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A b s t r a c t - - W e  construct discrete interpolating polynomials, provide explicit representations of dis- 
crete Green's functions, give several identities and inequalities for these Green's functions, use the 
explicit forms of the interpolating polynomials and that of Green's functions to establish several 
maximum principles. Further, we obtain error bounds in discrete polynomial interpolation and u s e  
t h e m  to study existence and uniqueness of the discrete boundary value problems. These hounds are  

also used to provide sufficient conditions for the convergence of the Picard's method, the approx- 
imate Picard's method, quasilinearization and the approximate quasilinearization. The m o n o t o n e  

convergence of the Picard's iterative method is also analysed. 

1. I N T R O D U C T I O N  

The landmark paper of Hartman [1] has resulted in the tremendous interest in establishing dis- 
crete analogs of the known results for the ordinary differential equations. Although several results 
in the discrete case are similar to those already known in the continuous case, the adaptation 
from the continuous case to the discrete case is not direct but requires some special devices. 
For the linear difference equations disconjugacy, right disconjugacy, left disconjugacy, right dis- 
locality, eventual disconjugacy and eventual right disfocality have been recently introduced, and 
for each such concept, necessary and sufficient conditions have been provided by Hartman [1], 
Eloe [2-4], Eloe and Henderson [5]. Further, for the linear difference equations a classifica- 
tion of solutions based on their behavior in a neighborhood of infinity is given by Hankerson 
and Peterson [6]. For the nonlinear difference equations, oscillatory theory is developed in [7]. 
Here, necessary discrete calculus is also discussed. Boundary value problems for higher order 
difference equations has been the subject matter of several recent publications, e.g., [8-18]; how- 
ever, it is far from complete. The motivation of the present paper comes from these advances in 
the theory of difference equations. 

The plan of this paper is as follows: Section 2 contains necessary notations which are used 
throughout the paper, certain discrete and combinatorial identities, variation of constants formu- 
lae, and the contraction mapping theorem. In Section 3, we introduce various types of boundary 
conditions and provide explicit representations of polynomials passing through these conditions. 
Such polynomials are called discrete interpolating polynomials. In Section 4, we give explicit 
representations of Green's functions for several higher order boundary value problems. In Sec- 
tion 5, we establish several identities and inequalities for these Green's functions. Related results 
for several other boundary value problems are available in [19-22]. The continuous analogs of 
these results have proved to be very useful in providing disconjugacy tests and distance between 
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consecutive zeros of the solutions of higher order differential equations, see, for example [23-25]. 
The explicit forms of interpolating polynomials and those of Green's functions help in estab- 
lishing maximum principles for functions satisfying higher order inequalities. In Section 6, we 
prove some such maximum principles. The continuous analogs of these results are available 
in [23,26]. In Section 7, we have included several results which provide error estimates in discrete 
polynomial interpolation. These estimates are used in Section 8 to provide easily verifiable sets of 
necessary and sufficient conditions so that the corresponding nonlinear boundary value problems 
have at least one solution. These estimates are further used in Sections 9 and 10 to provide 
sufficient conditions which ensure the convergence of the constructive methods: Picard's method, 
the approximate Picard's method, quasilinearization, and the approximate quasilinearization, for 
the nonlinear boundary value problems. Finally, in Section 11 the monotonic convergence of the 
Picard's iterative method is analysed. 

2. P R E L I M I N A R I E S  

Throughout,  we shall use some of the following notation: N = {0, 1 , . . .  } the set of natural 
numbers including zero; N(a, b -  1) = {a, a + 1 , . . . ,  b - 1}, where a < b - 1 < oo and a, b E N. 
Let f (k)  be a function defined on N ( a , b -  1), then for all kt, k2 E N ( a , b -  1) and kl > k2, 

k2 k~ ~"~-t=k~ f(£) = 0 and 1-It=k~ f(£) = 1, i.e., empty sums and products are taken to be 0 and 1, 
respectively. If k and k + 1 are in N ( a , b -  1), then for this function f (k)  we define the forward 
operator A as A f ( k )  = f ( k  + 1) - f (k) .  The higher order differences for a positive integer m are 
defined as Amf(k )  = A fAro-If(k)] • I be the identity operator, i.e., I f (k )  = f(k).  As usual, 
denotes the real line and ]~+ the set of nonnegative reals. For t E ]~ and m a nonnegative integer 

rn--1 the factorial expression (t) (m) is defined as (t) (m) = l-L=0 (t - i). Thus, in particular for each 
k N ,  = k!. 

n - - 1  The function Q,_l(k)  = ~ i = 0  ai(k)(i) (n > I), k E N is called a discrete polynomial of 
degree n - 1. Using Stirling numbers, this polynomial can be written as Qn-x(k) = ff'~i=0n-t bi k i. 
It is obvious that Qn- t (k )  can have at most n - 1 zeros in N. However, if Qn_~(k) vanishes at 
n distinct k i E N ,  1 < i < n then Qn-x(k)  = 0. 

LEMMA 2.1 [27]. For the functions u( k ) and v( k ) defined on N (a, b -  1+ n) the following relations 
hold 

(i) u(k + n) = ( l  + A)nu(k) = ~'~in=o ( n A'u(k), k E N ( a , b - l ) ;  
% f 

(ii) A n[u(k) v ( k ) ] = ~ ' ~ i ~ = 0 ( 7 )  A n - i u ( k ) A i v ( k + n - i ) '  k E N ( a , b - a ) .  

LEMMA 2.2 [28]. For positive integers m and n the following identities hold 

~--~:=0(_ 1)t ( r e + n - , )  = 
n - '  ( 7 ) 1 ;  (i) 

• x / 

(ii) ~"~]=°(-1)t( m+n-'-l)n-, ( 7 ) = 0 .  

LV.MMA 2.3 [27]. Let v l (k ) , . . . ,  vn(k) be n linearly independent solutions of the homogeneous 
difference equation 

13 

L[u] = E ai(k) u(k + i) = O, k e N(a,b- I), (2.1) 
i=0 

where an(k) = 1 and ao(k) ~ O, and let ¢(k) be any solution of the nonhomogeneous difference 
equation 

L[u] = b(k), k E N ( a , b -  1) (2.2) 

(these solutions exist on N(a, b - 1 + n)), then the general solution u(k) of (2.2) can be written 
O.8 

n 

u ( k ) = Z c i v i ( k ) + ¢ ( k ) ,  k e N ( a , b - l + n ) ,  (2.3) 
i----1 

where ci, 1 < i < n are arbitrary constants. 
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An explicit representation of @(k) in terms of  vl(k),..., I/n(k) appears as 

]g--n 

@(k) = ~ G(k, l + 1) b(£), 
l - - - - a  

k E N ( a , b -  1 + n ) ,  (2.4) 

where the function G(k , i )  is defined as 

G ( k , O  = 

Vl(e) . . .  v . ( 0  

V l ( e + n - 2 )  . . .  v , ( t + n - 2 )  
~(k) . . .  v ,(k)  

Vl(0 . . .  v . ( 0  
• . 

V l ( e + n - 1 )  . . .  v , ( t + n - 1 )  

(k,e) E N ( a , b - l + n )  x N(a,b).  (2.5) 

The following properties of G(k, t)  are immediate. 

(i) G(k , l )  = 0 for all £ E g ( k  - n + 2, k) and k E g ( a , b  - 1 + n); 
(ii) G(k, £) = 0 for all k E N ( ~ , / +  n - 2) and l E g(a ,  b), and G( l  + n - 1, £) = 1; 

(iii) for a fixed £ E g(a ,b) ,  co(k) = G(k,e)  is a solution of (2.1); 
(iv) G(k, t)  is independent of the set of linearly independent solutions v~(k), 1 < i < n of (2.1). 

LEMMA 2.4 [7]. The genera/solution of the difference equation 

Anu(k)  = b(k), k E N(a,  b -  1), (2.6) 

can be written as 

u ( k ) = Q . _ ~ ( k ) + - -  1 
(n - 1)! E ( k  - t - 1) (n -D b(£), 

l - - - - a  

k E N(a,  b - 1% n), (2.7) 

where Qn- 1 (k) is a polynomial of degree 

THEOREM 2.5 [23]. Let B be a Banach 
r}. Let T map S(uo, r) into B and 

(i)  for  aU u, v e :~(uo, r) ,  IITu - Tvll 
(ii) 

Then, 

(1) 
(2) 
(3) 

(4) 
(5) 

n m 1 .  

space and let 0 < r E R, S(uo, r) = (u E B :  I l u -  uoll ~< 

~ Ilu - vii, where 0 < ~ < 1; 
ro = (1 - 0~) -1  IITuo -- uotl < r. 

the following hold 

T has a fixed point u* in S(uo, ro); 
u* is the unique fixed point o f T  in S(uo,r); 
the sequence {urn} defined by um+l = Turn, m = O, 1 , . . .  converges to u* with I l u ' - u , , l l  _< 
Otm r o ;  

for any u E S(uo, ro), u * =  lim Tmu; 
I'B .-----* O0 

any sequence {f,,,} such that fir, E S (um,a  m to), m = O, 1 , . . .  converges to u*. 

3. I N T E R P O L A T I N G  P O L Y N O M I A L S  

THEOREM 3.1. The unique polynomial Pn- l (k )  of  degree n - 1 satisfying conjugate boundary 
conditions 

Pn- l (k i )  = u(ki) = Ai, 1 < i < n, (3.1) 

where a = kl < k~ < . . .  < k ,  = b - 1 + n and each ki E N(a,  b - 1 + n) can be written as 

n 

e , _ l ( ~ )  = ~ t ~ ( k )  A,, (3.2) 
i = 1  
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where 

, : ,  \ k i - k i  ' 
./#i 

1 < i < n. (3.3) 

PROOF. It suffices to note that l i(k) is a polynomial of degree at most n - 1 and ti(kj) = 6q, 
1 < i, j _< n. The uniqueness part is obvious. 1 

THEOREM 3.2. The unique polynomial P~,~- l ( k ) of degree 2 m -  1 satisfying osculatory boundary 
conditions 

P2m-x(ki) = u(kl) = Ai, AP2m-a(ki) = Au(ki) = Bi, 1 < i < m, (3.4) 

where a = kt < kt + 2  < k2 < k2 + 2 < . . .  < kin-1 < kin-1 + 2 <km < km + 1 = b - 1 + 2 m  and 
each ki E N(a, b - 1 + 2m) can be written as 

P2m_l(k)= ~-~hi(k)Ai+ ~-~hi(k)Bi, 
i=1 i--1 

(3.5) 

where 

hi(B) = 1 - 1 + T~ ¥ i  =kj  (ki - kj)(2) ' 

and 

hi (B)=  f i  k i + l  ~i (3.7) 

PROOF. Since for each 1 < i < m, hi(k) as well as hi(k) is a polynomial of degree at most 
2m - 1, it suffices to show that  hi(kj) = 6ij, Ahi(kj) = O, hi(kj) = O, Ahi(kj) = 6ij, 1 < i, 
j < m. For this, hi(kj) = 6ij and hi(kj) = 0 is obvious. Also, since 

Ahi(k)= [ ( j l - ~ l ( - - ) ) ]  f i ( k + l - k j ) ( k - k j )  rn k i 1 kj (k + 1 - ki) -(-k-i-_-k~.)(2 ~ 

[ ( m  ( k i - l - k j ) )  ( k - k i ) ]  f i ( k - k j ) ( k - l - k j )  
- 1 -  l + l ' I  k i + l  kj ( k i - k j )  (2) 

j = l  .i=t 

Ahi(kj) = 0, i ~ j is immediate. Further, we have 

[ f i ( k i - l - k j ) ]  f i ( k i + l - k j )  
Ahi(kl)--- 1 - 1 -  ~ / + l - k j  (k i - -1  kj) 1=0.  

j = l  j= t  

The proof of Ahi(kj) = 6ij is also clear. 1 

THEOREM 3.3. The unique polynomiM P2m-l(k) of degree 2m - 1 satisfying two point Taylor 
boundary conditions 

AiP2m_x(a)=Aiu(a)=Ai, A iP2m_l (b+m)=Aiu(b+m)=Bi ,  O < i < m - 1  (3.8) 
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can be written as 
(i) 

rrl--I 
m-1 (k - b - m)  (i) m) (m ) (k - a)(O (3 .9)  

Pzra-l(k) = (k - a)  (m) Z ~.. ~i + (k - b - Z i[ eq, 
i=0 i=0 

where 

[ 11 ,,,, I . o < i  < m - 1  (3.10) 
~, = zx' ( k - Z = ~ ) ( m ) J  Ik=o' a, = t (k  -- a ) (m)J  k.~b.Jcm 

(In view of Lemma 2.1 (ii), each Oti(]~i) is explicitly known in terms of Aj(Bj), 0 < j < i); 
(ii) 

~ x  ( ~ 1  i~ ) ( k _ b _ m ) ( J ) ( k _ b _ m _ j _ l ) ( , n - , - 1 )  ) 
P2m-l(k) = ( k - a )  (m) J[(--1)m-j-l( m - j -  1 ) [ (b+m+j_a) (m ) Bi 

i=o \ j=i 

) + ( k _ b _ m ) (  m) ~ J ! ( - 1 ) m - i - l ( m - J  - 1 ) [ ( a + j - b - r a ) ( m )  Ai; (3.11) 
i=0 \ j = i  

(iii) 
rn-1 rn-1 

P2m-l(k) = E qi(k)Ai + Z (li(k) Bi, (3.12) 
/----0 i--O 

where qi( k ) and qi( k ), 0 < i < m-1  are the polynomials of degree 2m-1 satisfying A r qi( a) = 6it, 
Arqi(b + m) = 0, A"~i(a) = 0, Ar~i(b + m) = dfir, 0 < i, r < m - 1 and appear as 

m-~-~ { ~ ) (k a)('+i) 
q i ( k ) = ( b + 2 m - k - 1 )  (m) E m + j - 1  - (3.13) 

j =0 J i! (b + 2m - i - 1 - a)('n+j) ' 

m - i - 1  / 
# i ( k ) = ( - 1 )  i ( k - a )  (m) ~ ( r e + J - 1  ( b + m + i + j - k - 1 )  ( '+ i )  

j=o J i ! ( b + m + i + j - a ) ( r e + j )  ' 
O<i<__m-1. 

