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Abstract-——We construct discrete interpolating polynomials, provide explicit representations of dis-
crete Green's functions, give several identities and inequalities for these Green's functions, use the
explicit forms of the interpolating polynomials and that of Green’s functions to establish several
maximum principles. Further, we obtain error bounds in discrete polynomial interpolation and use
them to study existence and uniqueness of the discrete boundary value problems. These bounds are
also used to provide sufficient conditions for the convergence of the Picard’s method, the approx-
imate Picard's method, quasilinearization and the approximate quasilinearization. The monotone
convergence of the Picard’s iterative method is also analysed.

1. INTRODUCTION

The landmark paper of Hartman [1] has resulted in the tremendous interest in establishing dis-
crete analogs of the known results for the ordinary differential equations. Although several results
in the discrete case are similar to those already known in the continuous case, the adaptation
from the continuous case to the discrete case is not direct but requires some special devices.
For the linear difference equations disconjugacy, right disconjugacy, left disconjugacy, right dis-
focality, eventual disconjugacy and eventual right disfocality have been recently introduced, and
for each such concept, necessary and sufficient conditions have been provided by Hartman [1],
Eloe [2-4], Eloe and Henderson [5]. Further, for the linear difference equations a classifica-
tion of solutions based on their behavior in a neighborhood of infinity is given by Hankerson
and Peterson [6]. For the nonlinear difference equations, oscillatory theory is developed in [7].
Here, necessary discrete calculus is also discussed. Boundary value problems for higher order
difference equations has been the subject matter of several recent publications, e.g., [8-18]; how-
ever, it is far from complete. The motivation of the present paper comes from these advances in
the theory of difference equations.

The plan of this paper is as follows: Section 2 contains necessary notations which are used
throughout the paper, certain discrete and combinatorial identities, variation of constants formu-
lae, and the contraction mapping theorem. In Section 3, we introduce various types of boundary
conditions and provide explicit representations of polynomials passing through these conditions.
Such polynomials are called discrete interpolating polynomials. In Section 4, we give explicit
representations of Green’s functions for several higher order boundary value problems. In Sec-
tion 5, we establish several identities and inequalities for these Green’s functions. Related results
for several other boundary value problems are available in [19-22]. The continuous analogs of
these results have proved to be very useful in providing disconjugacy tests and distance between
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consecutive zeros of the solutions of higher order differential equations, see, for example [23-25].
The explicit forms of interpolating polynomials and those of Green’s functions help in estab-
lishing maximum principles for functions satisfying higher order inequalities. In Section 6, we
prove some such maximum principles. The continuous analogs of these results are available
in [23,26]. In Section 7, we have included several results which provide error estimates in discrete
polynomial interpolation. These estimates are used in Section 8 to provide easily verifiable sets of
necessary and sufficient conditions so that the corresponding nonlinear boundary value problems
have at least one solution. These estimates are further used in Sections 9 and 10 to provide
sufficient conditions which ensure the convergence of the constructive methods: Picard’s method,
the approximate Picard’s method, quasilinearization, and the approximate quasilinearization, for
the nonlinear boundary value problems. Finally, in Section 11 the monotonic convergence of the
Picard’s iterative method is analysed.

2. PRELIMINARIES

Throughout, we shall use some of the following notation: N = {0,1,...} the set of natural
numbers including zero; N(a,b—1) = {a,a+1,...,b— 1}, wherea <b—1< oo and a,b € N.
Let f(k) be a function defined on N(a,b — 1), then for all ky,k; € N(a,b — 1) and &y > ko,

t—k, f(€) =0 and Ht 2k, f(£) = 1, ie., empty sums and products are taken to be 0 and 1,
respectively. If k and k + 1 are in N(a,b — 1), then for this function f(k) we define the forward
operator A as Af(k) = f(k+1)— f(k). The higher order differences for a positive integer m are
defined as A™f(k) = A [A™~1f(k)] - I be the identity operator, i.e., If(k) = f(k). As usual, R
denotes the real line and R* the set of nonnegative reals. For t € R a.nd m a nonnegative integer
the factorial expression (2)(™) is defined as (t)(™) = ]’[:"zf,l(t — ¢}. Thus, in particular for each
keN, (k) =kl

The function @Q,_1(k) = Z._o ai(k)® (n > 1), k € N is called a discrete polynomlal of
degree n — 1. Using Stirling numbers, this polynomial can be written as Qn~1(k) = Z;:o b; kF.

It is obvious that @,_1(k) can have at most n — 1 zeros in N. However, if Q,_1(k) vanishes at
n distinct k; € N, 1 <i < n then Q,_,(k) =0.

LEMMA 2.1 [27]. For the functions u(k) and v(k) defined on N(a,b—1+n) the following relations
hold

() u(k+n)= I+ A)"u(k) =31, ( ) Alu(k), k€ N(a,b-1);
(i) A™ [u(k)v(k)]) = Do (1:) A" iy(k) Alv(k+n—1), k€ N(a,b-1).

LEMMA 2.2 [28]. For positive integers m and n the following identities hold
m+n—1{ m

O Sea-0 (MFE) (7) =
(i) T2ool- 1)‘("‘*" ()=

LEMMA 2.3 [27]. Let vi(k),...,va(k) be n linearly independent solutions of the homogeneous
difference equation

Liu] = Zn:a,'(k)u(k +i)=0, k€N(ab-1), (2.1)

where a,, (k) = 1 and ag(k) # 0, and let ¢(k) be any solution of the nonhomogeneous difference

equation
L[u] = b(k), k€ N(a,b-1) (2.2)

(these solutions exist on N(a,b — 1+ n)), then the general solution u(k) of (2.2) can be written
as

u(k) = ic,- vi(k) + o(k), k€ N(a,b—1+n), (2.3)

where ¢;, 1 < i < n are arbitrary constants.
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An explicit representation of ¢(k) in terms of vi(k), ..., v,(k) appears as
-n
$(k) = > G(k,£+1)b(¢), k€N(ab—1+n), (2.4)
{=a

where the function G(k,{) is defined as

v1(£) ... vn(€) v1(6) " vn(0)

G(k,2) = : : + : : ’
n(f+n—-2) ... v.({+n-2) ' '

S A nErnol) e altan =)

(k,€) € N(a,b—1+n) x N(a,b). (2.5)

The following properties of G(k, £) are immediate.

(i) G(k,§) =0forall € N(k—n+2,k) and k € N(a,b — 1 + n);
(i) G(k,¢)=0forallk € N(£,£+n—2) and £ € N(a,b), and G(£+n —1,£) = 1;
(iii) for a fixed £ € N(a,b), w(k)= G(k,£) is a solution of (2.1);
(iv) G(k,£) is independent of the set of linearly independent solutions v;(k), 1 < i < n of (2.1).

LEMMA 2.4 [7]. The general solution of the difference equation
A™u(k) = b(k), k€ N(a,b-1), (2.6)

can be written as

u(k) = Q,,_l(k)+ Z(k £-1)""Vpe), keN(ab—1+n), (27)

" t=a

where Qn—1(k) is a polynomial of degree n — 1.
THEOREM 2.5 [23]. Let B be a Banach space and let 0 < r € R, S(uo,r) = {u € B : ||u—1ug|| <
r}. Let T map S(uo,r) into B and
(i) for all u,v € S(ug,r), ||Tu—Tv|| < a||u—v||, where 0 < & < 1;
(i) ro = (1 — @) ||Tup — uo|| < r.
Then, the following hold
(1) T has a fixed point u* in S(uo,ro); )
(2) u* is the unique fixed point of T in S(ug,r);

(3) thesequence {un} defined by upm41 = Tuy,, m =0,1,... converges tou* with ||[u*—up|| <
a™ry; _
(4) for any u € S(ug, 7o), u* = lim T™u;
m—oo _
(5) any sequence {u,;,} such that ip, € S (um,a™ rg), m=0,1,... converges to u*.

3. INTERPOLATING POLYNOMIALS

THEOREM 3.1. The unique polynomial P,_1(k) of degree n — 1 satisfying conjugate boundary
conditions

Pn_l(kg) = u(lc;) = A;, 1<i<n, (31)

wherea=k; <ka<---<kn,=5b—1+4+n and each k; € N(a,b — 1+ n) can be written as

Pa_y(k) = il;(k) A, (3.2)
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where

1 [ k—k;
£i(k) = J <i<n. .
i(k) g(ki—kj)’ 1<i<n 3.3)
i

Proor. It suffices to note that £;(k) is a polynomial of degree at most n — 1 and 4;(k;) = &,
1 < i, j < n. The uniqueness part is obvious. [ ]
THEOREM 3.2. The unique polynomial Py, 1(k) of degree 2m—1 satisfying osculatory boundary
conditions

sz_l(k,') = u(k.-) = A;, Asz_l(k,') = Au(k;) = B;, 1<i<m, (3.4)

wherea =k < ki1 +2<ky<bks+2<---<kp_1<km_1+2<bky, <kp+1=b-142m and
each k; € N(a,b— 1+ 2m) can be written as

Pom_1(k) = Zh(k)A +Zh(k)B., (3.5)
=1
where
m @
wom [ () o] L2
and

- m k — k; (2)
hi(k) = (H (k+1— _))(k ki)HW- (3.7

I=1
i#

PRrOOF. Since for each 1 < i < m, hi(k) as well as h;(k) is a polynomial of degree at most
2m — 1, it suffices to show that h_,'(kj) = &5, Ahi(k;) = 0, hi(k;) = 0, Ahi(k;) = &5, 1 < 4,
J < m. For this, h;(k;) = 6;; and hi(k;) = 0 is obvious. Also, since

o= o= (s (5538 o] e

1#:

1 7 (k—k;)(k—1—k;)
{ ( 1;[(“_1__ )) (k- k)]l‘[ (lcji-k,.)u) i)

=1
J#i

Ahi(k;) =0, i # j is immediate. Further, we have

i = i=t
7 i

e (k= 1-k\| frki+tl-k)
Ah.(k.)-[l—l—H(ki_’_l_kj)] H(k.-—l—kj)—l_o'

1
The proof of Aﬁi(kj) = §;; is also clear. [ ]

THEOREM 3.3. The unique polynomial Pyy,,_1(k) of degree 2m — 1 satisfying two point Taylor
boundary conditions

A'Pyy_1(a) = Afu(a) = A, APy 1(b+m)=A'u(b+m)=B;, 0<i<m-1 (38)
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can be written as

()
m-1 b (%) m-—1 _ §
Py (k) = (k- a)(m) Z (i__'ll'__m_l_ Bi + (k—b— m)™) Z Q._i_"’ﬁ a;, (3.9)
i=0 ) i=0 -
where
i [ Pem-a(k) _ ai [[Poam-a(k) .
=4 [(k -b- m)(m)] k=a , A=A [("’ - a)("') E=b4m ’ Ogism-1 (310)

(In view of Lemma 2.1 (ii), each ai(S;) is explicitly known in terms of Aj(B;), 0 < j <i);

(i)

m—-1 [fm-1 . .
= m i\ (k=b-m)D(k—b—m—j—1)mi-D
sz—l(k)—(k—a)( )Z (Z (‘1) j!(—l)m_j_l(m_j—1)!(1)-:m+j—a)(m)) B.'

i=0 j=i

+(Ic-b—m)("')m.1 (nf (J) (k) (k —a—j - VP70 ) A, (3.11)

i) D™t (m =) = DHa+j = b= m)™

(iii)
m-—1 m~-1
Pom-a(k) =Y qi(k) Ai + ) &(k) Bs, (3.12)
i=0 1=0

where g;(k) and §;(k), 0 < i < m—1 are the polynomials of degree 2m—1 satisfying A"¢i(a) = bir,
ATg(b+m) =0, A"G(a) =0, A"g(b+ m) = 6;r, 0< i, r < m—1 and appear as

mit ; — a)i+)
(k) = —k— 1) m+j-1 (k—a)
()= (b+2m—k—1) ;( j )i!(b+2m—i——1—a)(m+i)’ (3.13)
"D j 4 j ~ k= 1))
= (1N — (1Y (k — a)(™ m+j—-1\G+m+i+ji-k=1) <i N

PRroOOF.

