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Let x : M → E
m be an isometric immersion from a Riemannian n-manifold into a Euclidean

m-space. Denote by � and −→x the Laplace operator and the position vector of M ,
respectively. Then M is called biharmonic if �2−→x = 0. The following Chen’s Biharmonic
Conjecture made in 1991 is well-known and stays open: The only biharmonic submanifolds
of Euclidean spaces are the minimal ones. In this paper we prove that the biharmonic
conjecture is true for δ(2)-ideal and δ(3)-ideal hypersurfaces of a Euclidean space of
arbitrary dimension.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let x : M → E
m be an isometric immersion from a Riemannian n-manifold into a Euclidean m-space. Denote by �,

−→x
and

−→
H the Laplace operator, the position vector and the mean curvature vector of M , respectively. Then M is called a bi-

harmonic submanifold if �2−→x = 0. Due to the well-known Beltrami’s formula, �
−→x = −n

−→
H , it is obvious that every minimal

submanifold of Em is a biharmonic submanifold.
The study of biharmonic submanifolds was initiated by B.-Y. Chen in the middle of 1980s (cf. [9,11,14–16,21–23]). He

proved in 1985 that biharmonic surfaces in E
3 are minimal. This result was the starting point of I. Dimitrić’s work on his

doctoral thesis [22]. In particular, Dimitrić extended Chen’s result on biharmonic surfaces in E
3 to that if M is a bihar-

monic hypersurface of Em with at most two distinct principal curvatures, then M is minimal [22,23]. Since conformally flat
hypersurfaces of E

m with m � 5 have at most two distinct principal curvatures, Dimitrić’s result implies that biharmonic
conformally flat hypersurfaces of Em with m � 5 are minimal. Dimitrić also proved that every biharmonic curve in E

n is an
open part of a straight line and each biharmonic submanifold of finite type in E

m is minimal. Another extension of Chen’s
result was given by T. Hasanis and T. Vlachos in [24] (see also [20]). They proved that biharmonic hypersurfaces of E4 are
minimal.

In 1991, B.-Y. Chen [9] made the following.
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Biharmonic Conjecture. The only biharmonic submanifolds of Euclidean spaces are the minimal ones.

In the same spirit of Chen’s result, R. Caddeo, S. Montaldo and C. Oniciuc [6] proved that any biharmonic surface in
the hyperbolic 3-space H

3(−1) is minimal. They also proved that biharmonic hypersurfaces of H
n(−1) with at most two

distinct principal curvatures are minimal [5]. Based on these, they made the following.

The generalized Chen’s conjecture. Any biharmonic submanifold of a Riemannian manifold with non-positive sectional curvature is
minimal.

The study of biharmonic submanifolds is nowadays a very active research subject. In particular, there exist many results
on the generalized Chen’s conjecture (see, for instance, [1–4,26–30]). Very recently, N. Nakauchi and H. Urakawa [27] proved
that the generalized Chen’s conjecture is true for every complete biharmonic submanifold M with finite total mean curva-
ture, i.e.

∫
M |−→H |2 ∗ 1 < ∞. On the other hand, it was proved recently by Y.-L. Ou and L. Tang [30] that the generalized Chen’s

conjecture is false in general by constructing foliations of proper biharmonic hyperplanes in a 5-dimensional conformally
flat space with negative sectional curvature. In contrast, the original Chen’s biharmonic conjecture made in 1991 stays open
in general.

A submanifold of a Euclidean space is called k-harmonic if its mean curvature vector satisfies �k−1−→
H = 0. It follows from

Hopf’s lemma that such submanifolds are always non-compact. Some relationships between k-harmonic and harmonic maps
of Riemannian manifolds into Euclidean m-space E

m have been obtained by Chen in [13]. Very recently, S. Maeta [25] found
some relations between k-harmonic and harmonic maps of Riemannian manifolds into non-flat real space forms.

From [13, Proposition 3.1] it was known that every k-harmonic submanifold of E
m is either minimal or of infinite

type (in the sense of [8]). On the other hand, it was shown in 1991 that k-harmonic curves in E
m are of finite type

[17, Proposition 4.1]. Consequently, it was known that every k-harmonic curve in E
m is an open portion of line. This known

fact was recently rediscovered by Maeta in [25, Theorem 5.5]. Based on this known fact, Maeta [25] made another general-
ized Chen’s conjecture; namely,

“The only k-harmonic submanifolds of a Euclidean space are the minimal ones.”