(3 .14)  

PROOF. 
(i) The polynomial P2,n-y(k) in (3.9) is obviously of degree at most 2 m -  1. Thus, it suffices 

to show that  this P2m-l(k) indeed satisfies the conditions (3.8). For this, we rewrite 

P2m-l(k) as 

P2m-l(k) (k__a)(m) ~ 1  ( k - b - m )  (i) m-1 (k_a)(i) 

( k - b - m ) ( - )  = (k ~ : ~ ) ( ' )  ,=0 ~ ~ '+  ~,=0 ~i ~'" 

From Lemma 2.1 (ii), it is clear that  the first term of the right side and all of its differences 
up to the order m -  1 vanish when k = a. Further, the ith difference of the second term 
when k = a is ai.  Thus, al  must be the same as given in (3.10). The same observation 

holds for each fli. 
(ii) From Theorem 3.1, the unique polynomial of degree 2rn - 1 satisfying the boundary 

conditions P2m-l(a + i) = u(a + i), P2,~-l(b + m + i) = u(b + m + i), 0 < i < m - 1 can 
be written as 

,n-1 (k - a)  (i) (k  - a - i - 1) ( ' ~ - i - U  (k - b - m)("") 
P2m-l(k)= E i t ( _ l ) m - i - X ( m - i - 1 ) ! ( a + i - b - r n ) ( m )  .u(a+i)  

i=O 

rn-1  
-t- Z (k - a) (ra) (k - b - m)  (i) (k - b - m - i - 1) ( m - ' - l )  u(b + m + i) .  (3 .15)  

i=o i! ( - 1 )  ~ - i - 1  (rn - i - 1)! (b + ra + i - a)(m) 
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However, in view of Lemma 2.1 (i), u(a+i) = )-'~=0 (~) Aj and u(b+m+i) = )-~=0 ( j )  
Using these relations in (3.15) and rearranging the terms, the required polynomial (3.11) 
follows. 

(iii) It is clear that  qi(k) and ~i(k) are the polynomials of degree at most 2 m -  1. Thus, it 
suffices to show that  Arqi(a) = dfir, Arqi(b + m) = 0, Ar$i(a) = 0, Ar(li(b + m) = 6it, 
0 < i, r < m -  1. For this, we note that  Arqi(b + rn) = Ar{i(a) = 0, 0 < r < m - -  1 is 
obvious. Further, in view of Lemma 2.1 (ii), we have 

m - - i - - 1  

j=0 j i! (b + 2m - i - 1 - a)(m+D 

x ( i -( j ---~- '+ t)! ( -1)m (m - t)! 
/=0 

and hence, Arqi(a) = 0 if 0 < r < i - 1, and 

Aiqi(a ) = 1 
i! (b + 2m - i - 1 - a)('~) i! ( - 1 ) "  (a + i - b - m) (m) = 1. 

Also, for i + 1 < r < m - l, we have 

Arqi (a)= ~ ( m +  j - -  1 )  1. ( r ) ( i +  j)! 
j=o J i! (b + 2m - i - l - a)(m+D r - i - j 

m! 
× (-1) '~ (m - r + i + j)! (a + i + j - b - m) ('~-r+i+j) 

m r e + j - 1  
- i ! ( b + 2 m - i ' - - 1 - a ) ( r - O  Z - ~ -  l f - i - J  r - i - j  j 

j=0  

r, ~ r - i  ( m + r _ i _ j _ l )  ( 7 )  
i ! (b+ 2 m -  i -  1 -a ) ( r - i )  m ( - 1 ) J  j=0 r -  i - j  ' 

which, in view of Lemma 2.2 (ii), is zero. Thus, Arqi(a) = 6it. 
Now we shall show that  Ar#i(b + m) = 6it. For this, once again from Lemma 2.1 (ii), 

we h a v e  
m - i - 1  

A r q i ( k ) = ( - 1 ) i  E ( r e + j - l )  l 
j=o j i! (b + m + i + j - a)(m+D 

~ - ~ ( r t )  m' ( k + r _ i _ a ) ( , _ t )  ' (i + J ) ! ( -1 ) r - t  ( b + m + i +  j - k -  l - r+e) ( i+ i - r+ t )  (m £)v × 

/=0  

and hence, Ar~i(b+ m) = 0 if 0 < r < i -  1, and 

1 
Ai4i(b + m) = ( -1)  i i! (b + m + i - a)(m) i! ( -1)  i ( -1)  (°) (b + m + i - a) (m) 

--'-=1. 

Also, for i +  1 < r < m -  1, we have 

A r ~ i ( b + m ) = ( _ l ) i  ~ - ~ ( m + j -  l )  1 
j=0 J i! (b + m + i + j - a)(m+J) 

x r - i - j  ( i + J ) ! ( - 1 ) i + J  ( m - r + i + j ) ( b + m + i + j - a ) ( m - r + i + ' O  

_ _ r' X--" r-i ( ( - 1 )  j ) (  ) m m + j - 1  
i! (b - a + r)(r-i) / -"  r - i - j j 

j=O 

=O. | 
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REMARK 3.1. From (3.13) and (3.14), it is clear that  qi(k) > O, ( -1 )  i ~i(k) _> 0, k E N(a,  b+m),  
0 < i < m -  1. Also, since q(k) = qo(k)+~o(k) is a polynomial of degree at most 2 m -  1, satisfying 
q(a) = 1, A~ q(a) = O, 1 <_ r < m - - l ,  q(b + m) = 1, A~ q(b + m) -- 0, 1 < r < m - 1  it is 
necessary that  

q(k) = qo(k) + ~0(k) = 1. (3.16) 

THEOREM 3.4. The unique polynomial P n - l ( k )  of  degree n - 1 satisfying Hermite (r point) 
boundary conditions 

AJ Pn_l(ki)  = AJu(ki)  = A i j ,  l < i < r, O < j < pi, (3.17) 

where a = kl < kl +Px + 1 < k2 < k2 +pg. + 1 < . . .  < kr_ 1 < kr-1 + P r - 1  q- 1 < kr < kr +Pr -- 
b - 1 + n and each hi E N(a,  b - 1 + n), Pi >_ O, ~'~=1Pi -4- r -- n can be written as 

e . _ l ( k )  = ~ ( k ; ¥ Z - ~ >  s ! ( - 1 ) . y - .  (p~ - s)~ aj, , .  j=l  l=0 s=t i=I 

(3.18) 
PROOF. From Theorem 3.1, the unique polynomial P n - t ( k )  of degree n - 1 satisfying 
P , - l ( k y  + s) = u(kj + s), 1 < j < r, 0 < s < pj can be written as 

ki)cp,+l> (k - ki)c'> (k - k~ - s - 1)cpJ-'> 
- - _ ~ + x )  s! (-1)PY-' (pj - s)[ 

u ( k y + s ) .  (3.19) 

However, in view of Lemma 2.1 (i), u(ky + s) = Y~=0 (~) AY,," Using this relation in (3.19) and 
rearranging the terms, equation (3.18) follows, mm 

THEOREM 3.5. The unique polynomial Pn - l ( k )  of  degree n - 1 satisfying Abel-Gontscharoff 
(right focal point) boundary conditions 

m i p n - l ( k i + l )  = A i u ( k i + l )  = A i ,  0 < i < n - 1, (3.20) 

where kt < k2 < . . .  < kn (k ,  > kl)  and each ki E N(a ,b)  can be written as 

n-1 
Pn- l (~ )  = ~ T i ( k )  A i ,  (3.21) 

i=0 

where 

7~(k)=  - -  
I! 2!.- .  i! 

Ii (kx)(1> (ki)(2) "'" (k,)O-1> (k,)(O 1 2(k2)0) .-. (i- I)(k2)0 -2) i(k2) (i-t) 

0 0 -. .  (i - I)! i! (ki) (x) 
(k)o> (k)~> ... (k)o-~> (k)<'> 

(3.22) 

PROOF. It suffices to note that  ~ ( h )  is a polynomial of degree i and that  AiT/(kj+I)  = O, 
0 < j < i - 1, A i T i ( k i + l )  " -  1. m 

REMARK 3.2. An alternative representation of T/(k) is in terms of iterated summations 

7~(k) = f k - x  ~ , ~ - ~ . .  ~ , _ ~ - ~  , i  
:----kx Jl2=k~ " J l i=ki  

(3.23) 
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where, for the integers p and q and any function u(k), 

q-1 

~ q-1 U(e) = =1o__1 

= ~  - ~ 2  u(e), 
l=q 

if q k p ,  

if p k q .  

Further, in particular, 

To(k) = 1, 

Vl(k  ) = [(k) (1) -- (kl)(1)] , 

1 
T3(k) = T., 

+ (6(k2)(1)(k3) (1, -- 3(k2) (2)) ((k) (1) --(kl)(1))] . 

T H E O R E M  3 . 6 .  
boundary conditions 

AiPn_l(a) = AiuCa) 
AiPn_l(b) = Aiu(b) 

can be written as 

p-1 (k -- a) (i) 
e ._ l (k)  = ~ ~r A, 

i=0 

The unique polynomial Pn-l ( k ) of degree n -  1 satisfying two point right focal 

= Ai, 0 < i < p - 1 ,  ( l < p < n - 1 ,  but fixed), 

- Ai, p < i < n - 1 ,  
(3.24) 

PROOF. That  Pn- l (k )  defined in (3.25) is a polynomial of degree n -  1 is obvious. Further, since 
ArPn_l(a) = At,  0 < r <. p - 1 is straightforward, it suffices to show that 

O < _ i , ~ < _ n - p - 1 .  

For this, once again if i < l then L = O, and if i = l then L = 1 is immediate, and for i > t we 
h ave 

L - -  Z ( b -  ( b -  a +  i -  j -  1) (i-j)  
a)(J - l )  (-1)~-J  

~__, ~7=V),. ( i - ~ ) !  

i - t  (b - a )  ( j )  (b - a + i - ~ - j - 1)  ( i - t - j )  k-" ( _ l ) ' - t - J  
j! (i - ~ - j)! 

_ - ( - l ) i - t ~ - ~ ( - l ) J  ( b - a + i - i _ t t  j - j - l )  ( b ~ a ) ,  
j=o 

which, in view of Lemma 2.2 (ii), is zero. II 
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The proof of the following two results is similar. 

THEOREM 3.7. The unique polynomial Pn-l(k) of degree n - 1 satisfying (n,p) boundary con- 
ditions 

Aipn-l(a) = A i u ( a )  -" Ai, 
APPn-I(b - -  1 + n - p )  = A P u ( b  - 1 + n - p )  = B ,  

can be written as 

O < i < n - 2 ,  

(0 < p < n -  1, but fixed), 
(3.26) 

n-2 (k -- a)(i) [ 
P n - l ( k ) = E  i! A i +  B -  

i=0  

n ~ 2 ( b + n - p - a - 1 ) ( i ) i = o  ii Ap+i] 

( n  - p - I ) !  ( k  - . ) ~ . - I )  
× 

( n - l ) !  ( b + n - p - a - 1 ) ( " - p - D "  
(3.27) 

THEOREM 3.8. The unique polynomial of degree n - 1 satisfying (p, n) boundary conditions 

APPn-I(a) = APu(a) = B, (0 < p < n - 1, but fixed), 
A i p n - l ( b + l ) = A i u ( b + l ) = A i ,  O < i < n - 2 ,  (3.28) 

can be written as 

.-2 ( b + i -  k)(i) 
Pn-l(k)  = E i! ( -1) '  Ai + 

i=0 

[ B - " ~ - ~ f 2 ( b + i - a ) ( O  ] 
i=o -/~ ( -1)  i Ap+i 

(n - p - 1)[ ( _ 1 )  p (b + n - 1 - k )  ( n - l )  

× ( n - l ) [  ( b + n - p - a - 1 ) ( n - p - 1 )  " (3.29) 

4. GREEN'S FUNCTIONS 

Consider the difference equation (2.2) together with the linearly independent boundary condi- 
tions 

n--1 

gi[u] = Z air u(ki + r) = Ai, 1 < i < n, (4.1) 
r ~ 0  

wherea  < kl < . . . <  kn <banda i r ,  Ai, 1 < i <  n, 0 < r < n - 1  are the known constants. 
Obviously, in view of Lemma 2.1 (i), all the boundary conditions considered in the previous 
section are particular cases of (4.1). The solution u(k) of (2.2) defined in (2.3) satisfies these 
boundary conditions (4.1) if and only if the system 

A~ = gi c~ v~ + ,~ = cj g~[v A + t~[¢], 1 < i < n, 
./=1 

has a unique solution. Thus, the boundary value problem (2.2), (4.1) has a unique solution if 
and only if det(li[vj]) ~ 0. Further, in such a case, the existence of the fundamental system of 
solutions ~j(k), 1 _< j < n of (2.1) satisfying £i[~j] = 60 is assured (as det(t/[~j]) = 1). 

For convenience, we shall write Di(t) = cofactor of ~i(g+ n -  1) in the det V(g) = det(~i(t+j)) ;  
1 < i < n, 0 < j  < n - 1 .  Further, let ko = a, bn+l = b, and D0(k) = D,+I(b) = #0(b) = 
On+l(b) = 0 on N(a,b - 1 + n). Then, in view of (2.3) and (2.4), the general solution u(b) 
of (2.2) can be written as 

n k - n  1 ,,+x 

u(k) = E c j  Oj(k) + E det V(t + 1) E DJ(t q- 1) ~j(k)b(t), 
j----1 l----a j=O 

k • N ( a , b - l + n ) .  (4.2) 
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Since, from the properties of G(k, ~.) defined in (2.5), 

k, n + l  n 1 
E Dj (g + 1) ~ (ki + 1") b(~.), u(ki+ r ) =  E c j O j ( k i +  r )+ E det V ( l +  1) 

j = l  l=a j=0  

0 < r < n - 1 ,  

boundary conditions (4.1) can be used to determine the constants cj, 1 _< j _< n which appear as 

kj-1 1 

cj = A j -  E d e t V ( £ + l )  DJ(e+l)b(g) '  l < j < n .  
l = a  

Thus, the solution of (2.2), (4.1) can be written as 

n+l kj-1 1 D i ( e +  1) ~j(k) b(e) 
u(k) = Aj f)j(k) - E E det V(~ -I- I) 

j = l  j=0 t=ko 

k - n  n + l  1 
+ E de tV(e+  1) E D J ( e q -  1)~i(k)b(e) 

t=ko j=0  

fl n k i ÷ 1 - 1  I n + l  

. ~ Dj(e+ 1)~j(k)b(e) 
-- ~ Aj Oj(k) - Ei=o t=k,E det V(g -I- I) j__s~.+l 

k - - n  1 nq-1 

+ E det V(g+ 1) E D J ( g q -  1)~j(k)b(g) 
l=ko j=0  

n b-1 

= E Aj ~j(k) + Eg(k ,~)b(~) ,  
j = l  l = a  

where, for  ki+ 1 - ki  >_ 1, 

1 i 
det V(g + 1) ~ Dj(£ + 1) fij(k), 

g(k,e) = 1 n-I-1 

- F)  1D (e + (k), 

ki < ~ < k -  n, 

k - n + l < l < k i + l - 1 ,  0 < i < n ,  

(4.3) 

and for ki+1 - ki < 1, g(k,l) = O. 
This function g(k,£) is called the Green's function of the boundary value problem (2.1), 

*itu] = O, 1 < i < n, (4.4) 

and is uniquely determined on N(a, b - 1 + n) x N(a, b - 1). The following properties of g(k, £) 
are fundamental. 