(i) The polynomial Pym-1(k) in (3.9) is obviously of degree at most 2m — 1. Thus, it suffices
to show that this Pyn_1(k) indeed satisfies the conditions (3.8). For this, we rewrite

Pym_1(k) a3
sz—l(k) _ (k - G)(m) ! (k—b— m)(i) . m-1 (k _ a)(c') ‘
(k = b —m)(m) = (k—b—m)m) rard ] B+ ; A a;.

From Lemma 2.1 (ii), it is clear that the first term of the right side and all of its differences
up to the order m — 1 vanish when k = a. Further, the i*! difference of the second term
when k = a is a;. Thus, o; must be the same as given in (3.10). The same observation
holds for each ;.

(ii) From Theorem 3.1, the unique polynomial of degree 2m — 1 satisfying the boundary
conditions Pym—1(a +1) = uw(@a+1), Pom_1(b+m+i) =u(b+m+ i), 0<i<m-—1can
be written as

m=1l b O (k=g —i—1)m=i=1 (k- — m)(m)
Py = 3 &= 1) (k—b=m)™ (a+i)

()1 (m—i-1)l(a+i—b—m)™

i=0

m-1 i . {

E—a) ™ (k=b—m)®(k—=b—m—i—1)mi=D

+§:( )™ ( m)( m=i-1) u(b+m+i). (3.15)
=0

(=D)m=-T(m—i-1)I(b+m+i— a)(m)
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However, in view of Lemma 2.1 (i), u(a+1) = 37, _, () Aj and u(b+m+i) = E,-o (; ') B;
Using these relations in (3.15) and rearranging the terms, the required polynomial (3 11)
follows.

(iii) It is clear that ¢;(k) and §;(k) are the polynomials of degree at most 2m — 1. Thus, it
suffices to show that A"g;(a) = &;r, A"qi(b+ m) = 0, A"gi(a) = 0, ATqi(b+ m) = &y,
0 < ¢, r <m—1. For this, we note that A"g;(b+m) = A"§;(a) =0, 0 <r<m-—1is
obvious. Further, in view of Lemma 2.1 (ii), we have

m-i-1 m+j—l 1
r,.. —
Argi(k)= ) ( j )i!(b+2m—i—1—a)(m+i)

j=0
r r M_ _  \GHi—r+l) (1 ym L (m—t)
x;(f) (i+j—r+g)!(k a) (-1) (m e)|(k+r £—b—m) ,
and hence, ATg;(a) =0if0<r<i—1, and

) 1
i 1 m . (m) .
A'gi(a) = T2 = 1= a)m™ (- (a+i-bdb-m)™ =1

Also, for i+ 1< r <m-—1, we have

r _r—i m+j—1 1 r Y
Aq'(“)".zo( j )i!(b+2m-i—1-a)(m+j)(r—i—j)(’“)'
J=
| "
X (__l)m m. (a +i +j —b— m)(m—r+l+])

= i!(b+2m—:!—1—a)(r—-') Z:(—l)'_"j (T—T—j) (m+jj_l)

- "(b+2m—z'—1 a)(r=9) Z( I)J (m+::ii:}_ 1) (’7) '

which, in view of Lemma 2.2 (ii), is zero. Thus, A"¢;(a) = &,
Now we shall show that A"§;(b + m) = ;. For this, once again from Lemma 2.1 (ii),
we have

m—i—1
L — i m+j—1 1
ATgi(k) = (1) Z ( j ) iMb+m+i+j—a)mti)

j=0

(k+r—£—a)m9,

xg(Z) k)G S RS ) '“’W

i+j—r+ 0!
and hence, A"g;(b+m)=0if0<r<i-1, and

1 .
(1Y (_ (o) . (m)
Thimii—am . CDE)T0+mti-a)

AfGi(b+m) = (-1)*
=1.
Also, fori4+ 1< r <m~1, we have

re-q

r-. — (1)} m+.7"—1 1
ATgi(b+m) = (-1) ‘Z%( j ) i'(b+m+i+j—a)m+i)

x ( T ) (i+j)!(—l)i+jL(b+m+z+]——a)("'"+'+’)
r—i—j (m—r+i+j)

= i!(b-—ar-ir)(f—‘) g(_l)j (T—T‘j) (m+1i‘ l)

= 0. |
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REMARK 3.1. From (3.13) and (3.14), it is clear that ¢;(k) > 0, (—1)* §i(k) > 0, k € N(a,b+m),
0 € i< m—1. Also, since g(k) = go(k)+go(k) is a polynomial of degree at most 2m— 1, satisfying
ga) =1,A"q(a) =0, 1 <r<m-1¢qb+m)=1 A"q(b+m)=0,1<r<m-1litis
necessary that

q(k) = qo(k) + qo(k) = 1. (3.16)

THEOREM 3.4. The unique polynomial P,_,(k) of degree n — 1 satisfying Hermite (r point)
boundary conditions

A Pyoy(ki) = Au(k)= A5, 1<i<r, 0<j5<p;, (3.17)

wherea=k; <k1j+p1+1<ka<kot+pr+1< - <k 1 <ke14p1+1<k. <k.+p-=
b—1+4n and each k; € N(a,b—1+mn), p; >0, 3_[_, pi + r = n can be written as

r P P; .
I k—k; )(p.+1) (k— k-)(‘)(lc —k;—s— 1)(p,—s)
P_i(k) = (3) ( 2 — Ajq.
@ X;,EZ, ‘ E(’“ +s—E)EFD (=1 (s — 5)! "‘

(3.18)

ProoF. From Theorem 3.1, the unique polynomial P,_;(k) of degree n — 1 satisfying
Pno_1(kj +s) = u(kj +s), 1 <j<r, 0<s<pjcan be written as

T kE—k)PiH) (k= k) (k= k; —s—1)Pi=?)
Foi(k) = Zl 2_:0 '1_1 (kj(+ s —)k‘)(P-'+l) ( {s)' (—(I)Pj-’](pj - s)!) u(k; +2). (3.19)

However, in view of Lemma 2.1 (i), u(k; + s) = Y_,_, (}) 4j,,. Using this relation in (3.19) and
rearranging the terms, equation (3.18) follows. [ |

THEOREM 3.5. The unique polynomial P,_,(k) of degree n — 1 satisfying Abel-Gontscharoff
(right focal point) boundary conditions

AP, _i(kip1) = Alu(kiy) = 4;, 0<i<n-—1, (3.20)

where ky < k3 < -+ < ky (ko > k1) and each k; € N(a,b) can be written as

Pn_y(k) =§T,-(k) A, (3.21)
i=0
where

1 (k)D (k)@ ... (k)61 (k1)@

R (N S L O G (Y B G
L) = yor—a | : : : (3.22)

e o 0o .- (i-1) il (ki)

1 (k)M (k)(2) (k)(i-l) (k)(")

PRroOF. It suffices to note that Tj(k) is a polynomial of degree i and that Al Ty(kj41) = 0,
0<j<im1, AT(kiyy) =1. .

REMARK 3.2. An alternative representation of T;(k) is in terms of iterated summations

4H—-1 Li1—-1
Ti(k) = f f (3.23)
L= La=ky Li=k;
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where, for the integers p and g and any function u(k),

g-1

Su(®), ife2p,

-1 =
}E_ wp=4{ =
"’ ~Yue), ifp2q
t=gq

Further, in particular,
To(k) =1,
Ty(k) = [ - (k)]
1) = 5 [(B - #)P) - 2800 (BW - E)W)],
To(k) = 5 (B - (0)®) = 362)D (DD = (1))
+ (6(k2) D (k) - 3(k2)@) (0D - (k)W)

THEOREM 3.6. The unique polynomial P,_;(k) of degree n — 1 satisfying two point right focal
boundary conditions

A'P,_1(a) = A'u(a) = A, 0<i<p-1, (1<p<n—1, butfixed),

. ) , (3.24)
AiP,_ ()= A'u(d) = A;, p<i<n-—]l,

can be written as

k-a)®

$=0

n-p-—1 H . ..
(k= ) (~1)i~1 e
+ . . (b—a+i—j—1)D) A (3.25

; (,;, Bl G- ) pri- (3:29)
ProoF. That P,_,(k) defined in (3.25) is a polynomial of degree n — 1 is obvious. Further, since
ATP,_yi(a) = A,, 0 < r < p-—1is straightforward, it suffices to show that

: — a)P+d) (~1)i-7 .
L=art (.Z “ +)jp)jl e 1)(._,))
j=o0

= i,

k=b
0<i,£<n—-p-—1

For this, once again if i < £ then L = 0, and if i = £ then L =1 is immediate, and for ¢ > £ we
have

b—a)i-0 17 . . i-j
L= Z( )e)! ((z—)1)|(b-a+l—1—1)( )

(b—a)( e (b—a4i—-t—j—1)(=t=D)
'Z (=1 G=t= )

oS (1157 (),

which, in view of Lemma 2.2 (ii), is zero. [ |
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The proof of the following two results is similar.

THEOREM 3.7. The unique polynomial P,_, (k) of degree n — 1 satisfying (n, p) boundary con-
ditions

A*P,_1(a) = A'u(a) = A;, 0<i<n-2 (3.26)
APPy_1(b—14+n—-p)=APu(b—1+4+n-p)=B, (0 <p<n-1, but fixed), )
can be written as
n—-2 { n—p-~2 .
_ (k - a)® (b+n—p—a-1)©
Pa_y(k) = ‘2:; —r—Ai+|B- g 5 Apyi
—p—-1)! — a)(n-1)
N (n—p-1)! (k—a) (3.27)

(n—-1)! (b+n-p—a-1)n-p-1°

THEOREM 3.8. The unique polynomial of degree n — 1 satisfying (p,n) boundary conditions

APP,_,(a) = APu(a) = B, (0 <p<n-—1, but fixed), (3.28)
AP y(b+1)=Alu(b+1)=4;, 0<i<n-—2 '
can be written as
n—2 . : n—p—2 . .
b+i—-k)® . b+i—a))
Paci(k) = Z;(——,.!L(—l) Ak |p-y Crica) 1)
1= =
(n—p—1) »  (b+n—1—k)r-D
oo Y G pmac ey G

4. GREEN’S FUNCTIONS

Consider the difference equation (2.2) together with the linearly independent boundary condi-
tions

n-1
4u] = E air u(k; + 7) = A;, 1<i<n, (4.1)
=0

wherea <k} <. <k, <band a;, 4;, 1<i<n, 0 < 7 < n—1 are the known constants.
Obviously, in view of Lemma 2.1 (i), all the boundary conditions considered in the previous
section are particular cases of (4.1). The solution u(k) of (2.2) defined in (2.3) satisfies these
boundary conditions (4.1) if and only if the system

n n

Ai=4 [Ecj vj +¢] =) ciblv]+4[¢l, 1<i<n,
j=1 i=1

has a unique solution. Thus, the boundary value problem (2.2), (4.1) has a unique solution if

and only if det(4;[v;]) # 0. Further, in such a case, the existence of the fundamental system of

solutions 3;(k), 1 < j < n of (2.1) satisfying £[7;] = é;; is assured (as det(£; [¥;]) =1).