Now, let us recall the notion of δ-invariants of Riemannian manifolds. Denote by K (π) the sectional curvature of a given
Riemannian n-manifold M associated with a plane section π ⊂ T p M , p ∈ M . For any orthonormal basis e1, . . . , en of the
tangent space T p M , the scalar curvature τ at p is defined to be

τ (p) =
∑
i< j

K (ei ∧ e j). (1.1)

Let L be a subspace of T p M of dimension r � 2 and {e1, . . . , er} an orthonormal basis of L. The scalar curvature τ (L)

of L is defined by

τ (L) =
∑
α<β

K (eα ∧ eβ), 1 � α,β � r. (1.2)

For an integer r ∈ [2,n − 1], the δ-invariant δ(r) of M is defined by (cf. [12,14])

δ(r)(p) = τ (p) − inf
{
τ (L)

}
, (1.3)

where L runs over all r-dimensional linear subspaces of T p M .
For any n-dimensional submanifold M in E

m and any integer r ∈ [2,n − 1], Chen proved the following general sharp
inequality (cf. [12,14]):

δ(r) � n2(n − r)

2(n − r + 1)
H2, (1.4)

where H2 = 〈−→H ,
−→
H〉 is the squared mean curvature.

A submanifold in E
m is called δ(r)-ideal if it satisfies the equality case of (1.4) identically. Roughly speaking, ideal

submanifolds are submanifolds which receive the least possible tension from its ambient space. Ideal submanifolds have
many interesting properties and were studied by many geometers (see [14] for details).

In this paper we prove that Chen’s original biharmonic conjecture is true for δ(2)-ideal and δ(3)-ideal hypersurfaces of
a Euclidean space of arbitrary dimension.

2. Preliminaries

Let M be a hypersurface of a Euclidean (n + 1)-space E
n+1. Denote by ∇ the Levi-Civita connection on M and by ∇̊ the

canonical flat connection on E
n+1.



B.-Y. Chen, M.I. Munteanu / Differential Geometry and its Applications 31 (2013) 1–16 3
Recall the formulas of Gauss and Weingarten (cf. [7,14])

(G) ∇̊X Y = ∇X Y + h(X, Y )ξ, (W) ∇̊Xξ = −S X,

where X, Y are tangent to M , ξ is a unit vector normal to M , h is the scalar second fundamental form, and S is the shape
operator associated to ξ . We know that h and S are related by h(X, Y ) = 〈S X, Y 〉.

The mean curvature vector field
−→
H can be expressed as

−→
H = Hξ with

H = 1

n
trace S, (2.1)

where ξ is a unit normal vector field.
We recall, for later use, the Gauss and Codazzi equations:

(EG) R XY Z = 〈SY , Z〉S X − 〈S X, Z〉SY ,

(EC) (∇X S)Y = (∇Y S)X,

for all X, Y , Z tangent to M . All over this paper, the curvature R is given by R X Y = [∇X ,∇Y ] − ∇[X,Y ] .
If we consider a local orthonormal frame {e1, . . . , en} on M , then the Laplacian � acting on

−→
H is given by

�
−→
H =

n∑
i=1

[∇̊∇ei ei

−→
H − ∇̊ei ∇̊ei

−→
H ]. (2.2)

Since
−→
H = Hξ , by identifying the tangent and the normal parts in (2.2), we obtain a necessary and sufficient condition for M

to be biharmonic in E
n+1, namely

S(∇H) = −n

2
H∇H, (2.3)

�H + H trace S2 = 0, (2.4)

where ∇H is the gradient of the mean curvature H . Recall that the Laplacian acts on functions on M in the following way

�H =
n∑

i=1

[∇ei ei H − eiei H].

A hypersurface in E
n+1 is called an H-hypersurface if it satisfies (2.3) (cf. [24]). Clearly, every hypersurface with constant

mean curvature in a Euclidean space is an H-hypersurface.

3. Biharmonic δ(2)-ideal hypersurfaces in EEE
n+1

In this section we classify δ(2)-ideal biharmonic hypersurfaces and δ(2)-ideal H-hypersurfaces in E
n+1.

By using (1.3) and (1.4) (or Lemma 3.2 in [10]), we have

inf K � τ − n2(n − 2)

2(n − 1)
H2. (3.1)

As M being a hypersurface, equality in (3.1) holds if and only if, with respect to a suitable orthonormal frame {e1, . . . , en},
the shape operator takes the form:

S =

⎛
⎜⎜⎜⎜⎜⎝

a 0 0 . . . 0
0 b 0 . . . 0
0 0 a + b . . . 0
...

...
...

. . .
...