(i) Arg(k,g), 0 < r < n -  1 exists on N ( a , b -  lq- n -  r) × N ( a , b -  1); 
(ii) g(k,£) as a function of k satisfies 

L[g(k, ~)] = E ai(k) g(k + i, ~) = 6kt, k • N(a, b - 1); 
i=0 

(iii) g(k,l) as a function of k satisfies the homogeneous boundary conditions (4.4); 
(iv) for any b(k) defined on N(a, b - 1), the unique solution of the boundary value problem 

(2.2), (4.4) is given by 
b - 1  

uCk) = g(k, 0 b(0. 
l----a 
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THEOREM 4.1. Let u(k) be a function defined on N(a, b - 1 + n), and satisfy the conjugate 
boundary conditions (3.1). Then, the following holds 

b - 1  

u(k) = Pn-1 (k) + E g(k, t) A'~u(£), k • N(a, b - I + n), (4.5) 
L-~ a 

where Pn-l( k) is the conjugate interpolating polynomiM defined in (3.2); and g(k, £) is the Green's 
function of the boundary value problem 

A"u(k)  = 0, (4.6) 

u(ki) = 0, 1 < i < n, (4.7) 

which can be written as 

1 f g l ( k , ~ )  - -  ( k  - ~ - 1 )  ( r ~ - l ) ,  a < kr - n + 1 < ~ < k - n ,  

g ( k , £ ) =  ( n - l ) !  / g l ( k ' £ ) '  k - n + l < £ < k r + l - n ,  (4.8) 
l < r < n - 1 ,  

where 

g t ( k , ' ) :  ~ ff~ ( k -  k, ~ (ki - ' -  l) ("-1).  
i = r + l  j--1 - ks ] 

j#i 

PROOF. Let b(k) = Anu(k)  in Lemma 2.4 so that  the function u(k) can be written as 

i=1 

k--I'l 
1 

(n - 1)! E ( k  - t - 1)("-1) Anu(£), 
L=a 

k G N ( a , b -  1 + n), 

where £i(k) is defined in (3.3). This function satisfies (3.1) if and only if 

1 
Ai = ci + (n 1)'------~ E (ki - ~ - 1) ("-1) Anu( t ) ,  1 < i < n. 

l----a 

Therefore, it follows that  

n n k l  - - n  
1 

u(k) = E £ i (k)Ai -  ( n -  1)! E £ i ( k )  E (ki - £ -  11 (n-l)  Anu(£) 
i=1 i=1 l = a  

k--rl 
1 

+ (n - 1)] E ( k - £ -  1)(n-t)Anu(£) 
l----a 

" 1 E t./(k) ( k / -  t - 1) (n-l) A"u(£) 
= Y'~i(k)Aii=l (n - 1)! L~=I t - -k , - .+ t  ~=~+1 

k--n ] 
- 1) ( ' - l ) a " u ( t )  , 

L~a 

which is the same as (4.5). 

rAlllt2$1Jql 
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COROLLARY 4.2. The Green's function g(k, t )  of the two point boundary value problem 

A2u(k) = 0, (4.9) 

can be written as 

u(a)=O, u ( b + l ) = O ,  (4.10) 

1 ( ( b + l - k ) ( £ - 4 - 1 - a ) ,  a < e < k - 2 ,  (4.11) 
g ( k , g ) -  b - i - l - a  ( k - a ) ( b - O ,  k - l < l < b - 1 .  

The proof of the following results is analogous to that  of Theorem 4.1. 

THEOREM 4.3. Let u(k) be a function defined on N(a, b - 1 + 2m), and satisfy the osculatory 
boundary conditions (3.4). Then, the following holds 

b-1 

u(k) = P2m-l(k) + Z g ( k , O A 2 m u ( e ) ,  k e N ( a , b -  1 + 2m), (4.12) 
l=a 

where P2m-l(k) is the osculatory interpolating polynomial defined in (3.5), and g(k, 0 is the 
Green's function of the boundary value problem 

A~rau(k) = 0, (4.13) 

u(ki) = Au(ki)  = 0, 1 < i < m, (4.14) 

which can be written as 

1 [ 91(k,,~) - ( k -  g -  1) (2m-l) ,  

g(k,g) - ( 2 r n -  1)! ] gl(k,g), 

w h e r e  

a _< kr - 2 m + 2  < g  < k - 2 m ,  

k -  2 m +  1 < l < kr+l - 2m + 1, 

l < r < m - 1 ,  
(4.15) 

ITI 

g l ( k , £ ) =  Z 
j = r + l  

[hi(k) (kj - e - 2m + 1) -t- hi(k) (2m - 1)] (kj - t - 1) (2m-2), 

and hi(k), hi(k) are defined in (3.6) and (3.7). 

THEOREM 4.4. Let u( k ) be a function defined on N ( a, b -  1+2m), and satisfy the two point Taylor 
boundary conditions (3.8). Then, equation (4.12) holds, where P2ra-l(k) is the two point Taylor 
interpolating polynomial defined in (3.12), and g(k,~) is the Green's function of the boundary 
value problem (4.13), 

Aiu(a) = Aiu(b+ m) = O, 0 < i < m -  1, (4.16) 

which can be written as 

1 g l ( k , 0  - (k - e - 1) 
g ( k , 0  = ( 2 m -  1)! g l ( k , 0 ,  

a < l < k - 2 m ,  

k - 2 m + l < f < b - 1 ,  
(4.17) 

w h e r e  
m - 1  

g1(k, t) = E (2m - 1) (`) (b + m - l - 1) (2m-'-x) ~i(k), 
i=O 

and ~i(k) is defined in (3.14). 
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THEOREM 4.5 .  Le t  u(k) be a function defined on N(a, b - 1 + n), and satisfy the two point right 
focal point boundary conditions (3.24). Then, equation (4.5) holds, where P,_~(k) is the two 
point right focal interpolating polynomial defined in (3.25); and 9( k, t) is the G r e e n ' s  function of 
the boundary value problem (4.6), 

A i u ( a )  = 0, 0 < i < p - 1, (1 _< p _< n - 1, but fixed), 
Aiu(b )  = 0, p < i < n - 1, (4.18) 

which can be written as 

where 

t 

 go(k,t, 
g(k, £) = ( - 1 )  " -p  r=a 

k - ,  

T__~.tl 

a < t < k - 1 ,  

k < t < b - 1 ,  

go(k, t, 1") = (k - r - 1)0 ' -1)  ( t  + n - p - 1 - r ) ( - - p - x )  
(p - 1)! (n  - p - 1)! 

(4.19) 

(4.20) 

THEOREM 4.6 .  Let u(k) be a function defined on N(a, b - 1 + , ) ,  and satisfy the (n,p) boundary 
conditions (3.26). Then, equation (4.5) holds, where  Pn-l(k) is the ( n , p )  interpolating polyno- 
mini defined in (3.27); and 9(k ,£ )  is the G r e e n ' s  function of the boundary value 
problem (4.6), 

Aiu(a) = 0, 

APu(b - 1 + n - p) = O, 

which can be written as 

O < i < n - 2 ,  

(0 < p <_ n - 1, but fixed), 

where 

(4.21) 

I ~ 91(k,~e) - (k - l - 1) ( n - l ) ,  a < £ < k - n,  (4.22) 
g ( k , £ ) =  ( . - 1 ) !  [gx(k,£), k - n + l < l < b - l ,  

g l ( k , e )  --  (k - a)  ( n - l )  (b + .  - p -  e -  2) ( " - p - l )  

(b + ,  - p - a - 1 ) (" -P  -1)  

THEOREM 4.7 .  Let u(k) be a function defined on N(a, b - 1 + n), and satisfy the (p, n) boundary 
conditions (3.28). Then, equation (4.5) holds, where  P, - l ( k )  is the (p, n) interpolating polyno- 
mini defined in (3.29); and g(k, £) is the Green's function o f  the  boundary value problem (4.6), 

A n u ( a )  = O, (0 _< p < n - 1, but f ixed) ,  

Aiu(b + 1) = O, 0 < i < n - 2, (4.23) 

which can be written as 

( _ 1 ) - + i  a < e < k - 1, 

g(k,e) = fiT),. [ g l (k ,e)-  (e + . - 1 - k ) < " - ' ) ,  k < e < b - 1 ,  (4.24) 

where 
gx(k,£) -- ( b -  1 + n -  k ) ( " -x )  (£ + n - p  - 1 - a) (n-p-l) 

(b - 1 + n - p - a ) ( " - p  - t )  

For a f ixed 1 <_ j < m, we recursively define 

gj(k,t) 
b+2i-1 

g , + , C k , k l ) d ( k , , t ) ,  
kl---a 

N(a, b + 2j - 1) x N(a, b + 2j - 3), 

N(a ,b+ 2i+ l) x N(a ,b+ 2 j - 3 ) ,  (4.25) 

i = j , j + l , . . . , m - - 1 ,  
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where, for  each 1 < i < m, 

g~(k,O = 
1 ~ ( b - l + 2 i - k ) ( t + l - a ) ,  

b - l + 2 i - a  L ( k - a ) ( b + 2 i - 2 - ~ ) ,  
a < t < k - 2 ,  
k - l < t < b + 2 i - 3 ,  

(4.26) 

which, in view of Corollary 4.2, is the Green's function of the boundary value problem (4.9), 

u(a) = u(b-  1 + 2i) = 0. (4.27) 

THEOREM 4.8.  Let u(k) be a function defined on N(a, b - 1 + 2m),  and satisfy the Lidstone 
boundary conditions 

A2iu(a) = A2i, (4.28) 

A 2iu(b - 1 + 2m - 2i) = B2i, 0 < i < m - 1. 

Then, for all k G N(a,b - 1 + 2m),  the following holds 

b - 1  

u(k) = P2,,-,-x(k) + Egl~(k,t)A2"'u(t), (4.29) 
l-----a 

where gtm( k , t) is the Green's function of the Lidstone boundary value problem (4.13), 

A2iu(a) = A2iu(b - 1 + 2m - 2i) = 0, 0 < i < m - 1, (4.30) 

and P2m - l (k )  is the Lidstone interpolating polynomial defined as 

( P2m-l(k)= b -  l + 2 m - a  b -  l-+--2m-a 

+ ~ ~ g~-i(k,t)  b + 2 m - - - ' 2 ; - 3 - a  B2,+2 
i=O t=a  

( 
+ k l -  b+2m-- '2~-  

5. I N E Q U A L I T I E S  A N D  E Q U A L I T I E S  F O R  G R E E N ' S  F U N C T I O N S  

THEOREM 5.1.  For the  Green's function g(k,t) of the conjugate boundary value problem (4.6), 
(4.7) defined in (4.8), the following hold 

(i) ( - l ) n + ° ( k )  g ( k , t )  _> 0, (k,£)  E N(a,b- l+n)xN(a ,b-1) ,  where a (k)  = card{i: ki < k, 
1 < i < n}; 

(b - l+n-a )  "-1 . (ii) [g(k,£)l < ( _ ~ ) n - i  n! , 

(iii) IAig(k,t)[ <_ ~ (n - i - l ) ,  , 1 < i < n - -  1; 

(iv) b-1 1 ~,~=. I g (k , t ) l  = ~ I I ; '=x Ik - &~l < ( . - 1 ) - - ,  ( b - X + . - . ) "  r l  n r l !  

P ~ o o r .  Par t  (i) is a par t icular  case of the more general  result  proved by H a r t m a n  [1]. Par t s  (ii) 
and (iii) are established by Tept in  [29]. To prove Pa r t  (iv), we note  tha t  u(k) = l/n! l -Ln=l(k-  ki) 
and u(k) a-x = )"~t=a g(k,~) are two different representat ions of the unique solution of  the boundary  
value problem Anu(k) = 1, (4.7). Therefore ,  it follows tha t  

b-1 1 
Z g ( k , t )  = -~. H ( k -  k,). (5.1) 
t = a  i=1 
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However,  since ( - 1 )  n+°(k) 1-Iin__l(k - ki) > 0, and g(k,£) as a funct ion of  k has the  s ame  zeros 
as lL"=l ( t : -  k,), it follows that g(~:,e)/l'L~=l(k -k , )  >_ 0, (k,0  • N ( a , b -  1 + n) × N(a ,b -  1). 
Thus ,  f rom (5.1) we conclude tha t  

b-1 1 r, 
Ig(k, OI = ~ r I  I(k - ki)l. (5.2) 

l----a i----1 

For a cont inuous variable t E [a, b -  l + n ]  in [24], it is shown tha t  I-[~=1 I t - kil < ((n - 1 ) n - 1 / n  n) 
x (b - 1 + n - a) n f rom which the  required inequali ty in Par t  (iv) follows. II 

COROLLARY 5.2.  For the Green's funct ion g (k , l )  o f  the osculatory boundary value problem 
(4.13), (4.14) cleaned in (4.15), the following hold 

(i) g(k,e) >_ O, (k,£)  • N ( a , b -  1 + 2 m )  × N ( a , b -  1); 
( i i )  b - t  m Ee=,, Ig(/':,01 = ~ I ' I i = l (  k - -  kl) (2) < (~2m--1)" ' -1 (b- - lq-2rn-a)  =n= 

- -  (2m) 2"~ (2m)! " 

COROLLARY 5.3. For the Green's function g(k, e) of the two point Taylor boundary value problem 
(4.13), (4.10) cleaned in (4.17), the following hold 

(i) ( -1 )m g(k,£) >_ O, (k,£) • N ( a , b -  l + 2m) × N ( a , b - 1 ) ;  
Y~t=a Ig(k,£)l = ~ ,  (k - a) (m) (b - 1 + 2m - k)(m) < (¼)m (b+m_a)2'~ (ii) b-1 - (2m)~ 

THEOREM 5.4. For the Green's function g(k,e) of the two point right focal b o u n d a r y  value 
problem (4.0), (4.18) defined in (4.19), the following hold 

(i) ( - 1 ) n - p A i g ( k , t ) > O ,  (k,e) e N ( a , b - l + n - i ) x N ( a , b - 1 ) ,  O < i < p - 1 ;  
(ii) ( - 1 )  n-p+i  Ai+pg(k, ~) >_ O, (k, £) • N(a,  b -  1+ n -  i - p )  x N(a,  b -  1), 0 < i < n - p -  1; 

(iii) 

b-1 I ~  / k _ a  ) 
) -~ I~'g(k,e) l  = (-a)~ n - i - j  
l=a 

I '-° ) 
-< ( - 1 ) J  n - i - j 

b - a + j - 1 )  
3 

1), 
=Ca,i ,  0 < i < p - 1 ;  

(iv) 

b-1 y~, iA,+pg(k,e)l = ( b +  n - p -  1 - i -k ) (n -p - i )  
t=a ( n  - p - i ) !  