For convenience, we shall write D;(£) = cofactor of 7;(£+n—1) in the det V (£) = det(9;(£+5));
1<i<n 0<j<n~1. Further, let ko = a, kny1 = b, and Dy(k) = Dpa(k) = vo(k) =
Un41(k) = 0 on N(a,b ~ 1+ n). Then, in view of (2.3) and (2.4), the general solution u(k)
of (2.2) can be written as

n k—-n n+1
u(k) = .Eci v;(k) + lz: Eet—V%_‘_—l—) EDj(£+ 1) 9; (k) b(¢), k€ N(a,b—1+4n). (4.2)
Jj=1 =a i=o0
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Since, from the properties of G(k,f) defined in (2.5),

ki—-1 n+1

- 1
u(ki +7) = Ecj vj(ki + 1)+ Z m ZDj(Z+ 1) 95 (ki + 7) b(¢), 0<7<n—-1,
j=1 l=a j=0

boundary conditions (4.1) can be used to determine the constants c;, 1 < j < n which appear as

ki-1
3 1

= A — - D < .
€j AJ ; det V(l+ 1) D](£+ 1) b(f), 1<j<n

Thus, the solution of (2.2), (4.1) can be written as

n n+lkj—1
u(k) = ZA,' o; (k) — Z > Eé—tV(lTﬁDj(g+ 1) 5; (k) b(2)
i=1 =0 t=ko
k—-n 1 n+l )
+§D det V(€+1) ,Z:o D;(€+1);(k)b(6)
n n kigi—1 ntl
= j=1Aj t‘u(k)—; t; SV V(1£+1)j§,+1Dj(£+l) 5 (k) b(2)
k-n 1 n+1

+

D;(£+1) v;(k) b(¢)

L detV(E+1) 4

l=a

n -1
= EAJ f)j(k) + Eg(krl) b(¢),

where, for k;p; — ki > 1,

1 : _
m%Dj(f'{"l)t)j(k), ki <t<k-—n,
g(k, &) = . ntl (43)
-dTV(‘“__l)j;le(f'i'l)vj(k), k—n+1<€<kiy1 -1, 0<i<n,

and for kiy; — ki < 1, g(k,£) = 0.
This function g(k,£) is called the Green’s function of the boundary value problem (2.1),

4u] =0, 1<i<mn, (4.4)

and is uniquely determined on N(a,b— 1+ n) x N(a,b — 1). The following properties of g(k,?)
are fundamental.

(i) A7g(k,£), 0 <7< n—1existson N(a,b—14+n-17)x N(a,b-1);

(ii) g(k,£) as a function of k satisfies

n

Lig(k,0)} = Ea;(k) g(k +1,£) = bpe, k € N(a,b—-1);

=0

(iii) g(k,£) as a function of k satisfies the homogeneous boundary conditions (4.4);
(iv) for any b(k) defined on N(a,b — 1), the unique solution of the boundary value problem
(2.2), (4.4) is given by

b—1
u(k) =) _ g(k,£) b(0).

I=a
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THEOREM 4.1. Let u(k) be a function defined on N(a,b — 1 + n), and satisfy the conjugate
boundary conditions (3.1). Then, the following holds

b—1
u(k) = Pay(k)+ Y _g(k,0) A™u(f), k€ N(a,b—1+n), (4.5)

{=a

where P,_1(k) is the conjugate interpolating polynomial defined in (3.2); and g(k, ¢) is the Green’s
function of the boundary value problem

A"u(k) = 0, (4.6)
u(k;) =0, 1<i<n, 4.7)

which can be written as

(k) —(k—£-1)""Y a<k —n+1<L<k—n,
91(k,9), kE—n4+1<L< ke —n, (4.8)
1<r<n-1,

g(k,f) = —(—n—_m

where

akto= 3 II (&=

i=r+1 J-—l

) (ki — £~ )"V,
PrOOF. Let (k) = A”u(k) in Lemma 2.4 so that the function u(k) can be written as
n 1 -n
= : : —_ _p_1\(n=1) An _
u(k) Z;l,(k) i+ wo) g(k £-1) Atu(f), ke N(a,b—1+n),
where £;(k) is defined in (3.3). This function satisfies (3.1) if and only if

Ai=ci+ ), E(lc ~1)"-DARy(e), 1<i<n.

i=a
Therefore, it follows that

ki-n

u(k) = le(k)A.- 1), ZZ,(k) Z(k —£— 1)) Ary(e)

1)' Z(k £—1)(*~D APy(g)

{=a

n~1 krgf1—n n
= Ze(k)A,— [Z > X (k) (kj — £ = 1)("=D Aru(e)

r=1 =k, =-n+l j=r+l

- f(k —£-1)*-1) A"u(e)] ,
l=a

which is the same as (4.5). ]

CAMA 25:8-8
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COROLLARY 4.2. The Green’s function g(k,£) of the two point boundary value problem
A?u(k) =0, (4.9)

u(a) =0, u(b+1)=0, (4.10)

can be written as

1 {(b+1—k)(£+1-—a), a<t<k-2, (4.11)

kf)= —————
9D =~ T L (k=) (5-0), k—1<€<b—1.

The proof of the following results is analogous to that of Theorem 4.1.

THEOREM 4.3. Let u(k) be a function defined on N(a,b — 1+ 2m), and satisfy the osculatory
boundary conditions (3.4). Then, the following holds

b-1
u(k) = Pam_1(k) + 3 g(k, ) A*u(¢), k€ N(a,b—1+2m), (4.12)

L=a

where Pyp,_1(k) is the osculatory interpolating polynomial defined in (3.5), and g(k,£) is the
Green’s function of the boundary value problem

A?™y(k) =0, (4.13)
u(k;) = Au(k;) =0, 1<i<m, (4.14)

which can be written as

] gl(lc,l)—(k—l-—l)('”"'l), a<k —2m+2<£<k—-2m,

g(k,£)=—(—2—rn_—l)' gl(k,f), E—2m+1<€<kry1 —2m+1,
1<r<m-1,
(4.15)

where
a(k,0) = i [Bj (k) (kj — £ — 2m + 1) + hj(k) (2m — 1)] (k; — £— 1)@™~D),
j=r+1

and h;(k), hj(k) are defined in (3.6) and (3.7).

THEOREM 4.4. Let u(k) be a function defined on N(a, b—142m), and satisfy the two point Taylor
boundary conditions (3.8). Then, equation (4.12) holds, where Pzp,_1(k) is the two point Taylor
interpolating polynomial defined in (3.12), and g(k,£) is the Green’s function of the boundary
value problem (4.13),

A'u(a) = A'u(b+m)=0, 0<i<m-1, (4.16)

which can be written as

g(k e)=----——1 a1k, ) = (k=£-10"D, e <L<k-2m, (4.17)
’ @m = 1! | g1(k,0), k-2m+1<£<b-1, '
where .
g1k, 0) = Y @m -1 (b+m —£- 1)V g(k),
i=0

and §;(k) is defined in (3.14).
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THEOREM 4.5. Let u(k) be a function defined on N(a,b— 1+ n), and satisfy the two point right
focal point boundary conditions (3.24). Then, equation (4.5) holds, where Pa_1(k) is the two
point right focal interpolating polynomial defined in (3.25); and g(k, £) is the Green’s function of
the boundary value problem (4.6),

A'u(a) =0, 0<i<p-1, (1<p<n—1, but fixed),

Alu(b)=0, p<i<n-—1, (4.18)
which can be written as
/4
> so(k,87), a<e<k-1,
gk, 0) = (-1~ ¢ 77 (4.19)
D gok,l,7), k<e<b-1,
7=a
where
golk g,y = E=T=DO D (ttn—p-1-7)7p7) (4.20)

(p—D!(n—p-1)

THEOREM 4.6. Let u(k) be a function defined on N(a,b— 1+ n), and satisfy the (n,p) boundary
conditions (3.26). Then, equation (4.5) holds, where P,_,(k) is the (n, p) interpolating polyno-
mial defined in (3.27); and g(k,£) is the Green’s function of the boundary value
problem (4.6),

Alu(a) =0, 0<i<n-2,

4.21
APu(b—14+n—-p) =0, (0 < p<n—1, but fixed), (4.21)
which can be written as
—(k— ¢ —1)n-1) -
(n=1)! | g1(k,9), k-n+1<2<b-1,

where
(k—a)*=D(b4n—p—2—2)n—r-1)

9(k,6) = (b+n—p—a-—1)n-r-1)

THEOREM 4.7. Let u(k) be a function defined on N(a,b— 1+ n), and satisfy the (p,n) boundary
conditions (3.28). Then, equation (4.5) holds, where P,_,(k) is the (p,n) interpolating polyno-
mial defined in (3.29); and g(k, ) is the Green’s function of the boundary value problem (4.6),

APu(a)=0, (0<p<n-—1, but fixed),

) 4.23
A'u(b+1)=0, 0<i<n-2, (4.23)
which can be written as
—1)n+t k9, <£<k-1,
o(k, ) = - =1 g1(k, ) L 1=ts (4.24)
=D | g1k, ) = (L+n—1-k)"D, k<t<b-1,
where (n1) ( 1)
- — k)(n- —p—1~q)n-r-
gl(k,€)=(b 1+n-k) (f+n p_il a) .
(b—14n—p—a)n-r-1)
For a fixed 1 < j < m, we recursively define
ol (k, &) = g;(k,0), N(a,b+2j —1) x N(a,b+ 2j — 3),
b42i—1
g{'+1(k!£) = Z gi+1(k’kl)gs!(kl»£)’ N(a1b+21+ 1) X N(a)b+2.7—3)) (425)
ki=a

i=j,j+1,...,m-1,
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where, for each 1 <i < m,

gi(k,8) = -

b—142i-k)(£+1—a), <£<L<k-2,
1 {( +2i—k)(L+ a), a<i< (4.26)

b—142i—a ((k—a)(b+2i—2-19), k—1<£0<b+2i-3,
which, in view of Corollary 4.2, is the Green’s function of the boundary value problem (4.9),

u(a) = u(b— 1+ 2i) = 0. (4.27)

THEOREM 4.8. Let u(k) be a function defined on N(a,b — 1+ 2m), and satisfy the Lidstone
boundary conditions

A%u(a) = Ay,

: 4.28
A¥u(b—1+2m—2)=By, 0<i<m-L (4.28)
Then, for all k € N(a,b~ 1+ 2m), the following holds
b~1
u(k) = Pam-1(k) + Y gk (k,£) A™u(9), (4.29)
{=a
where g1, (k,£) is the Green’s function of the Lidstone boundary value problem (4.13),
APu(a) = A%u(b—1+2m —2i)=0, 0<i<m-—1, (4.30)
and Pam_1(k) is the Lidstone interpolating polynomial defined as
k—a k—a
sz-l(k)_<b 1+2m— )B°+<1_b—l+2m—a> Ao
m-—2 b4+2m-—2i— ] f—a
+X§ Z (k.6) [(b+2m—-2i—3—a) Baita
£—a
+ (1— b+2m——2i—3—a) A2;+2] . (4.31)

5. INEQUALITIES AND EQUALITIES FOR GREEN’S FUNCTIONS

THEOREM 5.1. For the Green’s function g(k,£) of the conjugate boundary value problem (4.6),
(4.7) defined in (4.8), the following hold
(i) (=1)rto®) g(k,£) > 0, (k,£) € N(a,b—14n)xN(a,b—1), where o(k) = card {i : k; < k,
1<i<n)y
(i) lo(k, 0l < (25 ‘)" T
(" '-1)/' - n— n—f=~1 .
(iii) lA'g(k £)| <5 (-’%) b 1':_:1 ; , 1<i<n—-1;

(iv) 022 lg(k, 0) = & [0, |k — ki| < =l (Gotdn=a)®

Proor. Part (i) is a particular case of the more general result proved by Hartman [1]. Parts (ii)
and (iii) are established by Teptin [29]. To prove Part (iv), we note that u(k) = 1/n! [Ti=,(k—k;)

and u(k) = Ez- 2 9(k,£) are two different representations of the unique solution of the boundary
value problem A™u(k) = 1, (4.7). Therefore, it follows that

Eg(k n=— TTk - k). (5.1)
{=a =1
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However, since (—1)"*+°®) ], (k — k) > 0, and g(k,£) as a function of k has the same zeros
as [Ti_, (k — k;), it follows that g(k,£)/ [T;—,(k — k) > 0, (k,£) € N(a,b~1+n) x N(a,b—1).
Thus, from (5.1) we conclude that

b—-1 n
IOUIEES | (O (53)

i=a

For a continuous variable ¢ € [¢,b—1+n] in [24], it is shown that [T}_, [t — k| < ((n — 1)1 /n")
x(b—1+n —a)" from which the required inequality in Part (iv) follows. |