0 0 0 . . . a + b

⎞
⎟⎟⎟⎟⎟⎠

(3.2)

for some functions a and b on M . If this happens, M is δ(2)-ideal (see, e.g. [14]).
With Chen’s biharmonic conjecture in mind, we are asking whether there exist non-minimal biharmonic δ(2)-ideal

hypersurfaces in E
n+1.

Without loss of the generality we may assume that H is non-constant. Otherwise, if H would be a constant, it should be
zero by virtue of (2.4), and hence M would be minimal.

Let us choose an orthonormal frame {e1, . . . , en} on M such that S is given as in (3.2). We give the following result.
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Lemma 3.1. Let M be a δ(2)-ideal H-hypersurface in E
n+1 , n � 3, with non-constant mean curvature H. If the shape operator S is

given by (3.2), then we have

{a,b} =
{
−n

2
H,

n(n + 1)

2(n − 1)
H

}
. (3.3)

Proof. Since e1, . . . , en are eigenvectors of S , there exist functions λ1, . . . , λn on M such that ∇H = ∑n
i=1 λiei . We have

S(∇H) =
n∑

i=1

λi Sei

= λ1ae1 + λ2be2 +
∑
i�3

λi(a + b)ei

= (a + b)∇H − λ1be1 − λ2ae2.

Since M is an H-hypersurface, Eq. (2.3) is fulfilled and it yields(
a + b + n

2
H

)
∇H = λ1be1 + λ2ae2.

Hence λ3 = · · · = λn = 0 and

λ1

(
a + n

2
H

)
= 0 and λ2

(
b + n

2
H

)
= 0. (3.4)

Since H is not constant, ∇H is different from 0. Therefore, at least one of λ1 and λ2 does not vanish.
If both λ1 �= 0 and λ2 �= 0, then a = b = − n

2 H . Hence we get

nH = trace S = (n − 1)(a + b) = −(n − 1)nH

which implies H = 0. This is a contradiction. Consequently, we obtain either

(i) λ1 �= 0 and λ2 = 0, or
(ii) λ1 = 0 and λ2 �= 0.

In case (i) it follows a = − n
2 H and since a + b = n

n−1 H one gets b = n(n+1)
2(n−1)

H . Case (ii) can be discussed in a similar way.
This completes the proof. �

From this lemma it turns out that we can take e1 in the direction of ∇H and the shape operator may be expressed as

S =

⎛
⎜⎜⎜⎜⎜⎝

c1 H 0 0 . . . 0
0 c2 H 0 . . . 0
0 0 c3 H . . . 0
...

...
...

. . .
...

0 0 0 . . . cn H

⎞
⎟⎟⎟⎟⎟⎠

(3.5)

with c1 = − n
2 , c2 = n(n+1)

2(n−1)
and ck = c1 + c2 for k � 3. Moreover, we also have

e1 H �= 0, ek H = 0, ∀k > 1. (3.6)

Let ωk
i j ∈ C∞(M) be defined by ∇ei e j = ∑n

k=1 ωk
i jek .

Theorem 3.2. Every δ(2)-ideal biharmonic hypersurface of En+1 with n � 3 is minimal.

Proof. Since the case n = 3 was already studied in general in [19,24], from now on we will consider n � 4 only. Let us
assume that H is non-constant.

By definition we have

(∇X S)Y = ∇X (SY ) − S∇X Y .

Using the equation of Codazzi (EC) for X = ei and Y = e j we obtain

(∇ei S)e j = c j(ei H)e j + H
∑

k

(c j − ck)ω
k
i jek.

Then, we continue with special choices of i and j.
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For i = 1, j = 2 we get

c2(e1 H)e2 + H
∑

k

(c2 − ck)ω
k
12ek = H

∑
k

(c1 − ck)ω
k
21ek.

Identifying the coefficients corresponding to {e1, . . . , en} we find

ω1
12 = 0, (3.7)

e1 H +
(

1 − c1

c2

)
Hω2

21 = 0, (3.8)

c1ω
k
12 = c2ω

k
21, k � 3. (3.9)

For i = 1, j � 3 we get

c j(e1 H)e j + H
∑

k

(c j − ck)ω
k
1 jek = H

∑
k

(c1 − ck)ω
k
j1ek.

Identifying the coefficients as above we obtain

ω1
1 j = 0, j � 3, (3.10)

ω2
1 j =

(
1 − c2

c1

)
ω2

j1, j � 3, (3.11)

c j(e1 H)δ jk + c2 Hωk
j1 = 0, j,k � 3. (3.12)

For i = 2, j � 3 we get

H
∑

k

(c j − ck)ω
k
2 jek = H

∑
k

(c2 − ck)ω
k
j2ek.