< (b + n - p - 1 - i - a) (n-P-i) 

- ( n  - p - i ) !  
Cn,i+p O < i < n - p - 1 .  

PROOF. 

where 

From (4.19), it is clear tha t  for 0 < i < p -  1, 

A'g(k,e) = ( -1) ' -p  [ 

l 
~ g ,  Ck,e,,-), 
1" a 

k--1 
}2~,(k,t,~), 
T a 

a < ~ < k - 1 ,  

k < £ < b - 1 ,  

(5.3) 

gi(k, £, r )  = (k - r - 1 ) (p - i - l )  (e + n - p - 1 - r ) ( n -p -x )  (5.4) 
( p  - i - 1 ) !  ( n  - p - 1 ) !  
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and for 0 < i < n - p -  1, 

0, a < l f < k - 1 ,  
Ai+Pg(k, t) = (-1) n-P+/ (t + n - p - 1 - i - k) (n-P-i-l) (5.5) 

( n - p - i - I ) !  , k < t < b - 1 .  

Parts  (i) and (ii) now immediately follow from (4.19), (4.20), and (5.3)-(5.5). To prove 
Part  (iii), we note that  

"-P ( k n )  ( ) - a  b - a + j - 1  
u(k) = E (-1)J j j 

j=0 

is the unique solution of the boundary value problem Anu(k) = 1, A~u(a) = 0, 0 < i < p- -  1, 
Ap+iu(b) = 0, 0 < i < n -- p - 1. For this, it suffices to note that for 0 < i < n - p - 1, 

n-p-i ( b - a  ) ( b - a + j - a )  
Al'+iu(b)= E ( -1 ) J  n - p - i - j  j 

j=0 

n - p - i  
= ( - a ) " - P - '  E ( - 1 ) '  ( b T a )  ( b - a + n - p - i - j - 1 )  

n - p - i - j  
j = 0  

which, in view of Lemma 2.2 (ii), is zero. Further, since u(k) b-1 = )-']4== g(k, l) is another represen- 
tation of the same solution, it follows that 

(:_)( ) ~--~ g(k,e) = ~-'~ ( - 1 )  j a b - a + j - 1  
t=.  ~=0 J J " 

The required equalities in Part  (iii) now directly follow from Part  (i), whereas the inequalities 
are obvious. 

For Part  (iv), from (5.5) we have 

b-1 b-t (~ + n -- p -- 1 -- i - k) (n-p-i-I) 
I~'+'g(k'OI = ~ T" = p - i - ~  

l = a  l = k  

_ (e+.-p-i-~("-'-') I' 
- N-p i)! ~.-I~=_~ 

(b + n - p - i - k)(n-=~-i) 
= | 

(n - p - i)! 

THEOREM 5.5.  
defined in (4.22), the following hold 

(i) - a ' g ( k , 0  >_ 0, (k,e) e N(a,b- 1 + n - i) x N(a,b - 1), 0 < i < p; 
(ii) 

[ b - a  k - a - n _ + i +  1] b-1 1 ( k -  a) ("- i -x)  n - p  i I~x'g@'e)l- ( n -  i -  1)! n 

(p  - i )  (b - p + .  - a ) ( " - ' ) ,  

< (Z=~3 - - - ~ 7 ) ' .  - - -  
- ( n - p - l )  "-p-1 ( b - l + n - p - a )  "-p 

~ -  p--77~-:~ t - ; -  ~-)T ' 

For the Green's function g(k, ~) of the (n, p) boundary value problem (4.fi), (4.21) 

1 ] = D,,i ,  
0 <  i < p -  

J i = p  

0 < i < p .  

PROOF. The proof is similar to that of Theorem 5.4. | 
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THEOREM 5.6. For the Green's function g(k, t) of the (p, n) boundary value problem (4.6), (4.23) 
defined in (4.24), the following hold 

(i) ( - 1 )  n+i+l Aig(k, t )  >_ O, (k, t)  • N(a,b - 1 + n - i) x N(a,b - 1), 0 < i < p; 
(ii) 

b--1 
[ A , g ( k , t ) [  = ( b - 1  + n - i - k ) ( " - i - t )  [ b - a  

t = , ,  (n--- i--- I-~. n---p 

( p - i ) ( b - l + n - i - a ) (  n-O 
< (n - p) (n - i)! 
- ( n  - p - 1) n-p-1 

(n - p)"-P 
(b - 1 + n - p - a ) " - p  

( .  - p)! 

0 < i < p -  1 t 
E.,i, / i = p  

0 < i < p .  

PROOF. The proof is similar to that  of Theorem 5.4. II 

THEOREM 5.7. For the Green's function glm(k , t) of  the Lidstone boundary va/ue problem (4.13), 
(4.30) the following hold 

(i) (-1)m g~(k , l )  > O, (k, l)  • N ( a , b -  l + 2m) x N ( a , b - 1 ) ;  
( i i )  b -1  m E t : .  [g&(k,e)l-< I7,:1 (b+ 2 i -  l - a )  2. 

PROOF. In view of (4.26) and (4.25), Part  (i) is immediate. Further, since 

b + 2 i - 3  (k -- a) (b + 2i - 1 - k) 1 
Igi(k,e)l = 2 < 8 (b + 2 i  - 1 - a )  2, 

L----a 

Part  (ii) also follows from (4.25). 

6. M A X I M U M  P R I N C I P L E S  

Results in this section are motivated by the following theorem. 

THEOREM 6.1. I f  u(k) is defined in N(a,b + 1), and A2u(k) > O, k E N(a,b - 1), and attains 
its maximum at some k* E N(a + 1, b), then u(k) is identically constant on N(a, b + 1). 

PROOF. Suppose k* E N ( a +  1,b) is such that u(k*) > u(k) for all k 6 N(a ,b+ 1). If u(k) is not 
a constant, then either there exists an integer i > 0 such that u(k*) = u(k* + 1) = . .-  = u(k* + i ) ,  
k + i E N(a + 1,b) and u(k* + i + 1) < u(k* + i); or there exists an integer j < 0 such that 
u(k* + j)  = u(k* + j + 1) = . . .  = u(k*), k + j e g ( a  + 1, b), and u(k* + j -  1) < u(k* + j). 
But then in the first case, 2 u(k* + i) > u(k* + i + 1) + u(k* + i - 1), i.e., A2u(k ° + i - 1) < 0, 
which contradicts A2u(k * + i - 1) _> 0. Similarly, in the latter case A2u(k * + j - 1) < 0, which 
contradicts A2u(k * + j - 1) >_ 0. II 

REMARK 6.1. As a consequence of Theorem 6.1, u(k) < max{u(a),  u(b + 1)}, k e N(a, b + 1). 

REMARK 6.2. Theorem 6.1 holds if we reverse the inequality and replace "maximum" by "min- 
imum." 

The maximum principle stated in Theorem 6.1 does not necessarily hold for functions satisfying 
higher order inequalities. For example, let u(k) = - ( k / 1 0  - 1) 2, k E N(0,  20). For this function 
A4u(k) > 0, k E N(0, 16), but  u(k) attains its maximum at k = 10, which is a point in N(1, 19). 
An extension of Theorem 6.1 is embodied in the following theorem. 

THEOREM 6.2. Let u(k) be defined on N(a,b - 1 + 2 m ) ,  and 

A2mu(k) >_ O, k • g(a ,  b - 1), (6.1) 

(-1)mAiu(a)>_O, ( -1)m+iAiu(b+m)>_O,  1 < i < m - 1 ,  (6.2) 

then in the case m even (m odd) u(k), k • N(a, b+m) attains its minimum (maximum) at either 
a o r b + m .  
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PROOF. We shall consider the case when m is even. For this, in view of (3.12) and Theorem 4.4, 
the function u(k) can be written as 

m--1 m--1 b -1  

u(k) = q,(k) A'u(a) + + m ) +  
i : 0  i : 0  l : a  

(6.3) 

where qi(k), #i(k), 0 < i < m -  1 are defined in (3.13), (3.14); and g(k, l )  is the Green's function 
of the boundary value problem (4.13), (4.16) and is defined in (4.17). Using Remark 3.1, 
Corollary 5.3 (i), and equations (6.1) and (6.2) in (6.3), we obtain for all k E N(a,b + m) 
that  

u(k) > qo(k) u(a) + #o(k) u(b + m) 

> (qo(k) + ~0(k)) min {u(a), u(b + m)} 

= min {u(a), u(b + m)}.  | 

REMARK 6.3. When the inequalities in (6.1), (6.2) are reversed, the result remains true provided 
the word maximum (minimum) is replaced by minimum (maximum). 

THEOREM 6.3. Let u(k) be defined on N(a, b - 1 + n), and 

Anu(k) > O, k E N(a, b - 1), (6.4) 

Aiu(a) < 0, 1 < i < n -  2, (6.5) 

then u(k) attains its maximum either at a or b - 1 + n. 

PROOF. In view of (3.27) and Theorem 4.6 with p = 0, the function u(k) can be written as 

" - ~  (k - a)(O 

/ : 0  

o_/)(__.-,-1) .1 Aiu(a) 
1 -  ( b + n  a i - 1 ) ( n - i - 1 ) J  

(k - a)(n-') u(b - 1 + n) + ~ g ( k , g )  Anu(£), (6.6) 
+ ( b + n - a - 1 ) ( n - l )  t=a 

where g(k , l )  is the Green's function of the boundary value problem (4.6), (4.21) with p = 0 and 
is defined in (4.22). Since for each 1 < i < n - 2, the coefficient of Aiu(a) in (6.6) is nonnegative 
on g(a ,b  - 1 + n), using Theorem 5.5 (i) with p = 0 and Equations (6.4) and (6.5) in (6.6), we 
obtain for all k E N(a, b - 1 + n) that  

[ 1 u(a)+ u(k)< I -  ( b + n  a - 1 ) ( n - 1 ) J  

(k - a) (n-l) 
( b + n - a - 1 ) (  "-1 ) u ( b - l + n ) .  

In the above inequality, the coefficients of u(a) and u(b -  l + n )  are nonnegative on N(a, b -  l + n )  
and their sum is 1. Therefore, it follows that  u(k) _< max {u(a), u(b - 1 + n)}. | 

THEOREM 6.4. Let u(k) be defined in N(a, b - 1 + n), and satisfy the inequality (6.4). Further, 
let 

( - I )  i Aiu(b + I) _> O, I < i < n - 2, (6.7) 

then in the ease n odd (n even), u(k) attains its minimum (maximum) at a or b + 1. 

PROOF. The proof is similar to that  of Theorem 6.3. Further, if the inequalities (6.4), (6.5) 
and (6.7) are reversed, then a remark similar to Remark 6.3 holds. | 
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7. E R R O R  E S T I M A T E S  IN P O L Y N O M I A L  I N T E R P O L A T I O N  

Combining Theorems 4.1 and 5.1, we obtain the following theorem. 

THEOREM 7.1. Let u(k) and Pn-l(k)  be as in Theorem 4.1. Then, for all k E N(a,b - 1 + n), 
the following inequality holds 

I,,(k) - P , , - 1 ( k ) l  < ( n  - 1)  n - t  (b - 1 -t- n - a ) "  
- -  71 n 71!  

max I/X".(k)l. (7.1) 
k~N(a,b-1) 

Combining Theorem 4.3 and Corollary 5.2, we get: 

THEOREM 7.2. Let u(k) and P2,n_l(k) be as in Theorem 4.3. Then, for all k E N ( a , b -  l + 2m), 
the following inequality holds 

lu(k)  - P 2 m - l ( k ) l  _< 
(2m - 1) 2m-x (b - 1 + 2m - a) 2"* 

max IA m (k)l . (7.2)  (2m) 2m (2m)! keN(a,b-1) 

A combination of Theorem 4.4 and Corollary 5.3 leads to: 

THEOREM 7.3. Let u(k) and P~m-t(k) be as in Theorem 4.4. Then, for all k E N(a, b -  1 + 2m), 
the following inequality holds 

l u ( k ) -  P2m-t(k)l < ( 1 )  m ( b + m - a )  2m 
- ( 2 m ) !  

m a x  . ( 7 3 )  
keN(a,b-1) 

Similarly, combining Theorems 4.5 and 5.4; Theorems 4.6 and 5.5; Theorems 4.7 and 5.6; and 
Theorems 4.8 and 5.7; we respectively find: 

THEOREM 7.4. Let u(k) and P n _ l ( k )  be as in Theorem 4.5. Then, the following holds 

I mi (u(k) - e~_l(k))  I <_ C,.i  max 
kEN(a,b-1) 

where Cn,i are defined in Theorem 5.4. 