COROLLARY 5.2. For the Green’s function g(k,f) of the osculatory boundary value problem
(4.13), (4.14) defined in (4.15), the following hold

(i) g(k,€) >0, (k,f) € N(a,b—1+2m) x N(a,b—1);

. -— m m— Im—1 - m—a am

(i) 2222 lo(k O = gy Tk — ki) < g O=1pinnel”
COROLLARY 5.3. For the Green’s function g(k, £) of the two point Taylor boundary value problem
(4.13), (4.16) defined in (4.17), the following hold

@) (-1)™g(k,£) >0, (k,€) € N(a,b—1+2m) x N(a,b-1);

m —a)3m

(i) 022 lo(k, 0l = gy (k= a)™ (b=~ 1+ 2m — B)(™ < (§)™ oo™
THEOREM 5.4. For the Green’s function g(k,£) of the two point right focal boundary value
problem (4.6), (4.18) defined in (4.19), the following hold

(i) (-1)"PAig(k,)>0, (k,f)eN(@,b—1+n—i)x N(a,b—1), 0<i<p-1;
(") (_l)n—p+i Ai+pg(k’e) Z 07 (k,[) € N(a:b— 1+n_i—'p) X N(a:b'— 1)1 0 S i S n—p-l;
(iii)

LX_EIA‘y(k,f)I nf(-l)i (n’:jj) (b—ajfj—l)

L=a j=0

n—p .
; b—a b—a+j5-1 .
-1V — . —1-
>, (=) (n_i_j)< : ) =Cniy  0<i<p-1
J=

IA

(iv)
it S (b+n—p—1—i—k)r-r-9
S e, ) = =
= (n—p—i)
b —p—1—1i—q)r-pr-i) .
S( = }()n—p_zi)!a) =Chitp, 0<i<n—-p-—-1

PRrRoOF. From (4.19), it is clear that for 0 < i< p—1,

[/
Y gk, br), a<t<k-1,
Atg(k,0) = (-1)"? ¢ T7° (5.3)

k-1
> gilk,l,T), k<e<b-1,
T=a

where .
(k—7-1)FD(l4n-—p—1-r)n-r-1)

(p—-i-1l(n—p-1) ’

gi(k, 0, 7) = (5-4)
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andfor0<i<n-p-1,
0, a<t<k-1,

APg(k, £) = (—1)" P+ —p—1—i—k)n-p-i-1) 5.5
g(k, &) = (1) l+n—-p-1 i k)  k<t<bol. (5.5)
(n—p—i-1)! -

Parts (i) and (ii) now immediately follow from (4.19), (4.20), and (5.3)—(5.5). To prove

Part (iii), we note that
n—p .
i (k—a b—a+j-—- 1)
k) = -1y . .
=1y (A7) (P

j=0

is the unique solution of the boundary value problem A™u(k) = 1, Afu(a) =0,0<i<p-1,
APFyu(b) =0, 0 <i < n—p—1. For this, it suffices to note that for 0 <i<n—p-—1,

s ngi(—l)j (b;—a) (b—a:ﬁ;f;_i;j— 1>,

which, in view of Lemma 2.2 (ii), is zero. Further, since u(k) = zz;i g(k, £) is another represen-
tation of the same solution, it follows that

b—-1 n—p ,
. (k—a b—a+j-— l)
k0 = -1y . . .
S ook =3 y(Eze) (P
=a j=0
The required equalities in Part (iii) now directly follow from Part (i), whereas the inequalities

are obvious.
For Part (iv), from (5.5) we have

-1 -1 ) )
) £4n—p—1—i—k)r-r-i-1)
APg(k, 0| = ( -
Z:l o )I t.—.zk (n—-p—-i-I)
_(t+n-—p—i—k)n-p-d b
B (n—p—i)
_ (b+n—p—i—k)r-r9
- (n—p—1i)!

THEOREM 5.5. For the Green’s function g(k, £) of the (n,p) boundary value problem (4.6), (4.21)
defined in (4.22), the following hold

(i) —Alg(k,£) >0, (k,£)e N(a,b—1+n—1i)x N(a,b—-1), 0<i<p;
(ii)

b-1 .
; 1 ; b—a k—a—-n+i+1
i - +r _ a\(n—i-1) _
Z;lA 9(k,0)| = (n—i-1) (k—a) [n——p n—i ]
-1 - — a)n-9
(=9 G=ptn-g) 0sisp-1
n=p -9 b,
(n—p-1)"?P1(b-14+n—-—p—a)*? . "
) i=p
(n—p)r-r (n—p)!
0<i<p

PRoOOF. The proof is similar to that of Theorem 5.4. [ |
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THEOREM 5.6. For the Green’s function g(k, £) of the (p,n) boundary value problem (4.6), (4.23)
defined in (4.24), the following hold

(1) (=1)n+i+1 Afg(k, £) > 0, (k,)e N(a,b—14+n—i)x N(a,b—1), 0<i<p;

(i)

§|A‘y(k,£)| _G-ltn—i- koD [b—a _ b_k]

t=a (n-i-1) n—p n—i
(p=19) (b—1+n—i—a)n=) .
(n=7) 3L ’ osigpm1|
(n=p—1)"P1 (b—1+n—p—a)*~? i i
(n—p)-? (n—p)! ,  i=p
0<i<p.
ProoF. The proof is similar to that of Theorem 5.4. s

THEOREM 5.7. For the Green'’s function g, (k, £) of the Lidstone boundary value problem (4.13),
(4.30) the following hold

(i) (-1)™ g (k, &) >0, (k,0) € N(a,b—1+2m) x N(a,b—1);
(i) Tezalon(k, 01 < (3)" IIL; (b+2 -1~ a)?.
Proor. In view of (4.26) and (4.25), Part (i) is immediate. Further, since

b42i-3 .
k—a)(b+2i-1-k) 1 .
S lostk, ) = £ x. )Sg(b+2z—l—-a)2,
=a
Part (ii) also follows from (4.25). ]

6. MAXIMUM PRINCIPLES
Results in this section are motivated by the following theorem.

THEOREM 6.1. If u(k) is defined in N(a,b+ 1), and A%u(k) > 0, k € N(a,b — 1), and attains
its maximum at some k* € N(a + 1,b), then u(k) is identically constant on N(a,b+ 1).

PROOF. Suppose k* € N(a+ 1,b) is such that u(k*) > u(k) for all k € N(a,b+1). If u(k) is not

a constant, then either there exists an integer ¢ > 0 such that u(k*) = u(k*+1) = - - - = u(k* +1),
k+1i€ N(a+1,b) and u(k* + i+ 1) < u(k* + i); or there exists an integer j < 0 such that
u(k*+j)=u(k*+j+1)=---=u(k*), k+j € N(a+1,b), and u(k* +j — 1) < u(k* + j).

But then in the first case, 2u(k* +4) > u(k* + i+ 1)+ u(k* +i—1), ie., A%u(k*+i—1) <0,
which contradicts A%u(k* +i — 1) > 0. Similarly, in the latter case A2u(k* + j — 1) < 0, which
contradicts AZu(k* +j—1) > 0. (]
REMARK 6.1. As a consequence of Theorem 6.1, u(k) < max{u(a),u(b+ 1)}, k € N(a,b+1).

REMARK 6.2. Theorem 6.1 holds if we reverse the inequality and replace “maximum” by “min-
imum.”

The maximum principle stated in Theorem 6.1 does not necessarily hold for functions satisfying
higher order inequalities. For example, let u(k) = —(k/10 — 1)2, k € N(0,20). For this function
Atu(k) > 0, k € N(0,16), but u(k) attains its maximum at k = 10, which is a point in N(1,19).
An extension of Theorem 6.1 is embodied in the following theorem.

THEOREM 6.2. Let u(k) be defined on N(a,b— 1+ 2m), and
A?™y(k) >0, ke N(a,b-1), (6.1)
(=)™ Alu(a) >0, (D)™ Aub+m)>0, 1<i<m-1, (6.2)

then in the case m even (m odd) u(k), k € N(a,b+m) attains its minimum (maximum) at either
aorb+m.
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PROOF. We shall consider the case when m is even. For this, in view of (3.12) and Theorem 4.4,
the function u(k) can be written as

m-1 -1 -1
u(k) = Y (k) A'u(a) + Z Gi(k) A'u(b+ m) + > _ g(k,£) A™™u(e), (6.3)
§=0 $=0 L=a

where g;(k), i(k), 0 < i < m—1 are defined in (3.13), (3.14); and g(k, £) is the Green’s function
of the boundary value problem (4.13), (4.16) and is defined in (4.17). Using Remark 3.1,
Corollary 5.3 (i), and equations (6.1) and (6.2) in (6.3), we obtain for all k € N(a,b + m)
that

u(k) > qo(k) u(a) + go(k) u(b + m)
2 (go(k) + go(k)) min {u(a), u(b + m)}
= min {u(a), u(b + m)}. |

REMARK 6.3. When the inequalities in (6.1), (6.2) are reversed, the result remains true provided
the word maximum (minimum) is replaced by minimum (maximum).

THEOREM 6.3. Let u(k) be defined on N{a,b~ 1+ n), and

A™u(k) >0, k€ N(a,b-1), (6.4)
Alu(a) <0, 1<i<n-2, (6.5)

then u(k) attains its maximum either at a or b— 1+ n.

PROOF. In view of (3.27) and Theorem 4.6 with p = 0, the function u(k) can be written as

(k- a)(') (k—a—d)n—i-D i
u(k) = E [ - (b+n—a—i—1)("""1)] A'u(a)

(k — a)*) b—1 S k,£) A"u(f), (6.6
+(b+n—a—-1)("—1) u(b - +n)+t2=;g(:) u(f), (6.6)

where g(k, £) is the Green’s function of the boundary value problem (4.6), (4.21) with p =0 and
is defined in (4.22). Since for each 1 < i < n — 2, the coefficient of A*u(a) in (6.6) is nonnegative
on N(a,b— 1+ n), using Theorem 5.5 (i) with p = 0 and Equations (6.4) and (6.5) in (6.6), we
obtain for all k € N(a,b— 1+ n) that

(k —a)(»-V) (k — a)(»=1)
u(k)s [1—‘ (b+n—a—1)("‘1)] u(a)+(b+n 1)(n 1) (

14+ n).

In the above inequality, the coefficients of u(a) and u(b—1+n) are nonnegative on N(a,b—1+n)
and their sum is 1. Therefore, it follows that u(k) < max {u(a),u(b— 1+ n)}. ]

THEOREM 6.4. Let u(k) be defined in N(a,b— 1+ n), and satisfy the inequality (6.4). Further,
let

(-1 Afu(b+1)>0, 1<i<n-2, (6.7)

then in the case n odd (n even), u(k) attains its minimum (maximum) at a or b+ 1.

PROOF. The proof is similar to that of Theorem 6.3. Further, if the inequalities (6.4), (6.5)
and (6.7) are reversed, then a remark similar to Remark 6.3 holds. |
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7. ERROR ESTIMATES IN POLYNOMIAL INTERPOLATION
Combining Theorems 4.1 and 5.1, we obtain the following theorem.

THEOREM 7.1. Let u(k) and P,_1(k) be as in Theorem 4.1. Then, for all k € N(a,b -1+ n)
the following inequality holds

’

n—1)"1t(b-14+n—-a)

(
B-P._ <
|u( ) P, l(k)l - nn n! keN(a b-1)

A" u(k)] . (7.1

Combining Theorem 4.3 and Corollary 5.2, we get:

THEOREM 7.2. Let u(k) and Py,,_y(k) be as in Theorem 4.3. Then, for all k € N(a,b—1+2m),
the following inequality holds

2m —1)>™-! (b— 1+ 2m — a)>™

(
|u(k) = Pom—1(k)| < (2m)?m (2m)! kEN(a b-1)

|AZ™ u(k)| . (7.2)

A combination of Theorem 4.4 and Corollary 5.3 leads to:

THEOREM 7.3. Let u(k) and Pyr,_1(k) be as in Theorem 4.4. Then, for all k € N(a,b—1+2m),
the following inequality holds

m — q)?™
) = Prncal < (7) LERZID A 1)

Similarly, combining Theorems 4.5 and 5.4; Theorems 4.6 and 5.5; Theorems 4.7 and 5.6; and
Theorems 4.8 and 5.7; we respectively find:

THEOREM 7.4. Let u(k) and P,_,(k) be as in Theorem 4.5. Then, the following holds

i _ . n . - -1 <i<n-
|A* (u(k) Po_1(k))| £ Cns ke]f'r(lg-l) |A™ u(k)f; keN(@b-—1+n—-13), 0<i<n-—1,
(74)

where Cy, ; are defined in Theorem 5.4.