Identifying the coefficients we discover that

ω1
2 j =

(
1 − c1

c2

)
ω1

j2, j � 3, (3.13)

ω2
2 j = 0, j � 3, (3.14)

ωk
j2 = 0, j,k � 3. (3.15)

From (3.6) we know [e2, e j](H) = 0. So we have
∑

k(ω
k
2 j − ωk

j2)ek H = 0. Taking into account (3.6) again, we get ω1
2 j =

ω1
j2, for j � 3. Combining with (3.13) gives

ω1
2 j = ω1

j2 = 0. (3.16)

Since {ek}n
k=1 is an orthonormal basis, we have successively:

(a) 0 = ei〈e j, e j〉 = 2〈∇ei e j, e j〉 = 2ω
j
i j, ∀i, j = 1, . . . ,n. Hence,

ω1
11 = 0, ω2

12 = 0, ω
j
1 j = 0, j � 3, (3.17a)

ω1
21 = 0, ω2

22 = 0, ω
j
2 j = 0, j � 3, (3.17b)

ω1
k1 = 0, ω2

k2 = 0, ω
j
kj = 0, j,k � 3. (3.17c)

(b) 0 = ei〈e1, e2〉 = 〈∇ei e1, e2〉+〈e1,∇ei e2〉 = ω2
i1 +ω1

i2, ∀i = 1, . . . ,n. Combining (b) with (3.7), (3.8) and (3.16) we derive
that

ω2
11 = 0, ω1

22 = c2e1 H

(c2 − c1)H
, ω2

j1 = 0, j � 3. (3.18)

Moreover, from (3.11) and (3.18) we find

ω2
1 j = 0, j � 3. (3.19)

(c) 0 = e1〈e2, e j〉 = 〈∇e1 e2, e j〉 + 〈e2,∇e1 e j〉 = ω
j
12 + ω2

1 j , j � 3. By using (c) and (3.19), and then combining with (3.9)
we get

ω
j = 0, ω

j = 0, j � 3. (3.20)
12 21
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(d) In the same way we find ω
j
11 + ω1

1 j = 0, ω
j
22 + ω2

2 j = 0, and ω1
j j + ω

j
j1 = 0, j � 3. Thus it follows that

ω
j
11 = 0, ω

j
22 = 0, ω1

j j = (c1 + c2)e1 H

c2 H
, j � 3. (3.21)

Now the Codazzi equations (∇ei S)e j = (∇e j S)ei , for i, j � 3, yield

H
∑

k

(c j − ck)ω
k
i jek = H

∑
k

(ci − ck)ω
k
jiek.

Subsequently, we find

ω1
i j = ω1

ji, ω2
i j = ω2

ji, i, j � 3. (3.22)

Using (3.6), (3.7) and (3.17b) we have

[e1, e2](H) =
∑

k

(
ωk

12 − ωk
21

)
ek H = 0.

Therefore we get

e2e1 H = 0. (3.23)

In the same way, it follows from (3.6), (3.10) and (3.17c) that

e je1 H = 0, j � 3. (3.24)

At this point we have all needed coefficients ωk
i j in order to apply Gauss’ equation (EG). Write it for some X , Y , Z and

pick up the coefficient of a convenient vector (call it W ). We respectively obtain:

(1) X = e1, Y = e2 and Z = e1 (W = e2)

e1

(
e1 H

H

)
+ c2

c1 − c2

(
e1 H

H

)2

+ c1(c1 − c2)H2 = 0, (3.25)

(2) X = e1, Y = e j and Z = e1 (W = e j)

e1

(
e1 H

H

)
− c1 + c2

c2

(
e1 H

H

)2

− c1c2 H2 = 0, (3.26)

(3) X = e2, Y = e j and Z = e2 (W = e j)

(
e1 H

H

)2

− c2(c1 − c2)H2 = 0. (3.27)

Taking into account (3.17a), (3.18) and (3.21), Eq. (2.4) becomes

e1e1 H

H
−

[
c2

c2 − c1
+ (n − 2)

c1 + c2

c2

](
e1 H

H

)2

− [
c2

1 + c2
2 + (n − 2)(c1 + c2)

2]H2 = 0. (3.28)

From (3.25), (3.26) and (3.28) we immediately obtain that H = 0, which is a contradiction. Consequently, H should be
constant and due to (2.4), M has to be minimal. �

For δ(2)-ideal H-hypersurfaces we have the following result which generalizes Theorem 3.2.