IA%(k)l; k E N ( a , b -  1 + n -  i), 0 < i < n - 1 ,  

(7.4) 

THEOREM 7.5. Let u(k) and P , - l ( k )  be as in Theorem 4.6. Then, the following holds 

IA i ( u ( k ) -  P._l(k))  l <_ D,~,i max IA"u(k)l;  
kEN(a,b-1) 

k E N ( a , b - l + n - i ) ,  O < i < p ,  (7.5) 

where Dn.i are defined in Theorem 5.5. 

THEOREM 7.6. Let u(k) and P , - l ( k )  be as in Theorem 4.7. Then, the following holds 

IA i ( u ( k ) -  P,_ l (k ) )  I < E,,i max IA%(k)l ;  
k~N(,,b-1) 

k E N ( a , b - l + n - i ) ,  O < i < p ,  (7.6) 

where En,i are defined in Theorem 5.6. 

THEOREM 7.7. Let u(k) and P~m-t(k) be as in Theorem 4.8. Then, for all k E N(a, b -  1 +2m) ,  
the following inequality holds 

( )mm l u ( k ) -P2m-x (k ) l<  H ( b + 2 i - l - a ) 2  max IA  u(k)l . 
-- kEN(a,b-1) i=1 

(7.7) 
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8. E X I S T E N C E  AND U N I Q U E N E S S  O F  B O U N D A R Y  V A L U E  P R O B L E M S  

Inequalities obtained in Section 7 will be used here to provide easier tests for the local existence 
and uniqueness of the solutions of the n th  order nonlinear difference equation 

A " u ( k ) = f ( k , u ( k ) , u ( k + l ) , . . . , u ( k + n - 1 ) ) ,  k E N ( a , b - 1 ) ,  (8.1) 

and its variant 

Anu(k )  = f (k, u(k),  A u ( k ) , . . . ,  A n - t u ( k ) ) ,  k C N(a,  b - 1). (8.2) 

With respect to the conjugate boundary value problem (8.1), (3.1), we assume 

and therefore, 

[ITull < max IP , - l (k) l  + (n - 1) n-1 ( b -  1 + n - a)" 
- N(~ ,b-  1 + . )  n n n! Q '  

< M + M = 2 M .  

Thus, T maps $1 into itself and T(S1)  is compact. By the Schauder fixed point theorem, the 
operator T has a fixed point in $1. Thus, the boundary value problem (8.1), (3.1) has a solution 
in Do. II 

THEOREM 8.1. 
that 

(i) M > 0 is a given real number and the function f ( k ,  Uo, ul, . .. , un - t )  is continuous on the 
compact set N(a,  b - 1) x Do, where 

D0 = { ( u 0 , u x , . . . , u n - x )  : lu, I < 2M, 0 < i < n -  1 } ,  

and 
max If(k, u 0 , u a , . . . , U n - a ) l _ < Q ;  

N(a,b-1)×Do 

(ii) N(a~_a~+,)IP,-l(k)l < M, where P,_~(k)  is the conjugate interpolating polynomial de- 

fined in (3.2); 
(iii) (n-1)'-',~ (b - l+ , - a )  n . !  Q < M .  

Then, the problem (8.1), (3.1) has a solution in Do. 

PROOF. In view of (4.5), the problem (8.1), (3.1) is equivalent to the equation 

b-1 
u(k) = P,,-1 (k) + E g(k, e) f (t, u(t), u( t  + 1), . . . ,  u( t  + n - 1)), (8.3) 

t=a 

where g(k, t)  is the Green's function of the conjugate boundary value problem (4.6), (4.7) defined 
in (4.8). Let S(a, b - 1 + n) be the space of all real functions defined on N(a ,b  - 1 + n). We 
shall equip the space S(a, b - 1 + n) with the norm Ilull = max [u(k)l, so that  it becomes a 

N(a,b- lT . )  
Banach space. Now define an operator T : S(a, b - 1 + n) , S(a, b - 1 + n) as follows 

b-1 
Tu(k) = V,_,(k) + )--~ a(k, e) y (e, u(e), u(e + 1),.. .  ,u(e+ n - 1)). (8.4) 

l=a 

Obviously, u(k) is a solution of (8.1), (3.1) if and only if u(k) is a fixed point of T. The set 
& -- {u(k) e S(a,b- 1 + n) :  Ilull < 2M} is a closed convex subset of the Banach space 
S(a, b - 1 + n). Since 

[~.b-1 (~,U(~),U(~ n--  ] 
zx" k~g(k,t)y + 1) , . . .  ,u(£ + 1)) = f ( k , u ( k ) , u ( k  + 1 ) , . . . , u ( k  + n -  1)), 

for any u(k) E $1, in view of (8.4) and (7.1), it follows that 

I Tu(k) - p ,_ l (k ) [  _< (n -n,1)"-1 ( b -  1 +n-n! a)n Q,  
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THEOREM 8.2. With respect to the osculatory boundary value problem (8.1), with n = 2m, (3.8), 
we assume that 

(i) M > 0 is a given t e a / n u m b e r  and the function f ( k ,  uo, ux, . . .  ,u2,~-t)  is continuous on 
the compact set N(a,  b - 1) x Do, where 

Do = {(Uo,Ui , . . . ,u2,n-1)  : lull _< 2M, 0 < i < 2m - 1}, 

and 

max If(k, u0,.1,...,,,2,,-1)1 _< Q ; 
N(a,b-1)xDo 

(ii) max [P~,~_t(k)[ < M, where P2m-x(k) is the osculatory interpolating polynomial 
N(a,b-l+2m) 
defined in (3.5); 

(iii) (2m-1)2"*-t (b-a+2m-a)2= O,n)2", (2m)! Q < M. 

Then, the problem (8.1), with n = 2m, (3.4) has a solution in Do. 

THEOREM 8.3. With respect to the two point Taylor boundary value problem (8.1), with n = 2m, 
( 3 . 8 ) ,  w e  a s s u m e  

(i) condition (i) o f  Theorem 8.2; 
(ii) condition (iO of Theorem 8.2 with P~m-x(k) as the two point Taylor interpolating poly- 

nomiM defined in (3.12); 
(b+,,~-,f = (iii) (¼)m (2m)! Q < M. 

Then, the problem (8.1), with n = 2m, (3.8) has a solution in Do. 

THEOREM 8.4. With respect to the two point right focal boundary value problem (8.2), (3.24), 
we assume that 

(i) Mi > 0, 0 < i < n -  1 are given t ea /numbers  and the function f ( k ,  u o , u l , . . .  ,un-1)  is 
continuous on the compact set N(a,  b - 1) x Do, where 

D o = { ( u o , u l , . . . , u n - t ) :  lull <2M~, 0 < i < n - 1 } ,  

and 
max [f(k, u o , u l , . . . ,  u~-t)[  _< Q;  

N(a,b-1)xDo 

(ii) N(a'b-t+'~-0 [ m a x  A i P , _ l ( k ) [  _< Mi, 0 < i < n -  1, where Pn- t (k )  is the two point right focal 

interpolating polynomial defined in (3.25); 
(iii) Gn,i Q <_ Mi, 0 < i < n - 1, where C,,i are defined in Theorem 5.4. 

Then, the problem (8.2), (3.24) has a solution in Do. 

PROOF. For the problem (8.2), (3.24), equations corresponding to (8.3) and (8.4) are 

b-1  

.(k) = P._l(k) + ~ g(k, 0 f (e,.(0, Au(0, .. . ,  A"-lu(0),  
l = a  

(8.5) 

and 

b -1  

T.(k) = e._l(k) + y~ g(~, e) f (e, .(e), ~ ( 0 , . . . ,  a - - i . ( e ) ) ,  
l = a  

(8.6) 

where g(k,g) is the Green's function of the two point right focal boundary value problem 
(4.6), (4.18) defined in (4.19). The space S(a,b - 1 + n) we shall equip with the norm 
flu[] = max {[[Aiu(k)[], 0 < i < n -- 1}, where [[Aiu(k)[] = max [Aiu(k)]. The set S1 = 

N(a,b-l+n-i) 
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{u(k) E S(a,b - a + n) : [[Aiu(k)[] < 2M/, 0 < i < n - 1} is a closed convex subset of the Ba- 
nach space S(a, b - 1 -F n), and as in Theorem 8.1, in view of (7.4), for any u(k) E $1 it follows 
that  

IIA Tu(k)ll < max IA P._l(k)l + Q 
N(a,b-l+n-i) 

< 2 M i ,  0 < i < n - 1 ,  

from which the conclusion is immediate. II 

THEOREM 8.5. With respect to the (n,p) boundary value problem (8.1), (3.26), we assume 

(i) condition (i) of  Theorem 8.1; 
(ii) condition (ii) of Theorem 8.1 with Pn-l(k) as the (n,p) interpolating polynomial defined 

in (3.27); 
(iii) Dn,o Q < M, where Dn,o is defined in Theorem 5.5. 

Then, the problem (8.1), (3.26) has a solution in Do. 

THEOREM 8.6. With respect to the (p, n) boundary value problem (8.1), (3.28), we assume 

(i) condition (i) of Theorem 8.1; 
(ii) condition Oi) of Theorem 8.1 with Pn-l(k) as the (p, n) interpolating polynomial defined 

in (3.29); 
(iii) En,o Q < M, where E,,o is defined in Theorem 5.6. 

Then, the problem (8.1), (3.28) has a solution in Do. 

THEOREM 8.7. With respect to the Lidstone boundary value problem (8.1), n = 2m, (4.28), we 
a s s u m e  

(i) condition (i) of Theorem 8.2; 
(ii) condition (ii) of Theorem 8.2 with P2m-l(k) as the Lidstone interpolating polynomial 

defined in (4.31); 
m b (iii) (~)m I-L=1( + 2i - 1 - a) 2 Q < M. 

Then, the problem (8.1), with n = 2m, (4.28) has a solution in Do. 

Hereafter, we shall prove results only for the two point right focal boundary value problem 
(8.2), (3.24) whereas, for the other problems, analogous results can easily be stated. 

THEOREM 8.8. Suppose that the function f (k ,  uo,ul, . . . ,u,~_l) is continuous and that on 
N(a, b -  1) x ~" ,  

n - - 1  

[f(k, uo, ul , . . . ,un-1)[  <_ L +  E i i  luil a(i), (8.7) 
i = 0  

where 0 <_ a(i) < 1, L and Li, 0 < i < n - 1 are nonnegative constants. Then, the problem 
(8.2), (3.24) has a solution. 
PROOF. We shall show that  the conditions of Theorem 8.4 are satisfied. For this, the inequal- 
ity (8.7) implies that  on N(a, b -  1) × Do, 

n- -1  

lY(k, u , -1 ) l  < L + (2Mi) - Q,.  
i = 0  

Thus, it suffices to choose Mi, 0 < i < n -  1 so large that  the condition (ii) of Theorem 8.4 holds 
and Cn,i Q1 < Mi, 0 < i < n - 1. II 

Theorem 8.4 is a local existence result, whereas Theorem 8.8 does not require any condition 
on the constants Cn,i or the boundary conditions. The question, what happens if a(i) = 1, 
0 < i < n - 1 in (8.7), is considered in the next result. 

THEOREM 8.9. Suppose that the function f (k ,  uo,ul , . . . ,Un-1) is continuous and that on 
N(a, b -  1) x D1, 

r'l.-- 1 

[f(k, uo,ux,. . . ,un-1)[ < L +  E L i  luil, (8.8) 
i = 0  
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where 

D1 = {(u0,u l  

and 

, . . . , U n - 1 )  : lUil ~_ m a x  
N(a,b-l+n-i) 

L + 
[h ipn- l (k )[  + Cn i 

c 
' 1 - 0 '  

0 ( , ( n  1} 

n-1 
c : ~ L i  max 

i=0  N(a,b-l+n-i) 
n - 1  

0 =  ~ Cn,i Li < 1. 
i=0  

]A'P~-dk)[, 

Then, the problem (8.2), (3.24) has a solution in D1. 

PROOF. The boundary value problem (8.2), (3.24) can be written as 

A"u(k)=f(k,v(k)+P,-l(k),Av(k)+AP,-x(k),...,A"-%(k)+A"-xP,-a(k)), (8.9) 

Air(a) = 0, 0 < i < p--  1, 

Aiv(b) = 0, p < i < n - 1. (8.10) 

We define S2(a,b - 1 + n) as the space of all real functions defined on N(a ,b  - 1 + n) 
satisfying the boundary conditions (8.10). If we introduce in S2(a,b - 1 + n) the norm 
Ilvll = max Ia"v(k)l ,  then it becomes a Banach space. We shall show that  the mapping N(,,b-1) 
T : S 2 ( a , b -  l + n) , S 2 ( a , b -  l + n) defined by 

b - 1  

Tv(k )  = Z g(k, ~) f (t, v(t)  + Pn_l(~) , . . .  ),  (8.11) 

maps the ball $3 = {v(k) E S2(a,b - 1 + n ) :  Ilvll _~ (L + c)/(1 - 0)} into itself. 
v(k)  E $3. Then, from Theorem 7.4 on N(a,  b - 1 + n - i), we have 

I ~ )llAivek~l < Cn,i L + c 
- 1 - 0 '  

0 < i < n - 1 ,  

and hence, on N(a,  b - 1 + n - i), 

For this, let 

L + c  
IA iv (k ) - l 'A ipn - l ( k ) [  < max [Aipn- l (k)[  "~- Cni T ~  ~, 

-- N(a,b-l+n-i) 0 < i < n - 1 ,  

which implies that  (k ,v (k )  + Pn-l (k) ,  Av(k) + A P n _ l ( k ) , . . . ,  i n - l l ) ( k )  -I- A n - l p n _ l ( k ) )  
N(a,  b -  1) × D1. 