THEOREM 7.5. Let u(k) and P,_1(k) be as in Theorem 4.6. Then, the following holds

IAi (u(k) - Pn—l(k))l < D, 3 kEN( IAnu(k)‘ ke N(a:b—l'{"n_i): 0 < ¢ <p (75)

where Dy, ; are defined in Theorem 5.5.

THEOREM 7.6. Let u(k) and P,_1(k) be as in Theorem 4.7. Then, the following holds

|A* (u(k) = Pa-1(K))| < En; red2x A%l k€ N(a,b—1+n—i), 0<i<p, (76)

where E,, ; are defined in Theorem 5.6.

THEOREM 7.7. Let u(k) and Pay—1(k) be as in Theorem 4.8. Then, for allk € N(a,b—1+2m),
the following inequality holds

|u(k) — Pam—1(k)| < (—) H (b+2i—1-a)? |A2™u(k)]| . (7.7)

kEN(a b—1)
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8. EXISTENCE AND UNIQUENESS OF BOUNDARY VALUE PROBLEMS

Inequalities obtained in Section 7 will be used here to provide easier tests for the local existence
and uniqueness of the solutions of the n** order nonlinear difference equation

A"u(k) = f(k,u(k),u(k+1),...,u(k+n—1)), k€ N(a,b—-1), (8.1)
and its variant
A™u(k) = f (k,u(k), Au(k),..., A" u(k)), k€ N(a,b-1). (8:2)

THEOREM 8.1. With respect to the conjugate boundary value problem (8.1), (3.1), we assume
that
(i) M > 0is a given real number and the function f(k,up,u,...,u,_1) Is continuous on the
compact set N(a,b— 1) x Dg, where

Do = {(uo,u1,...,un—1) : Jui] <2M, 0<i<n—1},

and
i) < Q;
N(aIbI-l-ai))(XD |f(k1u01ul, U l)l_Q
(ii) NG b ax )IP,., 1(k)| < M, where P,_i(k) is the conjugate interpolating polynomial de-

fined in (3.2);
(iii) (=l G=lin-a)® g < pr
Then, the problem (8.1), (3.1) has a solution in Dy.
ProoOF. In view of (4.5), the problem (8.1), (3.1) is equivalent to the equation

u(k) = Po_y(k) + Zg(k 0 f(&,u(®),u(t+1),...,u(€+n=1)), (8.3)

where g(k, £) is the Green’s function of the conjugate boundary value problem (4.6), (4.7) defined
in (4.8). Let S(a,b — 1+ n) be the space of all real functions defined on N(a,b — 1+ n). We

shall equip the space S(a,b — 1+ n) with the norm ||u|| = N b ax . Iu(k)l so that it becomes a

Banach space. Now define an operator T : S(a,b — 1+ n) — S(a, b — 1+ n) as follows

b—1
Tu(k) = Pa_1(k)+ Y g(k, &) f (¢, u(®),u(¢+1),...,u(l+n—1)). (8.4)

l=a

Obviously, u(k) is a solution of (8.1), (3.1) if and only if u(k) is a fixed point of T. The set
S1 = {u(k)€ S(a,b—1+n):||ull| <2M} is a closed convex subset of the Banach space
S(a,b— 1+ n). Since

Z_:g(k,l)f(l,u(l),u(£+1),...,u(l+n—— )| = f(k,u(k),u(k+1),...,u(k+n-1)),

=a
for any u(k) € Sy, in view of (8.4) and (7.1), it follows that
n—1)""1 (b—1+n-a)"

nn n!

| Tu(k) — Pa_s(k)] < &

Q,

and therefore,

(n=1"! (b—1+4+n-a)"
Tl <, max, | (Paa(0+ 8 =

SM+M=2M.

Q,

Thus, T maps S into itself and T(S;) is compact. By the Schauder fixed point theorem, the
operator T has a fixed point in S;. Thus, the boundary value problem (8.1), (3.1) has a solution
in Do. .
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THEOREM 8.2. With respect to the osculatory boundary value problem (8.1), with n = 2m, (3.8),
we assume that

(i) M > 0 is a given real number and the function f(k,uo,u;,... ,U2m—1) Is continuous on
the compact set N(a,b — 1) x Dy, where

Do = {(uo,u1,.. ., uzm-1) : |u;| <2M, 0<i<2m—1},

and

N(ab-—l)xD |f( 1 U, Ur, .- 1u2m—l)|SQ;

(i) |P2m_1(k)| < M, where Py,_1(k) is the osculatory interpolating polynomial

N(a, b 1+2
defined in (3 5);

oo -1)3m-—-1 - —a 3m
(iif) Bl Q=ltimoal” g < u.

Then, the problem (8.1), with n = 2m, (3.4) has a solution in Dj.

THEOREM 8.3. With respect to the two point Taylor boundary value problem (8.1), withn = 2m,
(3.8), we assume

(i) condition (i) of Theorem 8.2;
(ii) condition (ii) of Theorem 8.2 with Pym_1(k) as the two point Taylor interpolating poly-
nomial defined in (3.12);

(i) ()" CHQ < M.
Then, the problem (8.1), with n = 2m, (3.8) has a solution in D,.
'THEOREM 8.4. With respect to the two point right focal boundary value problem (8.2), (3.24),
we assume that

(i) M: >0, 0 < i< n-—1 are given real numbers and the function f(k,uo,u1,...,uny) is
continuous on the compact set N(a,b— 1) x Dy, where

Doz{(uo,ul,...,un_l): IU,’I S2M,‘, 03151’1—1},

and
k e Un ) €@
N(ab l)xD |f( » Uo, Uy, U I)I_Q
(ii) N b ax )IA P, 1(k)| < M;, 0 <i<n-—1, where P,_(k) is the two point right focal
a +n—i

interpolating polynomial defined in (3.25);

(ili) Cri Q@ < M;, 0<i<n—1, where C,; are defined in Theorem 5.4.
Then, the problem (8.2), (3.24) has a solution in Dy.

ProoF. For the problem (8.2), (3.24), equations corresponding to (8.3) and (8.4) are

u(k) = P, 1(lc)ﬁLE g(k, £) f (£, u(€), Au(e), ..., A" 1u(L)), (8.5)
l=a
and
b—1
Tu(k) = Pa_y(k) + Y gk, £) £ (£,u(€),A(F), ..., A" 1u(e)) (8.6)

l_

where g(k,f) is the Green’s function of the two point right focal boundary value problem
(4.6), (4.18) defined in (4.19). The space S(a,b — 1 + n) we shall equip with the norm

[lu]] = max {||Afu(k)]}, 0 < i < n— 1}, where [|[Alu(k)|| = a2, |A'u(k)| The set S; =
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{u(k) € S(a,b~a+n):||Afu(k)|| < 2M;, 0<i<n—1} is a closed convex subset of the Ba-
nach space S(a,b — 1+ n), and as in Theorem 8.1, in view of (7.4), for any u(k) € S it follows
that
A'T < PP i
IATUR <, max | |ATPaa(B)] +Cni Q
< 2M;, 0<i<n-1,

from which the conclusion is immediate. [ |

THEOREM 8.5. With respect to the (n,p) boundary value problem (8.1), (3.26), we assume

(i) condition (i) of Theorem 8.1;
(ii) condition (ii) of Theorem 8.1 with P,,_y(k) as the (n,p) interpolating polynomial defined
in (3.27);
(i) Dpo @ < M, where D, is defined in Theorem 5.5.
Then, the problem (8.1), (3.26) has a solution in Dy.

THEOREM 8.6. With respect to the (p,n) boundary value problem (8.1), (3.28), we assume
(i) condition (i) of Theorem 8.1;
(i) condition (ii) of Theorem 8.1 with P,_y(k) as the (p,n) interpolating polynomial defined
in (3.29);
(iii) En,o0Q < M, where E,, o is defined in Theorem 5.6.
Then, the problem (8.1), (3.28) has a solution in Dy.

THEOREM 8.7. With respect to the Lidstone boundary value problem (8.1), n = 2m, (4.28), we
assume
(i) condition (i) of Theorem 8.2;
(ii) condition (ii) of Theorem 8.2 with Pa,_1(k) as the Lidstone interpolating polynomial
defined in (4.31);

(i) (5)" [T, (b+2i-1-a)’ Q< M.
Then, the problem (8.1), with n = 2m, (4.28) has a solution in Dy.

Hereafter, we shall prove results only for the two point right focal boundary value problem
(8.2), (3.24) whereas, for the other problems, analogous results can easily be stated.

THEOREM 8.8. Suppose that the function f(k,uo,us,...,un—1) is continuous and that on
N(a,b—1) x R",
n-—1
|F(kyuo,ur, ) S L+ Y Li ], (8.7)
i=0

where 0 < a(i) < 1, L and L;, 0 < i < n — 1 are nonnegative constants. Then, the problem
(8.2), (3.24) has a solution.

PRrRoOF. We shall show that the conditions of Theorem 8.4 are satisfied. For this, the inequal-
ity (8.7) implies that on N(a,b— 1) x Dy,

n-1
(ko ur, .- unt)| S L+ ) Li(2M3)*0) = Q.
=0
Thus, it suffices to choose M;, 0 < i < n— 1 so large that the condition (ii) of Theorem 8.4 holds
and Cni Q1 < M;, 0<i<n—-1 |

Theorem 8.4 is a local existence result, whereas Theorem 8.8 does not require any condition
on the constants C,; or the boundary conditions. The question, what happens if a(i) = 1,
0<i<n—1in (8.7), is considered in the next result.

THEOREM 8.9. Suppose that the function f(k,uo,u1,...,un—1) Is continuous and that on
N(a,b— 1) X Dl,
n-1
If(k,uo,ur, .oy unc)| S L4 Li Jugl, (8.8)

i=0
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where
+c .
Dy = {(Uo,ul,---,un-l) JHES N mﬁn IA P,_ 1(k)|+ C,H —° 0<i<n-— 1},
and
n-1
c=2 b N(aboiin~ .)IA Paa(®)],
1=0
n-1
6= CnilLli<1.