Theorem 3.3. Every δ(2)-ideal H-hypersurface of a Euclidean (n + 1)-space is either minimal or an open portion of a spherical
hypercylinder R× S

n−1(r).

Proof. According to Lemma 3.1 we can consider the orthonormal basis just as in Theorem 3.2. Thus, by using the same
technique as in the proof of Theorem 3.2 we conclude that the mean curvature H should be constant. Therefore, after
applying Theorem 1 of [18] or Theorem 20.13 in [14, page 423], we obtain the theorem. �
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4. Biharmonic δ(3)-ideal hypersurfaces in EEE
n+1

In this section we study biharmonic hypersurfaces in E
n+1 which are δ(3)-ideal.

If M is a Riemannian n-manifold, we have (see [14])

δ(3)(p) = τ (p) − inf
L

τ (L), p ∈ M, (4.1)

where L runs over 3-dimensional subspaces of T p M . If L is spanned by orthonormal vectors e1, e2, e3, then the scalar
curvature τ (L) is defined by

τ (L) =
∑

1�α<β�3

K (eα ∧ eβ).

We recall the following sharp result from [14, Theorem 13.7].

Proposition 4.1. Let M be a hypersurface in the Euclidean space En+1 . Then

δ(3) � n2(n − 3)

2(n − 2)
H2. (4.2)

The equality case holds at p if and only if there is an orthonormal basis e1, . . . , en at p such that the shape operator at p satisfies

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 . . . 0
0 b 0 0 . . . 0
0 0 c 0 . . . 0
0 0 0 a + b + c . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . a + b + c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.3)

where a,b, c are functions on M. If this happens at every point, M is a δ(3)-ideal hypersurface.

We ask the same question as in the previous section:

“Do there exist non-minimal biharmonic δ(3)-ideal hypersurfaces in E
n+1?”

It follows from (2.4) that every biharmonic hypersurface with constant mean curvature in E
n+1 is minimal. Thus from

now on we make the following.

Assumption. The hypersurface M has non-constant mean curvature.

Let us choose an orthonormal frame e1, . . . , en such that the shape operator S is given by (4.3) with respect to e1, . . . , en .
We need the following.

Lemma 4.2. Let M be a δ(3)-ideal H-hypersurface in E
n+1 , n � 4, with non-constant mean curvature H. If the shape operator of M

satisfies (4.3), then, up to reordering of a, b and c, we have either

(i) a = b = − n
2 H and c = n(n−1)

n−2 H, or

(ii) a = − n
2 H and c = n2

2(n−2)
H − b.

Proof. We proceed in the same way as in the proof of Lemma 3.1. Since e1, . . . , en are eigenvectors of the shape operator S ,
we may write ∇H = ∑n

i=1 λiei for some functions λ1, . . . , λn on M . Since (2.3) is satisfied, after applying (4.3), we obtain
that ∇H ∈ span{e1, e2, e3}. Hence λ4 = · · · = λn = 0. Thus we find(

a + b + c + n

2
H

)
∇H = λ1(b + c)e1 + λ2(c + a)e2 + λ3(a + b)e3.

Consequently, we find(
a + n

2
H

)
λ1 = 0,

(
b + n

2
H

)
λ2 = 0,

(
c + n

2
H

)
λ3 = 0,

which lead to the following:



8 B.-Y. Chen, M.I. Munteanu / Differential Geometry and its Applications 31 (2013) 1–16
(1) If all λ1, λ2 and λ3 are different from 0, then a = b = c = − n
2 H . This contradicts the fact that a + b + c = n

n−2 H and
H �= 0.

(2) If two of λ1, λ2, λ3 are different from 0, say λ1, λ2 �= 0, then a = b = − n
2 H . So, we find c = n(n−1)

n−2 H .

(3) If only one of λ1, λ2, λ3 is different from 0, say λ1 �= 0, then a = − n
2 H and b + c = n2

2(n−2)
H .

(4) Since H is non-constant, λ1, λ2 and λ3 cannot vanish simultaneously.

This completes the proof. �
Now, let us focus our attention to the case (ii) of Lemma 4.2. Thus the shape operator takes the form:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1 H 0 0 0 . . . 0
0 ϕ 0 0 . . . 0
0 0 c2 H − ϕ 0 . . . 0
0 0 0 (c1 + c2)H . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . (c1 + c2)H

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.4)

where c1 = − n
2 , c2 = n2

2(n−2)
and ϕ is a function on M .