Further, from (8.11) we have 

E 

[[Tvll= max I f ( k , v ( k ) + P n _ l ( k ) , . . . ) l  
N(a,b-1) 

and hence, in view of (8.8), it follows that  

n-1 
IITv[I _< i + ~ L~ max lAir(k) + A i P . _ i ( k ) l  

i=0  N(a,b-1) 
r l -1  

_< L + e + E Li Cn,i L + _ o 
i=0  

L + c  
= L + c + 0 - -  

1 - 0  
L + e  
1 - 0 "  
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Thus, the operator T has a fixed point in $3. This fixed point v(k) is a solution of (8.9), (8.10) 
and hence, the problem (8.2), (3.24) has a solution u(k) = v(k) + Pn- l (k) .  | 

THEOREM 8.10. Suppose that the boundary value problem (8.2), (4.18) has a nontrivial solution 
u(k) and the condition (8.8) with L = 0 is satisfied on N(a, b - 1) x D2, where 

D2 = {(u0,ux,... , u , _ l ) :  lu, I _< Cn,iM, 0 < i < n - 1}, 

and M = max IA"uCk)l. Then, it is necessary that 0 > 1. 
N(a,b- 1) 

PROOF. Since u(k) is a nontrivial solution of (8.2), (4.18), it is necessary that  M ¢ 0, and 
Theorem 7.4 implies that (k, u(k), A u ( k ) , . . . ,  A " - l u ( k ) )  E N(a, b -  1) x D2. Thus, we have 

M =  max I A " u ( k ) l =  
N(a,b-1) 

max If (k, uCk) ,Au(k) , ' " ,A"- tuCk)) l  
NCa,b-t) 
r*--I 

< ~ Li max IA'u( )l 
i=0  N(a,b- l+n- i )  

r t -1  

<-- E Li Cn,i M 
i=0  

= OM, 

and hence, 0 > 1. 1 

Conditions of Theorem 8.10 ensure that  in (8.8) at least one of the Li, 0 < i < n - 1 will not 
be zero, otherwise on N(a, b - 1 + n) the solution u(k) will coincide with a polynomial of degree 
at most n - 1 and will not be a nontrivial solution of (8.2), (4.18). Further, u(k) =_ 0 is obviously 
a solution of (8.2), (4.18). If 0 < 1, then it is also unique. 

THEOREM 8.11. Suppose that for all (k, u0, Ul ,  . . . ,  U n - 1 ) ,  (k, v0, Vl,  . . . ,  Vn-1) E N(a, b -  1) x D1 
the function f satisfies the Lipschitz condition 

n - 1  

l / ( k ,  u0, U l , . . . ,  U n - 1 )  - -  f ( k ,  vo, V l , . . . ,  v , - 1 ) l  ~ ~ Li - v d ,  
i=0  

(8.12) 

where L = max If(k, O, 0, . . .  0)[. Then, the boundary value problem (8.2), (3.24) has a unique 
N(a,b-1) 

solution in Dx. 

PROOF. The Lipschitz condition (8.12) in particular implies (8.8) and the continuity of f on 
N(a, b - 1) x D1. Therefore, the existence of a solution of (8.2), (3.24) follows from Theorem 8.9. 
To show the uniqueness, let u(k) and v(k) be two solutions of (8.2), (3.24) in Dr. Then, in view 
of (8.5) and (7.4), it follows that 

n - 1  

IA" (u(k) - vCk))l < max E L i  IA d (u(k) - v(k)) I 
-- N(a,b-1) i=0  

r t -1  

<- E L i  Cn,i Ia"  (u(k) - v(k))l 
i=0  

= 0 IA" (uCk) - v (k) ) l .  

Since 0 < 1, we find that A n ( u ( k ) _ v ( k ) )  = O, k e N ( a , b -  1). But, then u(k) =_ v(k), 
k E N(a, b - 1 + n) follows from the boundary conditions (3.24). 1 
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9. P I C A R D ' S  AND A P P R O X I M A T E  P I C A R D ' S  M E T H O D S  

In the last few years, in [23,30], Pieard's and Approximate Picard's methods have been success- 
fully used to construct the solutions of the continuous boundary value problems. These methods 
have an important characteristic, that  bounds of the difference between iterates and the solu- 
tion are easily available. In this section, we shall discuss these methods only for the boundary 
value problem (8.2), (3.24). For other problems, analogous results can be stated without much 
difficulty. For this, we need the following definition. 

DEFINITION 9.1. A function ti(k) defined on N(a, b - 1 + n) is called an approximate solution 
of(8.2), (3.24) if there exist ~ and • nonnegative constants such that 

max A " t i ( k ) -  f (k, t i(k),Ati(k), . . .  An-l t i (k)) [  < 5, (9.1) 
N(a,b- 1) ' - -  

and 
max AiPn-l(k)  - AiPn- l (k) [  < eCn,i, 0 < i < n - 1, (9.2) 

N(a,b-l+n-i) 

where Pn-y(k) and /5n_i(k) are the two point right focal interpolating polynomials satisfy- 
ing (3.24) and 

A i p n _ l ( a )  - -  Aiti(a), 0 < i < p -  1, 
(9.3) 

AiP,_l(b) = Aiti(b), p < i < n - 1, 

respectively, and the constants Cn,i are defined in Theorem 5.4. 

Inequality (9.1) means that there exists a function rl(k), k E N(a, b - 1) such that 

Anti(k) = f (k, ti(k), At i (k ) , . . . ,  An- l t i (k) )  + o(k), k E N(a, b - 1), 

where max [rl(k)[ < 5. Thus, the approximate solution ti(k) can be expressed as 
N(a,b-l) 

b - 1  

ti(k) = P ._ , (k)  + ~ g(k, e) [f (~, ti(e), Ati (e) , . . . ,  A"-lti(e))  + ~(e)] 
l = a  

(9.4) 

In what follows, we shall consider the Banach space S(a, b -  1 + n) and for u(k) E S(a, b -  1 + n) 
the norm is [[u[[ = max {[]Aiu(k)lI/Cn,i, 0 < i < n - 1}. 

THEOREM 9.1. With respect to the boundary value problem (8.2), (3.24), we assume that there 
exists an approximate solution ti(k) and that 

(i) the function .f satisfies the Lipschitz condition (8.12) on N(a, b - 1) ×/93 where 

D3 = { (u0, u , , . ,  u . _ l ) :  I u, - A'ti(k)l _< p Ca,,, k e N( . ,  b - 1 + n - i ) ,  0 < i < n - 1 } ; 

(ii) 0 < 1; 
(iii) (1 - 0) -1 (e + 5) < p. 

Then, the following hold 

(1) there exists a solution u*(k) of(8.2), (3.24)in S(ti,/~0); 
(2) u*(k) is the unique solution of(8.2), (3.24) in S(ti,~); 
(3) the Picard iterative sequence {urn(k)} defined by 

b-1 

um+1(k) = Pn-l(k)  + Z g ( k , ~ . ) . f  (l, um(~.),AUm(l'.),...,An-lum(~.)), (9.5) 
L=a 

uo(k) = ti(k), m = 0, 1 , . . . ,  

converges to u*(k) with Ilu" - umll  <omt, o; 
(4) for uo(k) = u(k) E S(ti, po), the iterative process (9.5) converges to u*(k); 
(5) any sequence {tim(h)} such that tim(k) E S(Um,Om po), m = O, 1, . . .  converges to u*(k). 
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PROOF. We shall show that the operator T : S(fi, p) , S(a, b - 1 + n) defined in (8.6) sat- 
isfies the conditions of Theorem 2.5. Let u(k) E S(~, p), then from the definition of norm, 

w e  h a v e  I l u  - ~11 = max,~ max IAiu(k)- A'a(k)llc.,,,O<i<n- 1~ <_ li, which 
I. N ( a , b -  l + n - i )  ) 

implies that  <_ k. N ( a , b - 1 +  0 _< i _< n -  1. Thus, 
(u(k), A u ( k ) , . . . ,  A ' - l u ( k ) )  E D3. Further, if u(k), v(k) E S(~, p), then T u ( k ) -  Tv(k)  satisfies 
the conditions of Theorem 7.4 with Pn- l (k )  = O, and we get 

I A J T u ( k )  - A i T ~ ( k )  I < C, , j  max l y ( k , ~ ( k ) , . . . )  - f ( k , v ( k ) , . . . ) 1  
- -  N(a,b-1) 

n-1 

< C,  j ~ L, max I A i u ( k ) -  Aiv(k) l  
- -  ' N ( a , b - l + n - i )  

i=0 
rL-1 

< Cnj  E Li C,~,i Ilu - vii, 0 < j < n - 1, 
i=O 

and hence, 

1 iA~Tu(k)  _ A~Tv(k)I  < e Ilu - "11, 
C,, j  

from which it follows that IITu - Tvll < e Ilu - vii. 
Next, from (8.6) and (9.4), we have 

O ~ j < n - 1 ,  

Tfi(k) - fi(k) = Tuo(k) - uo(k) 
b - 1  

= P ,_ l ( k )  - Pn_l(k) - ~_ ,g(k , t lo(e) .  (9.6) 

The function w(k) = - ~,~'-1 a g(k, t) ~}(£) satisfies the conditions of Theorem 7.4 with Pn-1 (k) =_ O, 
AnT(k )  = - r l ( k  ). Thus, 

max IA"w(k) l  = (,,,b-m-axl) lo(k)l _< 6, 
N ( a , b - 1 )  N 

and hence, 
IAJw(k)l <_ Cn,j 6, 0 < j < n - 1. 

Using these inequalities and (9.2) in (9.6), we obtain 

IA~Tuo(k) -- A~uo(k)l < (e + 6)C,,a, O < j < n - - 1 ,  

which is the same as 

1 iA~Tuo(k )_  A~,,o(k)l < (~+6), 
C,~,j 

O < j ~ n - 1 ,  

and hence IITuo-uoll _ (e+6). Thus, from the hypothesis (ii) it follows that ( 1 -0 )  - t  IITuo-uoll <_ 
(1 - 0) - 1  (~ + 6) ~_~/./,. 

Hence, the conditions of Theorem 2.5 are satisfied and conclusions (1)-(5) follow. | 

In Theorem 9.1, the conclusion (3) ensures that the sequence {u,~(k)} obtained from (9.5) 
converges to the solution u'(k)  of (8.2), (3.24). However, in practical evaluation, this sequence 
is approximated by the computed sequence {vrn(k)}. To find vr~+l(k), the function f is approx- 
imated by frn. Therefore, the computed sequence {Vrn(k)} satisfies the recurrence relation 

b-1  

v~+l(~) = P,-1(~) + ~ gCk,t) y~ (t, ~( t ) ,  av~(t), . . . ,  a"-%~(t)), 

vo(k) = uo(k) = a(k), m = 0 , 1 , . . . .  

(9.T) 
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With respect to f,n, we shall assume the following condition. 
CONDITION (Cl). For all k E N(a, b -  1) and Aivm(k), 0 < i < n - 1 obtained from (9.7), the 
following inequality is satisfied 

I f (k ,  v , , ( k ) , . . . )  - f,~ (k, vm(k), . . . )1 < u If (k,v,~(k), . . .)1 , (9.8) 

where u is a nonnegative constant. 
Inequality (9.8) corresponds to the relative error in approximating f by f,n for the (m + 1) th 

iteration. 

THEOREM 9.2. With respect to the boundary value problem (8.2), (3.24), we assume that there 
exists an approximate solution f(k)  and the condition (cx) is satisfied. Further, we assume 

(i) condition (i) of  Theorem 9.1; 
(ii) 8 1 = ( 1 + u )  8 < 1 ;  

(iii) #t  = (1 - 01) -1 (, + 6 + u F)  < #, where F = max lY (k, f (k) ,  a f t (k ) , . .  A"-lf(k))l. 
-- N ( a , b - 1 )  " ' 

Then, the following hold 
(1) all the conclusions (1)-(5) of Theorem 9.1 are valid; 
(2) the sequence {vm(k)} obtained from (9.7) remains in S ( f ,  Pl) ;  
(3) the sequence {Vr~(k)} converges to u*(k), the solution of  (8.2), (3.24) i f  and only if  

lim w,, = 0 where 
171-----#OO 

b - 1  

w~ = IIv~,+l(k) - P,_l(k) - ~-~g(k,e)f (e,v,,(O,..., An-lvm(~))II, (9.9) 
L----a 

and 

Ilu*- v~+xll < (1 -0)  - 1 _  [OIIvm+l--vmll+v N(a,b-1)max If(k, vm(k),...)l] • (9.10) 

PROOF. Since 81 < 1 implies 0 < 1 and obviously P0 < PI, the conditions of Theorem 9.1 are 
satisfied and conclusion (1) follows. 

To prove (2), we note that  f (k)  6 :~(f ,# l )  and from (9.4), (9.7), we find 

b - 1  

v1(k) - f(k) = e,_ l(k) - &_1(k) + ~ g(k, e) [10 (e, f(0,...) - Y (e, f(e),...) - 0(t)]. 
t----a 

Thus, from Theorem 7.4, we get 

] A J v l ( k ) - A # f ( k ) l < ( e + 6 ) C , , j + C n , j u F ,  O < _ j < _ n - 1 ,  

and hence, 
IlVl - all _< (, + ,~ + ~' F)  _< 1-11. 

Now we assume that vm(k) 6 S ( f , P l )  and will show that l)m+l(k) 6 S( f ,  Pl) .  From (9.4) 
and (9.7), we have 

b - 1  

V m + l ( k )  - f ( k )  = P n - l ( k )  - P n - l ( k )  + E g ( k , £ )  [ fm  ( £ , V m ( l ) , . . . )  - f ( £ , f i ( l ) , . . . )  - r } ( l ) ] ,  
L=a 

and Theorem 7.4 provides 

IZX#~+I(k)-ZXJf(k)I  < ( , + 6 ) C , j  + C , , #  max []f, ,(k, v m ( k ) , . . . ) - f ( k , v , n ( k ) , . . . ) ]  
-- N(a,b-1) 

+ l / ( k ,  v , , . , (k) , . . .  ) - f (k,  f ( k ) , . . .  ) l ]  
• ] 

< 6 ' ,  a e + 6 + v F + ( l + ~ , )  max If(k,v~(k),...)-f(k,f(tO,...)l 
-- N ( a , b - 1 )  

.-1 I] < C.,j ~ + 6 + uF + (1 + v) E Li max IAivm(k) -- A i r ( k )  
-- N ( a , b - l + , - i )  

i--0 

<c.a ,+6+vF+( l+~, )OI Iv , , - f l l ] ,  O < j _ < n - 1 .  
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Hence, we get 

1 
C , j  IAJvm+l(k)  - AJ~(k)l  < e + ~ + v F  + 0111v,~ - ~11, 

which gives 
IIv,,÷l - ~ll -< (1 - 01)/t/1 -~- 01~1 ---- /~x- 

This  completes  the  proof  of  (2). 
F rom the  definitions of U,.r,+l(k) and v,n+l(k), we have 

b-1  

Ura+l (k) - Vm+l(k) = Pn- a (k) + Z g (k, t) f (t, v,n ( t ) , . . .  ) - Vm+l (k) 
l = a  

O < _ j < _ n - 1 ,  

b-1  

+ ~ g(k, e) If  (~, u rn (e ) , . . . )  - f (e, v ~ ( e ) , . . .  )], 
L m a  

and as earlier,  we find 

I l u * - v m + l l l < O l l u * - v m l  I + v max I f (k ,  vm(k ) , . . . ) l  
N(a,b-1)  

< 0 1 1 u * - v m ÷ l l l  + 011vm+X--vmll + V max I f ( k , v , , ( k ) , . . . ) l ,  
-- N(a ,b-1)  

which is the  same as (9.10). | 

In our  next  result,  we shall assume the following condition.  