=0

Then, the problem (8.2), (3.24) has a solution in D,.
PrROOF. The boundary value problem (8.2), (3.24) can be written as

Aru(k) = f (k,o(k) + Pacy(k), Av(k) + APay(k),..., A™Lu(k) + A 1P,y (K)), (8.9)

Alv(a) =0, 0<i<p-1,
Alv(b)=0, p<i<n-1.
We define Sz(a,b — 1 + n) as the space of all real functions defined on N(a,b — 1 + n)

satlsfymg the boundary conditions (8.10). If we introduce in Sz(a,b — 1 + n) the norm
llv]| = |A"v(lc)| then it becomes a Banach space. We shall show that the mapping

T: Sg(a b—1+n)——>52(a b — 1+ n) defined by

(8.10)

b—1
To(k) = _ g(k,2) f (&, v(€) + Pa_s(2),...), (8.11)

i=a

maps the ball S3 = {v(k) € Sa(a,b— 1+ n):||v]| < (L +¢)/(1 - 8)} into itself. For this, let
v(k) € S3. Then, from Theorem 7.4 on N(a,b — 1+ n — i), we have

|A%u(k)| < Ch L+;, 0<i<n—1,
and hence, on N(a,b—1+n—1),
i i L+ec .
|A v(k)+ A'P,_ l(k)l N(a{nﬁ(n o |A P,._l(k)|+ Ch i 0<i<n-1,

which implies that (k,v(k) + Pa_1(k), Av(k) + AP,_1(k), ..., A" 1u(k) + AP, (k)
N(a,b— l) x Dy.
Further, from (8.11) we have

IToll =  max |f (k, v(k) + Par(k), ... )],

and hence, in view of (8.8), it follows that

n—-1
|lTv||<L+Z L i ymax |Afu(k) + AP P,y (k)|

<L+c+EL Cri 122
1=0
_L+c+o[’+;

_L+e
=1—4




26 R.P. AGARWAL, B.S. LaLLI

Thus, the operator T has a fixed point in S3. This fixed point v(k) is a solution of (8.9), (8.10)
and hence, the problem (8.2), (3.24) has a solution u(k) = v(k) + P,—1(k). ]

THEOREM 8.10. Suppose that the boundary value problem (8.2), (4.18) has a nontrivial solution
u(k) and the condition (8.8) with L = 0 is satisfied on N(a,b— 1) x Dy, where

D2= {(uﬂ)ula""un—l):luil SCn,t'M: 03’5'1—1},

and M = N{n%xl) |A™u(k)|. Then, it is necessary that § > 1.
a,b—

PROOF. Since u(k) is a nontrivial solution of (8.2), (4.18), it is necessary that M # 0, and
Theorem 7.4 implies that (k,u(k), Au(k), ..., A" 1u(k)) € N(a,b— 1) x D,. Thus, we have

— n _ n—1
M= ymax |A™u(k)| = yimax, | f (k, u(k), Au(k),...,A™ (k)|

< Z Ls N(a,?—lﬁn—i) |A‘U(k)|

and hence, 8 > 1. |

Conditions of Theorem 8.10 ensure that in (8.8) at least one of the L;, 0 <i < n —1 will not
be zero, otherwise on N(a,b— 1+ n) the solution u(k) will coincide with a polynomial of degree
at most n— 1 and will not be a nontrivial solution of (8.2), (4.18). Further, u(k) = 0 is obviously
a solution of (8.2), (4.18). If § < 1, then it is also unique.

THEOREM 8.11. Suppose that for all (k,uo, u1,...,8n-1), (k,v0,v1,...,0n-1) € N(a,b—1)x D,
the function f satisfies the Lipschitz condition

n—1
|f(k, uo, 1, . un1) = F(k,v0, 01, onot)| < Y L Jui — vl (8.12)

i=0
where L = N%nab,xl) |f(k,0,0,...,0)|. Then, the boundary value problem (8.2), (3.24) has a unique
a,b~

solution in D,.

ProoF. The Lipschitz condition (8.12) in particular implies (8.8) and the continuity of f on
N(a,b—1) x D,. Therefore, the existence of a solution of (8.2), (3.24) follows from Theorem 8.9.
To show the uniqueness, let (k) and v(k) be two solutions of (8.2), (3.24) in D;. Then, in view
of (8.5) and (7.4), it follows that

|A"w@y—wnnsNggngszAwwm—vwm

< 3 L G 187 (u(k) - w(i)]
i=0

=0 |1A" (u(k) — v(k))|.

Since § < 1, we find that A™ (u(k) —v(k)) = 0, k € N(a,b — 1). But, then u(k) = v(k),
k € N(a,b— 1+ n) follows from the boundary conditions (3.24). 1
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9. PICARD’S AND APPROXIMATE PICARD’S METHODS

In the last few years, in [23,30], Picard’s and Approximate Picard’s methods have been success-
fully used to construct the solutions of the continuous boundary value problems. These methods
have an important characteristic, that bounds of the difference between iterates and the solu-
tion are easily available. In this section, we shall discuss these methods only for the boundary
value problem (8.2), (3.24). For other problems, analogous results can be stated without much
difficulty. For this, we need the following definition.

DEFINITION 9.1. A function #(k) defined on N(a,b — 1+ n) is called an approximate solution
of (8.2), (3.24) if there exist § and ¢ nonnegative constants such that

wimax |Ana(k) — f (k, u(k), Au(k),..., A Hu(k))| < 6, (9.1)
and . v —
N(a’{r_lal,in_‘) |A*Pa_1(k) — AP Pa_y (k)| < €Chyi, 0<i<n-—1, (9.2)

where P,_,(k) and P,_,(k) are the two point right focal interpolating polynomials satisfy-
ing (3.24) and o '
A'P,_y(a) = A'u(a), 0<i<p—-1,

. . ] (9.3)
AP, 1(b) = Alu(b), p<i<n-1,
respectively, and the constants Cy, ; are defined in Theorem 5.4.
Inequality (9.1) means that there exists a function n(k), k¥ € N(a,b — 1) such that
A™a(k) = f (k, u(k), Au(k),..., A ak)) + n(k), k€ N(a,b—-1),
where Ngnab,xl) [n(k)| < é. Thus, the approximate solution #(k) can be expressed as
a,b—
B b1
(k) = Pa_a(k) + > g(k,0) [f (¢, a(0), AT(9),. .., A" 1a(e)) +n(2)] . (9.4)
l=a )

In what follows, we shall consider the Banach space S(a,b—1+n) and for u(k) € S(a,b—1+n)
the norm is [Ju|| = max {||A*u(k)||/Cn;, 0 <i < n—1}.
THEOREM 9.1. With respect to the boundary value problem (8.2), (3.24), we assume that there
exists an approximate solution u(k) and that
(i) the function f satisfies the Lipschitz condition (8.12) on N{a,b— 1) x D3 where

D3 = {(uo,v1,...,un_1) : |u; — A'6(k)| S pCny, kE€N(@b—1+n—1i), 0<i<n-1};
(i) 6 < 1;
(iii) (1-6)"'(e+6) < p.

Then, the following hold

(1) there exists a solution u*(k) of (8.2), (3.24) in S(ﬁ,po);
(2) u*(k) is the unique solution of (8.2), (3.24) in S(i, u);
(3) the Picard iterative sequence {um(k)} defined by

b=1
Um g1 (k) = Poac1(k) + D g(k, £) f (£ tm(8), Aum(2), ..., A" up (D)),

{=a

uo(k) = u(k), m=0,1,...,

(9.5)

converges to u*(k) with [ju* — up|l < 0™ po;
(4) for uo(k) = u(k) € S(1, o), the iterative process (9.5) converges to u*(k);
(5) any sequence {,,(k)} such that @,,(k) € S(upm,0™ po), m=0,1,... converges to u*(k).
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PROOF. We shall show that the operator T' : S(&,4) — S(a,b — 1 + n) defined in (8.6) sat-
isfies the conditions of Theorem 2.5. Let u(k) € S(@,pu), then from the definition of norm,
we have {|u — @] = max {N( m ax |A‘u(k) A‘ﬁ(k)I/Cni, 0<i<n-— 1} < 4, which
implies that |A'u(k) A'u(k)l < pC,,,, ke Nagb-1+n-14), 0 <i<n-1 Thus,

(u(k), Au(k),...,A™ 'u(k)) € Ds. Further, if u(k), v(k) € 5(g, p), then Tu(k) — Tv(k) satisfies
the conditions of Theorem 7.4 with P,_1(k) =0, and we get

|AiTu(k) — A To(k)| < Cn;j wipax If(k u(k),...) = f(k,v(k),...)|
n—1
. t i
< Cpnj ; Li o max lA u(k) — Alu(k)|
<Cnj _ LiCnillu—vl, 0<j<n-—1,
and hence,
)= AITu(k)| <Oflu—vl, 0<j<n-1,
",j

from which it follows that ||7Tu — Tv|| < 8 ||u — v||.
Next, from (8.6) and (9.4), we have

Ta(k) — a(k) = Tuo(k) — uo(k)

b-1
= Pa_1(k) = Pa_s(k) = ) _ g(k, &) (%) (9.6)
t=a
The function w(k) = t— ! g(k, €) n(¢) satisfies the conditions of Theorem 7.4 with P,_1 (k) =

A™w(k) = —n(k). Thus

N(max IA"w(k)l_ max |17(k)|<6

and hence, .
|A7 w(k)| < Cnjj 6, 0<j<n-1.

Using these inequalities and (9.2) in (9.6), we obtain
|A7 Tug(k) — A uo(k)| < (e+6)Cnj, 0<j<n-—1,

which is the same as

ug(k)| < (e+6), 0<j<n-1,

n’j
and hence ||Tug—uo|| < (e+6). Thus, from the hypothesis (ii) it follows that (1-6)~" [|Tuo—uol| <
(1-6)"t(e+8) < p.
Hence, the conditions of Theorem 2.5 are satisfied and conclusions (1)-(5) follow. 1
In Theorem 9.1, the conclusion (3) ensures that the sequence {un(k)} obtained from (9.5)
converges to the solution u*(k) of (8.2), (3.24). However, in practical evaluation, this sequence

is approximated by the computed sequence {vm(k)}. To find vm41(k), the function f is approx-
imated by f,,. Therefore, the computed sequence {v(k)} satisfies the recurrence relation

b-1
vm+1(k) n—l(k)+z:g (k,€) fm (Z vm(£), Aum(t): A"~ 1vm(z))l (9~7)

I=a

vo(k) = uo(k) = u(k), m=0,1,....
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With respect to f,,, we shall assume the following condition.

CONDITION (¢1). For all k € N(a,b—1) and A'v,,(k), 0 < i < n — 1 obtained from (9.7), the
following inequality is satisfied

|7 (ks vm(k), - ..) = fm (B, vm (K), .. )| S v |f (K, vm(E), ... )], (9.8)

where v is a nonnegative constant.
Inequality (9.8) corresponds to the relative error in approximating f by f, for the (m + 1)
iteration.

THEOREM 9.2. With respect to the boundary value problem (8.2), (3.24), we assume that there
exists an approximate solution (k) and the condition (c;) is satisfied. Further, we assume

(i) condition (i) of Theorem 9.1;

(1) 6p=(1+v)l<1;

(iii) gy =(1—6;)"'(e+6+vF) < u, where F = nimax |f (k,a(k), Ad(k),..., AmLa(k))|.
a,b—
Then, the following hold

(1) all the conclusions (1)-(5) of Theorem 9.1 are valid;

(2) the sequence {v,,(k)} obtained from (9.7) remains in S(@, p;);

(3) the sequence {v,(k)} converges to u*(k), the solution of (8.2), (3.24) if and only if
l_igloc> w,, = 0 where

b—-1
wm = [omer(]) = Paca(B) = S 0(6, 0 F (E,om(D), .., A om(@) |, (9.9)
L=a
and
Ia* = vmgal] < (1 = 6) [o||vm+1 ~onll+ v max 1F k,om(8), . .>|] S ()

PRroOF. Since 8; < 1 implies § < 1 and obviously uy < y;, the conditions of Theorem 9.1 are
satisfied and conclusion (1) follows.
To prove (2), we note that #(k) € S(#, ;) and from (9.4), (9.7), we find

b-1
vi(k) = (k) = Pa1(k) = Paca(k) + ) g(k,2) [fo (&,8(),...) — £ (£,8(8),...) —n(D)] .
t=a

Thus, from Theorem 7.4, we get
|A7vy (k) — Ala(k)| < (€+8)Cnj +CnjvF, 0<j<n—1,
and hence,
oy — @l < (e + 6+ v F) < .
Now we assume that v,,(k) € S(&, ;) and will show that vp,41(k) € S(i, ;). From (9.4)
and (9.7), we have

b—1
Um1(k) = (k) = Pa_1(k) = Pa_y (k) + Z g(k, ) [fm (& vm(8),...) = F(L,u(f),...) —n(0)],

l=a

and Theorem 7.4 provides

| A vy 1(k) — A ii(k)| < (€+8)Cnj + Ca j N&%fl)[|fm (k,vm(k),...) = f (k,vm(k),...)]|
+ |f(k»vm(k)r' . ) - f(k’ﬁ(k)»' . )I]
< Cn [c+6+uF+(1+u)N(12ab.)_cl)|f(lc,vm(k),...)—f(k,ﬁ(k-),...)l]

n-1

< C,-.'j e+é6+vF+(14v) Z L; A‘vm(k) - A'ﬁ(k)l]
=0

max |
N(ab—1+n—i)

SCrjle+6+vF+(1+v)0|vm—1l]}, 0Zj<n-1

CABA 25:8-C
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Hence, we get
1

n'j

u(k)| <e+8+vF +0illom—dll, 0<j<n-—1,

which gives
lomer — 8|l S (1 —01) p1 + 611 =

This completes the proof of (2).
From the definitions of upy41(k) and vm41(k), we have

Upt1(k) — vmy1(k) = Paca(k) + E 9(k,0) f (£, vm(8),...) — vmya (k)

L=a
b—-1

+Z g(k,f) [f(e)um(e)"") —f(tvvm(l)"")]:

t=a

and hence, as earlier, we find
ltme1 = vma1ll < wm + 0 f|um — vm]|.