Moreover, we exclude the following cases which will be discussed later, together with the case (i) of the previous lemma:
ϕ = ±c1 H , ϕ = c2 H

2 , ϕ = (c2 ± c1)H .
We have that ∇H is collinear to e1 and then,

e1 H �= 0, e2 H = · · · = en H = 0. (4.5)

We define ωk
i j ∈ C∞(M) by ∇ei e j = ∑n

k=1 ωk
i jek .

After applying the equation of Codazzi for X = ei , Y = e j , i, j = 1, . . . ,n, we derive the following:
For i = 1, j = 2

ω1
12 = 0, ω2

21 = e1ϕ

c1 H − ϕ
, (4.6a)

(2ϕ − c2 H)ω3
12 = (ϕ + c1 H − c2 H)ω3

21, (4.6b)[
ϕ − (c1 + c2)H

]
ωk

12 = −c2 Hωk
21, k � 4. (4.6c)

For i = 1, j = 3

ω1
13 = 0, ω3

31 = c2e1 H − e1ϕ

ϕ + c1 H − c2 H
, (4.7a)

(2ϕ − c2 H)ω2
13 = (ϕ − c1 H)ω2

31, (4.7b)

(ϕ + c1 H)ωk
13 = c2 Hωk

31, k � 4. (4.7c)

For i = 1, j � 4

ω1
1 j = 0, ωk

j1 = − (c1 + c2)e1 H

c2 H
δ jk, k � 4, (4.8a)

[
ϕ − (c1 + c2)H

]
ω2

1 j = (ϕ − c1 H)ω2
j1, (4.8b)

(ϕ + c1 H)ω3
1 j = (ϕ + c1 H − c2 H)ω3

j1. (4.8c)

For i = 2, j = 3

(ϕ + c1 H − c2 H)ω1
23 = (c1 H − ϕ)ω1

32, (4.9a)

ω2
23 = e3ϕ

c2 H − 2ϕ
, ω3

32 = e2ϕ

c2 H − 2ϕ
, (4.9b)

(ϕ + c1 H)ωk
23 = [

(c1 + c2)H − ϕ
]
ωk

32, k � 4. (4.9c)

For i = 2, j � 4

c2 Hω1
2 j = (ϕ − c1 H)ω1

j2, (4.10a)

ω2
2 j = e jϕ

(c1 + c2)H − ϕ
, ωk

j2 = 0, k � 4, (4.10b)

(ϕ + c1 H)ω3 = (2ϕ − c2 H)ω3 . (4.10c)
2 j j2
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For i = 3, j � 4

−c2 Hω1
3 j = (ϕ + c1 H − c2 H)ω1

j3, (4.11a)[
ϕ − (c1 + c2)H

]
ω2

3 j = (2ϕ − c2 H)ω2
j3, (4.11b)

ω3
3 j = − e jϕ

c1 H + ϕ
, ωk

j3 = 0, k � 4. (4.11c)

Further on we write

0 = [e2, e3](H) =
n∑

k=1

(
ωk

23 − ωk
32

)
ek H = (

ω1
23 − ω1

32

)
e1 H

and using (4.9a) we get

ω1
23 = ω1

32 = 0. (4.12)

In the same way we prove

ω1
2 j = ω1

j2 = 0, ω1
3 j = ω1

j3 = 0, j � 4. (4.13)

We also have ei〈ek, el〉 = 0 which implies ωl
ik + ωk

il = 0, for all i,k, l = 1, . . . ,n. Thus we successively obtain:

• l = 1, k = 2 using (4.6a) and (4.12)

ω2
11 = 0, ω1

22 = e1ϕ

ϕ − c1 H
, ω2

31 = 0, ω2
j1 + ω1

j2 = 0, j � 4; (4.14)

• l = 1, k = 3 using (4.7a) and (4.12)

ω3
11 = 0, ω1

33 = e1ϕ − c2e1 H

ϕ + c1 H − c2 H
,

ω3
21 = 0, ω3

j1 + ω1
j3 = 0, j � 4; (4.15)

• l = 2, k = 3 using (4.9b), (4.6b) and (4.7b)

ω3
22 = e3ϕ

2ϕ − c2 H
, ω2

33 = e2ϕ

2ϕ − c2 H
,

ω3
12 = ω2

13 = 0, ω3
j2 + ω2

j3 = 0, j � 4; (4.16)

• l = 1, k � 4 using (4.8a) and (4.13)

ωk
11 = 0, ωk

21 = 0, ωk
31 = 0, ωk

j1 + ω1
jk = 0, j � 4, (4.17)

which combining with (4.6c), (4.7c) and (4.8a) yield also

ωk
12 = 0, ωk

13 = 0, ω1
jk = (c1 + c2)e1 H

c2 H
δ jk, j � 4; (4.18)