CONDITION (C2). For all k E N ( a , b -  1) and Aivra(k), 0 < i < n - 1 ob ta ined  f rom (9.7), the 
following inequal i ty  is satisfied 

I f (k ,  V,r,(k),. .. ) - fm (k, vm(k) , . . .  )1 < vl ,  (9.12) 

where z,1 is a nonnegat ive  constant .  

Inequal i ty  (9.12) corresponds to the absolute error in approximat ing  f by fm for the ( m +  1) th 
i terat ion.  

-t- f (l ,  vra (E), • • • ) -- fm (E, vm ( t ) , . . . ) ] ,  

and hence, as earlier,  we find 

Ilum+l - vm+lll <_ w m +  Ollum -- vmll. 

Since uo(k) = v0(k), the above inequali ty provides 

IlUr,÷I -- Vm+lll _< ~-~O'-iWi. 
i=0 

Thus,  f rom the tr iangle inequality, we get 

m 

Ilu* - vm+lll _< Z Om-i Wi "[-Ilu* - urn+ill. (9.11) 
i=0 

In equa t ion  (9.11), T h e o r e m  9.1 ensures tha t  mli__moo Ilu* - u ~ + a l l  = 0. Thus ,  the condit ion 

lim w m =  0 is necessary and sufficient for the convergence of the sequence {vm(k)} to  u ' ( k ) ,  
r t l  -----* OO 

m which follows f rom the  Toepli tz  l emma "for  any 0 _< c~ < 1, let s m =  )"~i=0 °tm-i di, m = 0, 1 , . . . ,  
then  lira s,n = O if and only if lim d , , = O . "  

Finally, to  prove (9.10), we note  tha t  

b-1 

~*(k) - vm+, (k) = ~ g(k, ~1 If (t, , ' ( l ) , . . .  ) - f (e, v ~ ( l ) , . . .  ) 
l - - - -a  



Polynomial interpolation 31 

THEOREM 9.3. With respect to the boundary value problem (8.2), (3.24), we assume that there 

exists an approximate solution ti(k) and the condition (~1) is satisfied. Further, we assume 

(i) condition (i) of Theorem 9.1; 
(ii) condition (ii) of Theorem 9.1; 

(iii) 112 = (1 - a)-’ (E + 6 + u) < p. 

Then, the following hold 

(1) ah the conclusions (1)~(5) of Theorem 9.1 are valid; 
(2) the sequence {u,,,(k)} obtained from (9.7) remains in s(ii, ~2); 
(3) the condition lim turn = 0 is necessary and sufficient for the convergence of {urn(k)) 

m-m 
to the solution u*(k) of (8.2), (3.24), where w,,, is defined in (9.9), and 11~’ - u,,,+111 5 
(1 - q-’ [B II%%+1 - %I11 + hl. 

PROOF. The proof is contained in Theorem 9.2. I 

10. QUASILINEARIZATION AND APPROXIMATE QUASILINEARIZATION 

Newton’s method when applied to boundary value problems for higher order differential equa- 

tions has been labelled as quasilinearization by Agarwal [23,31] and Agarwal and Wong [32]. 
Here, once again we shall discuss this method only for the discrete boundary value problem (8.2), 
(3.24), whereas analogous results for the other problems can be stated easily. For this, following 
the notations and definitions of the previous section, we shall provide sufficient conditions so that 
the sequence {um( k)} g enerated by the quasilinear iterative scheme 

A”u,+i(k) = f (k, urn(k), Au,,,(k), . . . , A”-lwn(k)) 
n-l 

+ c (b,,+~(k) - hdk)) aaiua_(k) f(k:wn(k), . * *) 9 Wl) 
i=o 

A%~+&I) = Aj, o<i<p-1, 

Aium+l(b)=Ai, p<iln-1, m=O,l,..., 
(10.2) 

with uc(k) = C(k), converges to the unique solution u*(k) of the boundary value problem (8.20), 

(3.24). 

THEOREM 10.1. With respect to the boundary value problem (8.2), (3.241, we assume that there 
exists an approximate solution c(k) and that 

(i) the function f(k, uc, ~1,. . . ,u,_l) is continuously differentiable with respect to all ui, 

0 2 i 5 n - 1 on N(a,b - 1) x D3; 

(ii) there exist Li, 0 5 i 5 n - 1 nonnegative constants such that for all (k, W_I, ul, . . . , u,+I) 
E iV(a, b - 1) x Ds, we have 

&f(k,UO,Ul l..., %a-I)1 I Li ; 

(iii) 38 < 1; 

(iv) p3 = (1 - 38)-i (6 + 6) 5 p. 

Then, the following hold 

(1) the sequence {urn(k)} g enerated by the process (l&l), (10.2) remains in s(ti, ~3); 
(2) the sequence {urn(k)} converges to the unique solution u*(k) of (8.2), (3.24); 

(3) a bound on the error is given by 

ll%n --*II I (&)” (1+)-l lllh-fill 

5 (&J” (+fJ p-ej-1(c+6). 

(10.3) 

(10.4) 
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First, we shall show that the sequence {urn(k)} remains in S(a,#3) .  We define an 

[ /~JI lm÷l(k)  -- AJurn(k) l  <: Cnj max -- ' N(a,b-1) 

n--1 
2 ~ L, la'u.(k) - ~ . . _ , ( k )  I 

"-' I] + ~ L, IA'.rn+~(k)- A'..~(k) , 
i=0 

PROOF. 
implicit operator T as follows 

b-I [ 
T.(k) = e._l(k)+)-'~g(k,~) I(l,-(0,...) L----a 

n--1 ] 
+ ~ ( A ' r , ( 0 -  A',(t)) 0 Ohi,(¢-----~ f ( ~ ' u ( O ' " ' )  , (10.5) 

i=0 
whose form is patterned on the summation equation representation of (10.1), (10.2). 

Since a(k) • S(~, p3), it is sufficient to show that if u(k) • S(a, P3), then Tu(k) • S(a,  p3). 
For this, if u(k) • S(a, p3), then (u(k) ,Au(k) , . . .  ,An- lu(k))  6 1)3 and from (9.4 / and (10.5/, 
we have 

b-1 [ 
Tu(k) - a(k) = P.-l(k) - P._,(k)+ E g(k, t) f (£, u(£),... ) l----a 

n--1 ] 
+ ~_~ (AiTu(e )_  Aiu(£) ) cO Omu(e) I (e, , (0 ,  . . .) - I (~, a(O,...) - o(t) . 

i=O 
Thus, an application of Theorem 7.4 provides 

IA~Tu(k)- Aia(k) I _< eCn,j +Cn,j N(a,b-t)max [ l / ( k , u ( k ) , . . . ) -  f ( k , a ( k ) , . . . ) l  

n--1 ] 
+ ~_, L, {IA'Tu(k) - A'a(k) I + IA'u(k)- A'a(k)l} + a , 

i=0 
and hence, we get 

n--1 
I i A J T u ( k ) _ A j ~ ( k ) [ < _ ( c + 6 ) + E C . , i i  , [ l l T u _ a l l + 2 l l u _ ~ l l ] ,  O < _ j < _ n - 1 .  

6'.,j i=o 

From the above inequality, we find 

II Tu - ull -< (e + 6) + 8 Ilru - all + 2O II u - all, 

which gives 
IlTu - all _< (1 - 0 )  - 1  [(~ + ~1 "[- 201131" 

Thus, IITu - all _< ~,~ follows from the definition of P3. 
Next, we shall show the convergence of the sequence {urn(k)}. From (10.1), (10.2) we have 

b--1 [ 
u~+l(k) - urn(k) = ~. ,g(k ,e)  f (e ,  urn(O,...  ) - f ( ~ , u ~ - ~ ( t ) , . . . )  

l=a 

n--1 I + ~ (A' ,~+~(0-  A'urn(0) 0 OA,,rn( 0 I (t. urn(t). . . .  ) i--0 
o }] 

- (A'um(0 - Aq,~-~(0) 0A~,~_~( 0 . f (¢ . , ,~-~( t ) , . . . )  " (10.6) 

Thus, from Theorem 7.4 and the fact that { , ,n(k)}  C_ S(a, P3), we get 
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and hence, 

1 
[ A J . m + l ( ~  ) -- mJurn(]c)l  ~ 20 Ilurn - u rn - i l l  + 0 Ilurn+~ - urnll, 

c . a  
O < _ j < n - 1 ,  

which provides 
Ilurn+l - ~rnll < 20 Ilurn - urn-il l  + 0 I lurn+l  - urnll, 

or  

I 1 ~ + 1  - ~mll <- 120"-'~ Ilurn - urn-Ill ,  

and by an easy induction, we get 

Ilurn+l - urnll _< Ilul - ~11- (10.7) 

Since 30 < 1, inequality (10.7) implies that {urn(k)} is a Cauchy sequence and hence converges 
to some u*(k) E S(~,Pa). This u*(k) is the unique solution of (10.1), (10.2) and can easily be 
verified. 

The error bound (10.3) follows from (10.7) and the triangle inequality 

Ilum+p - umll ~ Ilurn+p - u ~ + p - l l l  + Ilum+p-1 - urn+p-211 + ' "  + I lu~+l  - ~rnll 

<- + \ 1  - O ]  + " "  ÷ \ 1  - O]  ] Ilul - oi l  

< (12_--00) rn (1 1~---'00)-1 [[ul -fill, 

and now let p , oo. 
Next, from (9.4), (10.1), (10.2) we have 

Ul(k) - uo(k) = P . _ l ( k )  - P, ,_x(k) 

- ~ g ( k , e )  ( ~ ' U l ( e ) -  zX'uo(O) o 
OAiuo(O 

t = a  Li=0 
f (l, uo(~),... ) -- r/(l)] , 

and as earlier, we find 
Ilul - uoll _< (1 - 0) -1  (~ + ~). (10.8) 

Using equation (10.8) in (10.3), the inequality (10.4) follows. | 

THEOREM 10.2. Let the conditions of Theorem 10.1 be satisfied. Also, let f ( k ,  uo, Ul, . .. , un- t )  
be continuously twice differentiable with respect to all ui, 0 < i < n - 1 on N ( a , b -  1) × D3 and 

I f ( k , u o , u l , . . . , U n - 1 )  <_ Li L j v ,  O < i , j < _ n - 1 .  

Then, the following hold 

Ilurn+x - urnll < o~ Ilurn - ~rn-xll 2 < ! (a  [[Ul - u o [ [ )  2 ~  
- -  - -  O /  

1 1 1  (1 _ _ ~ / 2  ] _< ~ ~ ( ~ + 6 1  (10.9) 

where c~ = (r  02/2(1 - 0)). Thus, the convergence is quadratic i f  ½ r (e + 6) (0/1 - 0) 2 < 1. 
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PROOF. From {Urn(k)} C_ S(fi,P3) it follows that for all m, (urn(k), Aurn(k),. . . ,  A n - l u r n ( k ) )  ~_. 
D3. Further, since f is twice continuously different/able, we have 

f (k, urn ( k ) , . . . )  = f (k, urn-1 (k ) , . . . )  
B--1 

21- E (Aiurn(k)- Aiurn-l(k)) g9 OAiurn_l(k ) f(k,urn-l(k),... ) 
i=0 

1 (Aiurn(k) _ Aiurn_l(k) ) O f (k,po(k),pl(k), . . .  ,Pn-l(k)),  
q- 2 I.i=o 

(10.10) 
where pi(k) lies between Aiurn_l(k) and A%rn(k), 0 < i < n - 1. 

Using equation (10.10) in (10.6), we get 

b-1 / ~  0 
urn+l(k)- urn(k) = ~ g(k,¢) ( , '~%rn+l(e)  - Aiurn(e)) 0Aiurn(e ) f (e, u r n ( 0 , . . .  ) 

l=a  ~ i=0 

2 

+ 21 Li=O ( A i u r n ( / ) -  Aiurn-l(g)) OTi(e) 

Thus, Theorem 7.4 provides 

[ ~  Li Cn,i llUrn+ l - Urnll [AJurn+l(k) - a3u , (~> l  _~ Co,~ L i=° 

and hence, 

f (£, Po (g), Pl  ( e ) , . . . ,  Pn-1 (e)) } . 

2 ] 
um l,,2 

+ "2 , .=o 

1 
Ilurn+l - urnll _< 0 Ilurn+l - urnll + $ ,'o = Ilurn - urn-ill 2, 

which is the same as the first part of the inequality (10.9). The second part of (10.9) follows by 
an easy induction. Finally, the last part is an application of (10.8). II 

In Theorem 10.1 the conclusion (3) ensures that the sequence {urn(k)} generated from (10.1), 
(10.2) converges linearly to the unique solution u*(k) of the boundary value problem (8.2), (3.24). 
Theorem 10.2 provides sufficient conditions for its quadratic convergence. However, in practical 
evaluation this sequence is approximated by the computed sequence, say, {vm (k)} which satisfies 
the recurrence relation 

Anvrn+l(k) = / r n  (k, vrn(k), ZXvrn(k),..., ZX"-lvrn(k)) 
rl--1 

+ ~ (A'Vm+l(k)- A'v,,,(k)) 0 OAivrn(k ) frn (k, vrn(k),. . .) ,  (10.11) 
i=0 

Aivrn+l(a) : Ai, 0 < i < p - 1, (10.12) 
Aivrn+l(b) : A i ,  p < i < n -- 1, m = 0, 1 , . . . ,  

where vo(k) = uo(k) = ~(k). 
With respect to frn, we shall assume the following condition. 