Since up(k) = vo(k), the above inequality provides

m
tm41 = Umpall <D 0™ " w

i=0
Thus, from the triangle inequality, we get
m .
0" = v} € 3007 i+ [ = gl (0.11)
i=0
In equation (9.11), Theorem 9.1 ensures that mlim [lu* — um41|| = 0. Thus, the condition
——+ 00

lim wy;, = 0 is necessary and sufficient for the convergence of the sequence {vn(k)} to u*(k),
m——00

which follows from the Toeplitz lemma “for any 0 < a < 1, let 5, = Y iz, a™id;, m=0,1,...,
then llm s$m = 0 if and only if hm dym =07

Fmally, to prove (9.10), we note that

-1

u* (k) = vmar (k) = D g(k, 0) [f (L, u"(8),...) = f (&, vm(D),...)
t=a
+ f(l,vm(0),...) = fm (£, vm(£),...)],

and as earlier, we find

llu” = vmisll < Ollu” = vmll + v max |f (K, vm(E),.. )l

<O[|w" — vmaall + 0|lvm+1 —vmll + v max |f (ks vm (), )l

which is the same as (9.10). |
In our next result, we shall assume the following condition.

CONDITION (c3). For all k € N(a,b—1) and A'v,,(k), 0 < i < n— 1 obtained from (9.7), the
following inequality is satisfied

|f(k,vm(k),...)—fm(k,vm(k),...)l51/1, (9'12)

where 1; is a nonnegative constant.

Inequality (9.12) corresponds to the absolute error in approximating f by fm for the (m+ 1)tk
iteration.
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THEOREM 9.3. With respect to the boundary value problem (8.2), (3.24), we assume that there
exists an approximate solution 4(k) and the condition (¢2) is satisfied. Further, we assume
(i) condition (i) of Theorem 9.1;
(ii) condition (1i) of Theorem 9.1;
(iii) pp =(1-0)"" (e +6+v) < p.
Then, the following hold
(1) all the conclusions (1)-(5) of Theorem 9.1 are valid;
(2) the sequence {vm(k)} obtained from (9.7) remains in S(i, p2);
(3) the condition mli—noloo wm = 0 is necessary and sufficient for the convergence of {vm(k)}
to the solution u*(k) of (8.2), (3.24), where w,, is defined in (9.9), and ||u* — vpmyy|| <
(1=60)"" [Blvm+1 — vm|| + #1].

PRroOF. The proof is contained in Theorem 9.2. [ ]

10. QUASILINEARIZATION AND APPROXIMATE QUASILINEARIZATION

Newton’s method when applied to boundary value problems for higher order differential equa-
tions has been labelled as quasilinearization by Agarwal [23,31] and Agarwal and Wong [32].
Here, once again we shall discuss this method only for the discrete boundary value problem (8.2),
(3.24), whereas analogous results for the other problems can be stated easily. For this, following
the notations and definitions of the previous section, we shall provide sufficient conditions so that
the sequence {um(k)} generated by the quasilinear iterative scheme

APty 1(k) = £ (k, um (), A (), . .., A" Lup (k)

n—-1
+ Y (Mtmas (k) = Alum(H)) m%‘-(k—) FE um(k),...), (10.1)

Aumyr(a)=4;, 0<i<p-1, (10.2)
Alup (b)) =4, p<Li<n-1, m=0,1,..., '

with ug(k) = ii(k), converges to the unique solution u*(k) of the boundary value problem (8.20),
(3.24).

THEOREM 10.1. With respect to the boundary value problem (8.2), (3.24), we assume that there
exists an approximate solution i(k) and that

(i) the function f(k,uo,u1,...,un—1) is continuously differentiable with respect to all u;,
0<i<n-—1onN(a,b-1)x Dy;
(ii) there exist L;, 0 < i < n — 1 nonnegative constants such that for all (k,uo,u1,...,%n_1)

€ N(a,b— 1) x D3, we have
i)

Tf(k,uo,uhu-,un-l) < L;;
13

(iii) 36 < 1;
(iv) ps =(1-36)" (e +6) < p.
Then, the following hold

(1) the sequence {um(k)} generated by the process (10.1), (10.2) remains in S(@, p3);
(2) the sequence {un,(k)} converges to the unique solution u*(k) of (8.2), (3.24);
(3) a bound on the error is given by

i = w7l < (%)m (1- {’_—";) luy — 3 (103)
< (%)m (1—11_‘9@)_1 (1-6)"1(e+9). (10.4)
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ProoF. First, we shall show that the sequence {um(k)} remains in S(i,us). We define an
implicit operator T as follows
b1
Tu(k) = Pa_1(k) + Y _g(k,0) | f(£u(0),...)
L=a
n-1

+Z(A'Tu(£) Alu(e)) 3 A‘ F5a(D) —f(&,u(?),...)|, (105)

=0

whose form is patterned on the summation equation representation of (10.1), (10.2).

Since (k) € S(&, ps), it is sufficient to show that if u(k) € S(@, p3), then Tu(k) € S(a, ps).
For this, if u(k) € S(&, us), then (u(k), Au(k),..., A" 'u(k)) € D3 and from (9.4) and (10.5),
we have

Tu(k) — (k) = Pa-1(k) — Pa- (k)+2:9(’c ) f (& u(e),...)
l=a
n-1

+ 3 (ATu() - A'u(t)) 5 A.a @/ EuoO, ) - f(t,ﬁ(l),...)—n(e)] :

=0

Thus, an application of Theorem 7.4 provides

|ATTu(k) — Aia(k)| < €Cnj + Cn Nimax |f(k u(k),...) = f(k,a(k),...)|

n—1
+ Y Li {|A'Tu(k) — A'a(k)| + |ATu(k) — Aa(k)|} + 6],
i=0
and hence, we get
n—-1
o |ATu(k) = M| < (e +6)+ 3 Cos L [ITu—all +2u—al], 0<j<n-1
n,j i=0

From the above inequality, we find
ITu — @l < (e + 8) + 8 ||Tu — 6| + 26 ||u — al},
which gives
ITu - a|| < (1-6)7" [(e+6) + 26p3].

Thus, ||Tu — @|| < pa follows from the definition of u3.
Next, we shall show the convergence of the sequence {u,(k)}. From (10.1), (10.2) we have

Ump1 (k) — um(k) = Zg(k ) [f([ um(®),...) = (& tmo1(),...)

l=a

+ z—: {(Aium+1([) - Aium(f)) aA.a (z) (fv “m(e)7 . )
=0

- (A‘um(f) - A‘um_l(l)) 6A—'ui——_

—B f(z,um-l(e),...)}} 108

Thus, from Theorem 7.4 and the fact that {un,(k)} C S(&, p3), we get

n-—1

| A g1 (k) = AT upn (k)| < Chj e [2 ;, L; |Afum(k) — Alum -y (K)]

+ 214- [A a1 (k) — A‘um(k)|] ,

=0
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and hence,
1 ) .
o | A7 g1 (k) = AT upm (k)] < 26 [|um — tm-1]l + 0 ||%m+1 — tml, 0<j<n—-1,
n,j

which provides
lumsr = vmll < 26 [lum = um—1ll + 0 [[tm41 — vml,

or 90
[tms1 — um|| < 1— "“m = tm-1]],
and by an easy induction, we get
20 \™ _
lumss = uml < (125 ) s = @l (107)

Since 30 < 1, inequality (10.7) implies that {un,(k)} is a Cauchy sequence and hence converges
to some u*(k) € S(4,u3). This u*(k) is the unique solution of (10.1), (10.2) and can easily be
verified.

The error bound (10.3) follows from (10.7) and the triangle inequality

ety = tmll < bt = Umrpms |+ tmtp=s = tmapall 4 -+ + s = i

< 20 \™mtr-? 29 \mtr2 20 \™ _
=|\1=% t\1=0 oot 1og) |l -l
20 \™ 20 \7! _

and now let p — oo.
Next, from (9.4), (10.1), (10.2) we have

u1(k) — uo(k) = Pn—l(k) Pa_1(k)

n-1
_Zg(k e) [Z A'ul(e) Auo(l)) aA.a (f) (f,uo(e)a)"'l(e) )

i=a

and as earlier, we find

lus — uol| < (1 = 0)~1 (e + 6). (10.8)
Using equation (10.8) in (10.3), the inequality (10.4) follows. 1

THEOREM 10.2. Let the conditions of Theorem 10.1 be satisfied. Also, let f(k,ug,u1,...,un—1)
be continuously twice differentiable with respect to all u;, 0 <i <n—1o0n N(a,b—1) x D3 and

62

6u6 flk,uo,uy,...,un— 1)‘<LLT, 0<i j<n—-1
]

Then, the following hold
2.1 2™
lums1 — tm|| < alfum ~ tm-1I" < — (elus — uoll)

5% [%f(wa) (1%)2] zm, (10.9)

where a = (162 /2(1 — 8)). Thus, the convergence is quadratic if 37 (e +6) (6/1 — 0 < 1.
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PROOF. From {up(k)} C S(@, u3) it follows that for all m, (um(k), Aun(k),..., A"ty (k)) €
Dj3. Further, since f is twice continuously differentiable, we have

Fkyum(E),...) = £ (k, tm1(k),...)
n—1 8

+ ; (A% um(k) — Afup_1(k)) A um_1(F) Fk,um_1(k),...)
n—1 2
+ % I:Z (Aium(k) - Aium—l(k)) —6—;3.6(_‘7)] f (k,po(k),pr(k),...,pn-1(k)),

. . (10.10)
where p;(k) lies between A'u,,_;(k) and Alu,,(k), 0<i<n-—1.
Using equation (10.10) in (10.6), we get

L=a =0

b-1 n—1
Ump1(k) — um(k) = Z g(k, o) {Z (Afum1(8) — Atu, (8)) #m(e) f,un(0),...)

n—1 2
+ % [E (A'um(€) — Atup_1(8)) —6:“)] f(f,po(l),pl(f),...,pn_l(f))} )

i=0
Thus, Theorem 7.4 provides

n-1

|Aj“m+l(k) - Aj“m(k)l <Caj [Z Li Crji ||um+1 — uml|

i=0

n—1 2
1 2
+ 3 (;_0 L; Cn,i) T || tm — tm-1| :I )

and hence,
1
lmer — umll < 0 llumer ~ umll + ) 76? lum — um1 |,
which is the same as the first part of the inequality (10.9). The second part of (10.9) follows by

an easy induction. Finally, the last part is an application of (10.8). |

In Theorem 10.1 the conclusion (3) ensures that the sequence {u,,(k)} generated from (10.1),
(10.2) converges linearly to the unique solution u*(k) of the boundary value problem (8.2), (3.24).
Theorem 10.2 provides sufficient conditions for its quadratic convergence. However, in practical
evaluation this sequence is approximated by the computed sequence, say, {vm(k)} which satisfies
the recurrence relation

A Vg1 (F) = frn (B, 0m(E), Avg(E), . .., A" Lo (k))

n-—1
+ ) (A vmyr(k) — Alvg (k) 6A_*'f,,,_(k_)f’" (k,vm(k),...), (10.11)

i=0
A vpmy1(a) = A, 0<i<p-1,
A‘vm+1(b)=A;, p<i<n-1, m=0,1,...,
where vo(k) = uo(k) = u(k).
With respect to fr,, we shall assume the following condition.
CONDITION (d;).

