of recalculation for higher-order approximations.

The projection introduced in (7) produces the autonomous polynomial IVODE system

/ / 2
I] = T2Tg, Ty = 2T1XT3T4T5 + T2T3T4T6, a:’3 = —2212224%5 — THT4T6,

/ / / 1 3 (60)
Ty = 2x475, Ty =1, 6 ~§:c6,

with initial conditions that follow as z1(1) = 1, z2(1) = sin(e), z3(1) = cos(e), z4(1) =1
z5(1) =1, z6(1) = 1. In applying Theorem 3, it follows from (13)—(20) that n =6, m =4, N = 3,
¢i=1,1<1i<6, ||Bs]| =3, and thus by (23), M = 9. On translating for the initial conditions,
we write the Taylor expansion of each solution component z; as z;(t) = > v =0 Tij(t — 1)7 where
[t—1| < 1/M and so t € (8/9,10/9). Then (41) gives the following bounds on the absolute errors
in the k*" degree Taylor polynomial approximations to the solutions of (60) for ¢ in the above
interval

k
x(t) = > % (t=1)|| < |——— Zz]|t—1|7 (61)
j=0

(1—9|(t-—1

where, via (46), the coefficients {z; };?:0 are easily generated by the simple recursion

3k +1
Zpy1 = <—+—) 3z,  z0=1. (62)
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From the above it is easy exploit the equivalent polynomial system (60) and subsequent initial
conditions to determine that the 7*" degree Taylor polynomial approximation to the solution of (5)
subject to (1) = 1 is guaranteed to have single precision accuracy for a step of approximately
0.026. The error bound also guarantees this accuracy for the 12" degree Taylor polynomial
approximation with a step of approximately 0.045. Recalculating the alternative bound (41)
for higher-order Taylor polynomial approximations to achieve greater accuracy with larger step
sizes is a simple matter; for example, a 500*" degree Taylor polynomial approximation delivers
guaranteed single precision accuracy with a step of & 0.107 (near the limiting value of 1/9).

EXAMPLE 3. As a final example, we consider a second-order IVODE

Pr 3 ldr 1 [dr)® 3., dr 7
- - -2 (= . /3 - :___1/3
dR? " 2R?” RdR  2r (dR) o r@=3370 Fp@=it (6

which arises in modeling the spherically symmetric deformation resulting in a cavitated sphere
(sphere with an internal spheroidal void) in compressible nonlinear elasticity. For the mathe-
matical model (63), the sphere is composed of a homogeneous, isotropic Murphy material (see,
e.g., [13] and references cited therein). The independent variable R > 0 represents the spherical
radius at any point in the original (undeformed) configuration of the sphere, while the depen-
dent variable 7 = r(R), the spherical radius in the deformed configuration, determines the radial
deformation of the sphere. The outer surface of the original sphere is defined in (63) by R = 2.
The IVODE (63) is one of the few equations which arise in compressible nonlinear elasticity for
which an explicit solution is available; 7(R) = (1 4+ R?)%?3/R solves (63). While the ODE in (63)
is not a first-order polynomial system, it is straightforward to show that on employing the change
of variables

1 dr

21 =7, Ty =T, T3 = u:%, and t=R-2, (64)

the solution 7 of (63) is equivalent to the solution x5 of the autonomous initial value polynomial

system
dﬂ——:ﬂz @—x dz—s—Ezzz 3T 1a:zzr: dﬂ——zza:
dt— 1 dt =3, dt_221 371 2 3%4, dt_- 4T3,
1 3 7 2
z1(0) = g =0, 22(0)= 531/3 =ap,  23(0) = E31/3 = ag, z4(0) = 53—1/3 =ay.

(65)
As mentioned in the Introduction, the simple change of variables (64) is suggested by the form of
(63) although other choices are possible. The above system is now in the form (13), where from
(13)-(20), n =4, m =3, N =2, ¢; =c3 = c4 = 1, co = (3/2)3'/3. The equivalent system (15)
for this example is

dyl 2 dyz Y3 dy3 3 /(3 1/3) 2 1 2 dy4 9
- = ) — ¥ = ] ¥ == —3 - - A £ - == y
a4 dt ~ 331/ a2 \2 Y2y1 T YY1 T 5 Ysva ae YA (66)
1 7 2
nO=5=b, w0=1=bk, 0= 53”3 = bs, ya(0) = 53—1/3 = by,

and so | Ba|| = (3/2)((3/2)3'/3) + 1 +1/2 < 4.75. Thus by (23), we take M = 9.5 for simplicity.

By Corollary 4 and writing the Taylor expansion of each solution component z; as z;(t) =
E;io xi;t7 where [t| < 1/M = 2/19, (45) gives the following bounds on the absolute errors in
the k" degree Taylor polynomial approximations for the solution component z3(R), that is, the
solution r(R) of the original ivode

k ) 1/3 o\ (k+1
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over the interval (2 —2/19, 2], where for this problem, R > 2 is outside the physical domain. The
Maclaurin coefficients for the solutions of the system (65) were generated numerically in FORTRAN
90 using the Algebraic Maclaurin Method [3] for several values of k. Plotting the absolute error
in the Maclaurin approximation |z3(R) — Z?:o x9;(R — 2)7| against the error bound (67) for
various error tolerances leads to plots similar to those in Example 1. For &k = 16, the absolute
error is smaller than what double precision FORTRAN 90 on a 32-bit machine can capture, and as
k increases, the stepsize computed from the bound for a chosen error tolerance increases toward
its limiting value. As with the previous examples, the error bound demonstrates the potential for
remarkable accuracy for R € (0,2] by stepping across the interval and using appropriate degree
Maclaurin polynomial approximations at each step.

4. CONCLUDING REMARKS

The general error bounds developed here also provide a foundation for building more refined
explicit, a-priori, error bounds for important special subclasses of ODE systems. Our approach
also provides numerical analysts with new tools for making guaranteed predictions about the
solutions of IVODE models that otherwise prove analytically intractable.
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