CONDITION ( d l ) .  

(i) The function frn(k, u0, ux , . . . ,  u , -1 )  is continuously different/able with respect to all ui, 
0 < i < n - 1 on N(a, b - 1) x D 3 and 

I 8 fm(k,uo,ul , . .  < O < i <  Un-1)  Li, n 1; 

(ii) condition ct is satisfied. 
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THEOREM 10.3. With respect to the boundary value problem (8.2), (3.24), we assume that there 
exists an approximate solution f~(k ) and the condition dt is satisfied. Further, we assume 

(i) 
(ii) 

(hi) 

Then, 

(1) 
(2) 
(3) 

conditions (i) and (ii) of  Theorem 10.1; 
0 2 = ( 3 + v )  0 < 1 ;  
P4 = (1 - 02) -1 (e + 6 + vF)  < p, where F = max If (k, f i(k),Afi(k), . ,  a--l~(k))l . 

- -  N ( a , b - 1 )  " ' 

the following hold 

all the conclusions (1)-(3) of  Theorem 10.1 are valid; 
the sequence {v,n(k)} obtained from (10.11), (10.12) remains in S(fi, P4); 
the sequence {v,n(k)} converges to u*(k), the solution of  (8.2), (3.24), if  and only i f  

lim w~ = 0, where wm are defined in (9.9), and 

I1-*- ~+xll < (1-0) - 1 _  [2011v~+a - ~11 + v N(~.b-t)max If(k,v~(k),...)l] • (10.13) 

PROOF. Since 02 < 1 implies 30 < 1 and obviously p3 _< p4, the conditions of Theorem 10.1 are 
satisfied and part  (1) follows. 

To prove (2), we note that  fi(k) • S(fi, P4) and from (9.4), (10.11), (10.12) we have 

[ ~ l ( k ) -  ~(k) = P , _ l ( k ) -  P , _ l ( k ) +  ~ a(k,l) fo (e, ~o(0, . . .  ) 

n--1 ] 
+ F_, (A'vl(t)-  A'vo(O) o /gA/I)0(~) f0 (e, l)0(e),... ) -- f (~, vo(l), . . .  ) -- r/(l) 

i=o 

and Theorem 7.4 provides 

Ilvl - ~11 ~ (e + 6 + v F )  + 0 Ilvl - voll, 

and hence, 
IlVl - ~11 _< (1 - 0) -x  ( e +  ~ + vF) < #4. (10.14) 

Thus, vl(k) E S(u,P4)- Next, we assume that  vm(k) • S(~,P4) and will show that  v,n+l(k) • 
S(fi,P4). From (9.4), (10.11), (10.12) we have 

b_l [ 
l)m.l.l(]¢ ) -- u(k) = P n _ l ( k )  - l~n_l(k) q- E g ( k , e  ) fm (~, 12m(~),...) 

rl-1 ] 
+ ~ (a'v~÷~(t)- A'vm(O) o cgAivm(£ ) f m  (e, vm(E), . . . )  -- f ( e ,  vo(E) , . . . ) - -  r/(E) , 

i=0 

and from Theorem 7.4, we get 

r.-a 
[A:Vm+l(k) - AJ~(k)l < (e + df)C, j + Cn,j max I ~  Li IAivm+x(k)-  Aivm(k)l 

- -  ' N ( a , b - 1 )  Li=0 
"1 

+ (1 + ~) If (k, v~(k) , . . .  ) - f (k, vo(k),...)1 + ~ If (k, vo(k),...)1[ 
J 

and hence, we find 

H~m'kl -- Ul] ---~ (e "3L ~ "[- V F )  --[- 0 ll1~rn.F1 - Urn]] "I- (I + v) 0 [[v,~ - vo[] 

< (~ + ~ + ~ F )  + (2 + , )  0 llv,, - vo]l + 0 llvm+l - voll. 
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From the last inequality, we obtain 

IIv,,,+~ - all _< (1 - 0) -1 [(e + 6 + u F )  + (2 + v) 0#4] 

= ft 4 . 

This completes the proof of part (2). 
Next, from the definitions of Um+l(k) and Vra+l(k), we have 

b-1  

u m + t ( k )  - v , ~ + l ( k )  = P , _ l ( k )  + y ~ g ( k , t ) / ( t ,  vm( t ) , . . . )  - v , ~ + l ( k )  

b-1  [ 

-I-~_~g(k,£) f(~.,Um(~e),...)- f(e, vm(£),...) 
l=a 
Ii--1 ] 

+ 0 
OAium(t) f (£,um(t),... ) , 

i=0 

- E ( Aiv '~+l(0 -Aiv"~(e))  ,9 ] OAivm(,e ) fm (e, vm(e),... ) , 
i=0 

and hence, 

[[U'--Vm+I[[_<0[[U*--Vm[[+0[[Vm+I--Vm[[+V max [f (k, vm(k),... )[ 
N(a,b-1) 

<_20[[V,n+l--Vm[[+U max [f(k, vm(k),...)[+O[[u'-vm+t[[, N(a,b-t) 

which is the same as (10.13). 

and hence, as earlier, we find 

IlUm+l - Vm+ll l  < w ~  + 0 Ilum - vmil + 0 I l u ~ + l  - u ~ l l .  (10.15) 

Using (10.7) in (10.15), we get 

[[Um+l - vm+l[[  _< w ~  + 0 [lu,,, - v,~[[ + 0 \ 1  - O] [[Ul - a[[. 

Since uo(k) = v0(k) = a(k), the above inequality provides 

Ilu~+l - Vm+ll[ _< 0 ~ - i  wi + 0 [lul - all • (10.16) 
i=O 

Using (10.16) in the triangle inequality, we obtain 

[[v,~+l-U'[[<_[[u,n+l-U*[]+EOm-i wi+O [[Ul-fi[[ • (10.17) 
i=0 

In (10.17), Theorem 10.1 ensures that lim []um+t-u*[[ = 0. Thus, from the Toeplitz lemma, 
~ -----* OO 

mli_moo [[Vm+l - u* [[ = 0 if and only if mli__moo [win + 0 (20/1 - 0) m [[Ul - a[[] = 0. However, 

lim ( 2 0 / 1 - 0 )  m = 0, and hence, if and only if lim w i n = 0 .  
171"--'+OO fr~ -----* Oo 

Finally, to prove (10.13) we note that 

b-1  [ 

u * ( k )  - V m + l ( k  ) = E g ( k , e  ) f(~,u*(e), . . . )  -- f(~,vm(~e),...) 
l=a 
+ f (~e, vm(e),... ) - f m  (e, vm(~e),... ) 
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THEOREM 10.4. Let the conditions of  Theorem 10.3 be satisfied. Further, let f m =  fo for all 
m = 1 ,2 , . . .  and fo (k, u o , u t , . . . ,  u,,-1) be continuously twice differentiable with respect to all 
ui, O < i < n -  l on N ( a , b - 1 )  x D3 and 

fo(k, uo,ul, . . . ,un-1) <_LiLjr, 0 < i ,  j < _ n - 1 .  

Then, the following hold 

IIv.~+t - v.~ll _< ~ IIv.,  - v . , - d l  2 _< 1 (~  Ilvx - v011) 2 "  
ot 

2,,* 1[1 < -  

- a \ l - O ]  J ' (10.18) 

where a is the same as in Theorem 10.2. 

PROOF. As in the proof of Theorem 10.2, we have 

vm+~(k)  - v ~ ( k )  = ~ g(k,  ~) ( a ' v ~ + l ( e )  - a'v~(t)) o oa'v.~(O fo (e, vm(e),... ) 
l=a ~ i=0 

+ 2  (Aivm(~) -- AiVm-l(e)) ~ f0 (e, p0(e) ,p l (e) , . . . ,pn_t(e))  , 
Li=O 

where pi(k) lies between Aivm_l (k )  and Aivm(k) ,  0 < i < n - 1. 
Thus, as earlier, we get 

1 
Ilvr.+l -- Vr. II < 0 Ilvm+x -- v.~ll + ~ r 0  2 Ilvm -- Vr--l l l  2, 

which is the same as the first part of (10.18). The last part of (10.18) follows from (10.14). 

11. M O N O T O N E  C O N V E R G E N C E  

In Sections 9 and 10, we have respectively discussed the linear and quadratic convergence 
of Picard's and Newton's iterative methods. However, from the computational point of view, 
monotone convergence has superiority over ordinary convergence [10,33,34]. Therefore, here we 
shall provide sufficient conditions for the monotone convergence of Picard's iterative method. For 
the boundary value problem (8.2), (3.24), we need to consider the following four cases: (i) n is 
even, p is odd; (ii) n is even, p is even; (iii) n is odd, p is odd; (iv) n is odd, p is even. We shall 
consider only the case (i), whereas results for the other three cases can be stated analogously. 

In the space S(a,b - 1 + n), we introduce the partial ordering <p  as follows: for u,v E 
S ( a , b -  1 + n) we say that  u <p  v if and only if Aiu(k)  < Aiv(k) ,  k E N ( a , b -  1 + n - i), 
i E J l  = {J : 0 < j < p } U { j : p  < j (odd)  < n - l } ,  and Aiu(k) > Aiv(k), k E N ( a , b - l + n - i ) ,  
i • J~ = {j : p < j(even) _< n -  1}. Thus, from Theorem 5.4, Aig(k ,£)  <_ O, (k,£) • 
N(a,  b -  1 + n - i) x N(a,  b - 1), i • Jr,  and Aig(k, ~) _> 0, (k, £) E N(a,  b -  1 + n - i) × N(a,  b -  1), 
i E  J2- 

THEOREM 11.1. With respect to the boundary value problem (8.2), (3.24), we assume that n is 
even, p is odd, and 

(i) f ( k ,  u o , u t , . . .  ,u, ,-1) is continuous on N(a ,b  - 1) x R",  and nonincreasing in ui for all 
i 6 J t  and nondecreasing in ui for all i E J2; 

(ii) there exist functions vo(k) and wo(k) in the Banach space S(a, b - 1 + n) (with the norm 
Ilull = m a x { l l A ~ u ( k ) l l  = max Aiu(k) l  0 < i < n - 1}) such that N(a,b-l+n-i) 

v0 <p  w0, (11.1) 
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A"=o(k)  - f (k,=0(k),Z~=0(k), . . .  , A " - ' = 0 ( k ) )  < 0 < 

A n v o ( k )  - f ( k , 1 ) o ( k ) , m 1 ) o ( k ) , . . . , A n - 1 1 ) o ( k ) )  , k E N ( a , b -  1),  ( 1 1 . 2 )  

Pn-l,vo < Pn-I ~P P,-t,~,o, (11.3) 
where Pn- l (k )  is deIined in (3.25), and P,,_l,,o(k) and P,-~,~oo(k) are the polynomials of  
degree n -  1 satisfying 

Ai P,_t, ,o(a) = Aivo(a), 

AiPn_l,,o(b) = Aivo(b), 

and 

respectively. 

Aipn_l,wo(a) = Aiwo(a), 
~X'P,,-x,,oo(b) = ~=o(b) ,  

0 < i < p - 1 ,  
(11.4) 

p < i < n - 1 ,  

0 < i < p - 1 ,  
(11.5) 

p < i < n - 1 ,  

Then, the sequences {vm}, {win} where vm( k ) and win(k) are defined by the iterative schemes 
b--1 

1),,,+~(k) = e,,_a(k) + ~ g(k, e) f (e, v~(O,,av,,,(O,..., ,a"-~v,,,(~)) , 
l----a 

b - 1  

Wm+l(k)=Pn-z(k)"FEg(k,e)f(~,Wm(£),Awm(e),...,An-Xwm(£)), m=O,l,..., 
l = a  

co,  verge in S(a ,b  - 1 + n) to the solutions v(k) and w(k) of (s.e), (3.e4). ruaher, 

t)O < P  1)1 <-~P " '"  <--P 1)rn <_P " '"  <_p 1) < p  W < p  "'" < p  Wrn < p  " . .  < p  W 1 <<p W O. 

Also, each solution z(k) of  this problem which is such that Vo <p z < p  w 0 satisfies v < p  z <p W. 

PROOF. Let S(vo, wo) = {u E S(a, b - 1 + n) : vo <p u <p w0}. Obviously, S(vo, wo) is a closed 
convex subset of the Banach space S(a, b - 1 + n). We shall show that  the continuous operator 
T :  S(a, b - 1 + n) ---* S(a, b - 1 + n) defined in (8.6) maps S(Vo, Wo) into itself. 

Suppose u, v E S(v0, Wo) and u <p  v. Then, in view of the partial ordering <p ,  the sign 
properties of the Green's function g(k, £), and the monotonic nature of the function f ,  we have 

mi g(k, e) f (~, u(~), mu(~) , . . . ,  mn-lu(e))  _< mi g(k, e) f (e, 1)(e), mv(~), . . . , A n-  11)(~)), 

(k,e) E N ( a , b -  l + n -  i) × N ( a , b - 1 ) ,  i E  Jr, 

and 

zx'g(k, e) f (l, u(0, au(0 ,  ..., zx"-xu(~)) >_ Zx'g(k,O f (e, v(e), zx1)(0,..., zx"-11)(0), 
(k ,O E N ( a , b -  l + n -  i) × N ( a , b - 1 ) ,  i e J2. 

From these inequalities, Tu <p Tv is obvious. Thus, the operator T is monotone in S(Vo, Wo) 
with respect to <p .  

We shall now show that  vo <p Tvo and Two <p wo, and then it will follow that T maps 
S(vo, wo) into itself. For this, we note that  

b -1  

Aiv°(k)  = Aip ' - l .~o(k)  + E Aig(k '  i) A'%o(£), 
l=a 

and hence, if i E J1, then 
b - 1  

N v o ( k )  < A* P,_z(k)  + ~ A* g(k, e ) f  (e, Vo(e), AVo(e), . . . , A"-ao0(e)) 
l=a 

= AiTvo(k) ,  

and similarly, if i E J2, then 
aiv0(k) >_ ZxiTv0(k). 

This completes the proof of vo <p Tvo. The inequality Two < wo can be proved analogously. 
The existence of a fixed point u o f T  in S(vo, wo) now follows as an application of the Schauder 

fixed point theorem. The conclusions of the theorem are now immediate from the established 
monotone property of the operator T in S(vo, wo) with respect to the partial ordering <p.  II 
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