(i) The function fm(k,uo,u1,...,un—1) is continuously differentiable with respect to all u;,
0<i<n-1lonN(a,b—1)x D3 and

(10.12)

oo (ko ur, . ve)| S Ly 0Si<no;
]

(ii) condition ¢, is satisfied.
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THEOREM 10.3. With respect to the boundary value problem (8.2), (3.24), we assume that there
exists an approximate solution (k) and the condition d, is satisfied. Further, we assume
(i) conditions (i) and (ii) of Theorem 10.1;
(ii) 2 =8+v)0< 1;
(iil) pa =(1—02)"*(e+6+vF) < p, where F = ma.xl) |f (&, 6(k), Au(k),..., A" 1a(k))|.

N(a,b~
Then, the following hold

(1) all the conclusions (1)-(3) of Theorem 10.1 are valid;

(2) the sequence {v,(k)} obtained from (10.11), (10.12) remains in S(&, p4);

(3) the sequence {vp,(k)} converges to u*(k), the solution of (8.2), (3.24), if and only if
lim w,, =0, where w,, are defined in (9.9), and

m—+00

o = omtall < (L =0 [200fomgs = vmll 40 max 1F (om(B) ] - (1019

M
N(ab-

PRrRoOF. Since #; < 1 implies 30 < 1 and obviously pz < p4, the conditions of Theorem 10.1 are
satisfied and part (1) follows.

To prove (2), we note that @(k) € S(#, p4) and from (9.4), (10.11), (10.12) we have

b-1
v1(k) — @(k) = Pa_1(k) = Paca(k)+ > g(k,£) [fo (4, vo(8),...)

l=a
nel
+E(A’v1(£) Alu(£)) aA- aTu (D) fo (&, v0(9),...) — f (£, v0(),...) —n(£)

and Theorem 7.4 provides
llos = all < (e + 6+ v F) +0|lvr — wol|,

and hence,
llos —a@|| < Q=0 (e+6+vF) < pg. (10.14)

Thus, vy (k) € S(@,ps). Next, we assume that v, (k) € S(i, p4) and will show that vp,41(k) €
S(#,p4). From (9.4), (10.11), (10.12) we have

b—-1
Ums1(k) = 8(k) = Pa_1(k) — Pa_1(k) + D 9(k, £) [fm (£, vm(£),---)
t=a
+ 3 (B vmss(€) — A'om(8) Ma 5 I Gom®:) - f(e,vo(e),...)—n(e)],
=0

and from Theorem 7.4, we get

n—-1

|A7 vy (B) — AT (k)| < (e +6) Cnj + Ca Z L; |Atvmy1(k) — Alvm (k)|
=0

max
N(a,b-1)
+ (14 0) 1f (b om(k)y ) — F (b, vo(k),-. )| + v |f(k,vo(lc),...)|]

and hence, we find

lomer = Gl < (e+ 8+ v F) + 6 |[vmsr — vl + (1 + ) 8 ||om — vo|
S(e+86+vF)+(2+4v)0lvm — voll + 8 ||vm41 ~ voll.
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From the last inequality, we obtain
lomer =8l < (1=8)"" [(e+ 86+ v F)+(2+v)0 ]
= H4.

This completes the proof of part (2).
Next, from the definitions of u,,4,(k) and vy, 41(k), we have

b—1

um+1(k) - ”m+l(k) = Pn—l(k) + Eg(k’e) f(f, vm(l)) v ) - vm+l(k)
{=a
b—-1
+ Y 9k, 8) [F(Lum(®),...) = fF (L vm(8),...)
t=a

+ E (A'umr(€) — Afum(2)) aA-a

2 @ F (e, um(l),...)] ,

and hence, as earlier, we find

lemt1 = vmi1ll < wem + 0 ||um — vm[l + 0 ||umi1 — uml|. (10.15)
Using (10.7) in (10.15), we get

20 \™ _
lem+1 = vmsrll £ wm + 0 [lum — vl + 6 1-9 fluy — 4.
Since ug(k) = vo(k) = @(k), the above inequality provides
“ m-—i 20 : =
llum 1 = vl <D0 w; + 6 lluy — @] - (10.16)
=0
Using (10.16) in the triangle inequality, we obtain
- * = m—t 20 :
loms = w1l < llumas — wll+ 3207 |wi +0 oy — all| (10.17)
=0

In (10.17), Theorem 10.1 ensures that lim ||u,41—u*|| = 0. Thus, from the Toeplitz lemma,
m—00
lim |[vm41 — *|| = 0 if and only if limc'o (wm +6 (20/1 — )™ |lus — @|]] = 0. However,
m—00 m—
lim (26/1 - 6)™ =0, and hence, if and only if lim w, = 0.
m——+00 m——00
Finally, to prove (10.13) we note that

b1
u* (k) = vmga (B) = 3 9(k, ) [f (6w @),..) = f (L vm(D),...)

t=a
+ f (&, vm(0),...) = fm (£, vm (), )
— Z (Afvmy1(8) = Alv(£)) 6A' N7 )fm (6, vm(8),...)|,

and hence,

lu* = vmiall < Ol|u” — om|l + 0 lloms1 = vmll + v vioax, If(’c Um (), -.)]

S29|Ivm+1—vmll+VNgﬁl)lf(k,vm(k),--~)|+0|Iu ~ tmaall,

which is the same as (10.13). |



Polynomial interpolation 37

THEOREM 10.4. Let the conditions of Theorem 10.3 be satisfied. Further, let f,, = fo for all
m=1,2,... and fo(k,u0,u1,...,un—1) be continuously twice differentiable with respect to all
u;, 0<i<n-—1o0n N(a,b~-1)x D3 and

62

au fﬂ(k Ug, Uy, - ")un—l) SLiLjT’ Osi)jsn_l'

Then, the following hold

1 m
lom+1 = vmll < @|lvm — vmoall® < = (alv - voll)”

272"
o B (10.18)

where a is the same as in Theorem 10.2.

PROOF. As in the proof of Theorem 10.2, we have

i 5]
orss(8) = om(8) = S a(8,0 {E (Avms(0) = Aivm(8) Fzor Jo (B om(8),-)
t=a
115 (800 - Ao r(0) o ) O ® )
9 pard Um Umn-—1 6}7‘([) o0&, Po P yeeeyPn=1t ’

where p; (k) lies between Afv,y,_1(k) and Alvy,(k),0<i<n—1.
Thus, as earlier, we get

1
lvm+1 — vmll < 0|vms1 — vm|l + ) 76 ([vm — vm-1|1?,
which is the same as the first part of (10.18). The last part of (10.18) follows from (10.14). &

11. MONOTONE CONVERGENCE

In Sections 9 and 10, we have respectively discussed the linear and quadratic convergence
of Picard’s and Newton’s iterative methods. However, from the computational point of view,
monotone convergence has superiority over ordinary convergence [10,33,34]. Therefore, here we
shall provide sufficient conditions for the monotone convergence of Picard’s iterative method. For
the boundary value problem (8.2), (3.24), we need to consider the following four cases: (i) n is
even, p is odd; (ii) n is even, p is even; (iii) n is odd, p is odd; (iv) n is odd, p is even. We shall
consider only the case (i), whereas results for the other three cases can be stated analogously.

In the space S(a,b — 1 + n), we introduce the partial ordering <p as follows: for u,v €
S(a b— 1+ n) we say that u <p v if and only if Afu(k) < Afy(k), k € N(a,b—1+n—1i),
i€e1={j:0<j<plu{j:p<j(odd) <n-1}, and A'u(k) > Alv(k), k € N(a,b—1+4n—1),
i€Jy={j:p< j(even) < n—1}. Thus, from Theorem 5.4, Alg(k,£) < 0, (k,£) €
N(a,b—14n—i)x N(a,b—1), i € J1, and A’g(k,£) > 0, (k,£) € N(a,b—1+n—i) x N(a,b—1),
i€ Js.

THEOREM 11.1. With respect to the boundary value problem (8.2), (3.24), we assume that n is
even, p is odd, and
i) f(k,uo,ul, .+.,Un_1) is continuous on N(a,b — 1) x R", and nonincreasing in u; for all
t € J; and nondecreasing in u; for all i € Jy;
(i1) there exist functions vo(k) and wo(lc) in the Banach space S(a,b— 1+ n) (with the norm
llu|| = max{||A7 u(k)|| = N(a max ' |A‘u(lc)| 0 < i< n-—1}) such that

vp <p Wo, (11.1)
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A™wo(k) — f (k,wo(k), Awo(k),..., A wo(k)) <0<
Avg(k) — f (k, vo(k), Avg(k), ..., A" 1ve(k)), k€ N(a,b—-1), (11.2)
Pa1,v0 € Pac1i €p Prct e, (11.3)

where P,_,(k) is defined in (3.25), and P,_1 ,(k) and P,_1,u,(k) are the polynomials of
degree n — 1 satisfying

A'Pa_1,u,(a) = Alvg(a), 0<i<p-1,

X 3 114
A Pp_y 4, () = A'vg(d), p<i<n-—1, (114)
and ) .
A'P,,_l,w,,(a) = A‘wo(a), 0 S i S pP— 1, (11 5
A'Pa_iwe(b) = A'wg(b), p<i<n-—1, 9
respectively.
Then, the sequences {v,, }, {wm} where v,,(k) and w,,(k) are defined by the iterative schemes
b-1
vm41(k) = Pa_1(k) + ) 9(k, ) f (£,0m(0), Avm(8), ..., A" 0 (8))
L=a
b1
Wmg1(R) = Paca(B) + D g(k, ) f (£, wm(8), Awm(8), ..., A" 'wn(8)), m=0,1,...,
t=a

converge in S(a,b— 1+ n) to the solutions v(k) and w(k) of (8.2), (3.24). Further,
vo<pv1Sp - SpUmSp- - Spv<pw<p - <puwy<p--<pw <puwp.
Also, each solution z(k) of this problem which is such that vy <p z <p wy satisfies v <p z <p w.
PROOF. Let S(vo, wo) = {u € S(a,b— 1+ n) :vg <p u<p wo}. Obviously, S(vg,wp) is a closed
convex subset of the Banach space S(a,b— 1 + n). We shall show that the continuous operator
T:S(a,b—1+n)— S(a,b— 1+ n) defined in (8.6) maps S(vo, wp) into itself.
Suppose u,v € S(vo, wo) and u <p v. Then, in view of the partial ordering <p, the sign
properties of the Green’s function g(k, ), and the monotonic nature of the function f, we have
Alg(k,€) f (£,u(f), Au(f),..., A" u()) < Alg(k, L) f (€,v(L), Av(), ..., A" u(8)),
(k, )€ N(a,b—1+n—1i)x N(a,b-1), i€ J;,
and
Alg(k,€) f (£,u(f), Au(l),..., A" u(l)) > Alg(k, ) f (€,v(£), Av(e), ..., A" u(8)),
(k,) € N(a,b—1+n—id)x N(a,b—-1), i€ Js.
From these inequalities, Tu <p T'v is obvious. Thus, the operator T' is monotone in S(vg, wo)
with respect to <p.

We shall now show that vo <p Tvy and Twy <p wq, and then it will follow that T maps
S(vo,wo) into itself. For this, we note that

b—1
Afvg(k) = A Po_yo(k) + Y _ Alg(k,£) A™vo(0),
t=a
and hence, if i € J;, then
b-1
Afvg(k) < APP,_y(k) + D Afg(k,0) f (£,v0(£), Ave(8), ..., A" 1ug(8))
l=a

= ATy (k),
and similarly, if ¢ € J;, then . .
Atvg(k) > A'Tvg(k).
This completes the proof of vy <p Tvg. The inequality Twy < wy can be proved analogously.
The existence of a fixed point u of T in S(vp, wy) now follows as an application of the Schauder
fixed point theorem. The conclusions of the theorem are now immediate from the established
monotone property of the operator T in S(vq, wo) with respect to the partial ordering <p.
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