• l = 2, k � 4 using (4.10b) and (4.18)

ω2
1k = 0, ωk

22 = ekϕ

ϕ − (c1 + c2)H
, ω2

jk = 0, j � 4, (4.19a)

ωk
32 + ω2

3k = 0, (4.19b)

which combining with (4.8b) yield

ω2
k1 = 0; (4.20)

• l = 3, k � 4 using (4.11c) and (4.18)

ω3
1k = 0, ωk

33 = ekϕ

ϕ + c1 H
, ω3

jk = 0, j � 4, (4.21a)

ωk
23 + ω3

2k = 0, (4.21b)

which combined with (4.8c) yield

ω3
k1 = 0; (4.22)
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• k = l

ωk
ik = 0, i,k = 1, . . . ,n. (4.23)

By using (4.9c), (4.10c), (4.16), (4.19b) and (4.21b) we get

ωk
23 = −ω3

2k = yk

ϕ + c1 H
,

ω2
k3 = −ω3

k2 = yk

2ϕ − c2 H
,

ω2
3k = −ωk

32 = yk

ϕ − (c1 + c2)H
, (4.24)

with yk = (ϕ + c1 H)ωk
23.

At this point we may write down the expression of the Levi-Civita connection on M . We have

∇e1 e1 = ∇e1 e2 = ∇e1 e3 = 0, ∇e1 e j =
∑
k�4

ωk
1 jek, (4.25a)

∇e2 e1 = −Ae2, ∇e2 e2 = Ae1 + Be3 +
∑
k�4

Pkek, (4.25b)

∇e2 e3 = −Be2 +
∑
k�4

Skek, ∇e2 e j = −P je2 − S je3 +
∑
k�4

ωk
2 jek,

∇e3 e1 = F e3, ∇e3 e3 = −F e1 + T e2 +
∑
k�4

Q kek, (4.25c)

∇e3 e2 = −T e3 −
∑
k�4

Ukek, ∇e3 e j = U je2 − Q je3 +
∑
k�4

ωk
3 jek,

∇e j e1 = −Le j, ∇e j e2 = −V je3, ∇e j e3 = V je2,

∇e j el = Lδ jle1 +
∑
k�4

ωk
jlek, j, l � 4, (4.25d)

where, for the sake of simplicity, we put

A = e1ϕ

ϕ − c1 H
, B = e3ϕ

2ϕ − c2 H
, F = c2e1 H − e1ϕ

ϕ + c1 H − c2 H
,

T = e2ϕ

2ϕ − c2 H
, L = (c1 + c2)e1 H

c2 H
,

P j = e jϕ

ϕ − (c1 + c2)H
, Q j = e jϕ

ϕ + c1 H
,

S j = y j

ϕ + c1 H
, U j = y j

ϕ − (c1 + c2)H
V j = y j

2ϕ − c2 H
, j � 4. (4.26)

Now it is easy to compute the curvature tensor R and to apply Gauss’ equation (EG) for different values of X , Y and Z .
Identifying the coefficients with respect to the orthonormal basis e1, . . . , en we obtain:

• X = e1, Y = e2, Z = e1

e1 A − A2 = c1 Hϕ; (4.27)

• X = e1, Y = e2, Z = e3

e1 B = AB, e1 S j = A S j +
∑
k�4

ωk
1 j Sk, j � 4; (4.28)

• X = e1, Y = e3, Z = e1

e1 F + F 2 = c1 H(ϕ − c2 H); (4.29)

• X = e1, Y = e3, Z = e2

e1T + F T = 0, e1U j = −F U j +
∑
k�4

ωk
1 j Uk, j � 4; (4.30)
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• X = e1, Y = e j , Z = e1

e1L − L2 = c1(c1 + c2)H2; (4.31)

• X = e2, Y = e3, Z = e1

e3 A = B(A + F ), e2 F = T (A + F ),

(F + L)S j = (A − L)U j, j � 4; (4.32)

• X = e2, Y = e j , Z = e1

e j A = P j(A − L), e2L = 0,

(F + L)S j = (A + F )V j, j � 4; (4.33)

• X = e3, Y = e j , Z = e1

e j F = Q j(F + L), e3L = 0; (4.34)

• X = e j , Y = ek , Z = e1, j,k � 4

e j L = 0. (4.35)

Let us develop the equation �H + H trace S2 = 0 from (2.4). We have

�H = −e1e1 H + [
A − F + (n − 3)L

]
e1 H,

and

trace S2 = cH2 − 2c2 Hϕ + 2ϕ2,

with c = c2
1 + c2

2 + (n − 3)(c1 + c2)
2. Hence

e1e1 H − [
A − F + (n − 3)L

]
e1 H − H

(
cH2 − 2c2 Hϕ + 2ϕ2) = 0. (4.36)

Moreover, by computing [e1, ei](H), i = 2, . . . ,n, we get

e2e1 H = 0, e3e1 H = 0, e je1 H = 0, j � 4, (4.37)

which implies

e2e1e1 H = 0, e3e1e1 H = 0, e je1e1 H = 0, j � 4. (4.38)

After applying e j , j � 4, to (4.36), by using (4.38), one gets[
e j A − e j F + (n − 3)e j L

]
e1 H + 2H(2ϕ − c2 H)e jϕ = 0.

By using (4.33), (4.34) and (4.35) we derive that[
Q j(F + L) − P j(A − L)

]
e1 H = 2H(2ϕ − c2 H)e jϕ, j � 4.

Replacing P j and Q j from (4.26) it follows[
F + L

ϕ + c1 H
− A − L

ϕ − (c1 + c2)H

]
e1 He jϕ = 2H(2ϕ − c2 H)e jϕ.

We claim that

e jϕ = 0, j � 4. (4.39)

Indeed, if e jϕ �= 0 for a certain j � 4, we could write[
F + L

ϕ + c1 H
− A − L

ϕ − (c1 + c2)H

]
e1 H = 2H(2ϕ − c2 H).

Applying e j , and since

e j

(
F + L

ϕ + c1 H

)
= 0, e j

(
A − L

ϕ − (c1 + c2)H

)
= 0,

we get 0 = 4He jϕ , which is a contradiction. Hence the claim is proved.
It follows that

P j = 0, Q j = 0, j � 4. (4.40)
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Return to (4.36) and apply e2 to it. We write[
e2 A − e2 F + (n − 3)e2L

]
e1 H + 2H(2ϕ − c2 H)e2ϕ = 0.

By using (4.32) and (4.33) we get

e2 A = T (A + F ) − 2H T

e1 H
(2ϕ − c2 H)2. (4.41)

In the same way, by applying e3 to (4.36), and combining then with (4.32) and (4.34) we obtain

e3 F = B(A + F ) + 2H B

e1 H
(2ϕ − c2 H)2. (4.42)

Compute now [e1, e2](A). On one hand we have [e1, e2](A) = Ae2 A and on the other hand [e1, e2](A) = e1e2 A − e2e1 A.
Thus after using (4.27), (4.29) and (4.30) we get

−F T

[
A + F − 2H

e1 H
(2ϕ − c2 H)2

]
+ T

[
A2 + c1 Hϕ − F 2 + c1 H(ϕ − c2 H)

]

− 2T e1

(
H

e1 H

)
(2ϕ − c2 H)2 − 4H T

e1 H
(2ϕ − c2 H)e1(2ϕ − c2 H)

− 3AT

[
A + F − 2H

e1 H
(2ϕ − c2 H)2

]
− c1 H T (2ϕ − c2 H) = 0.

Next, we claim that T = 0. Otherwise, if T �= 0, we divide the previous equality by T and after some computations we get

e1

(
H

e1 H

)
= H

e1 H

[
F + 3A − 2

e1(2ϕ − c2 H)

2ϕ − c2 H

]
− (A + F )2

(2ϕ − c2 H)2
.

Acting with e2 we get

0 = H

e1 H

[
e2 F + 3e2 A − 2e2

(
e1(2ϕ − c2 H)

2ϕ − c2 H

)]
− 2(A + F )

2ϕ − c2 H
e2

(
A + F

2ϕ − c2 H

)
. (4.43)

Straightforward computations yield

e2

(
e1(2ϕ − c2 H)

2ϕ − c2 H

)
= −2T (A + F ) (4.44)

and

e2

(
A + F

2ϕ − c2 H

)
= −2H T

e1 H
(2ϕ − c2 H). (4.45)

After substituting (4.44) and (4.45) into (4.43) and taking into account (4.32) and (4.41) we obtain

2(A + F ) = H

e1 H
(2ϕ − c2 H)2. (4.46)

Acting again with e2 and since T is supposed to be different from 0, we get

A + F = 2H

e1 H
(2ϕ − c2 H)2. (4.47)

In our hypothesis (4.46) and (4.47) run into a contradiction. So, we have proved our claim:

T = 0. (4.48)

In a similar way, starting by computing [e1, e3](F ), we can prove that

B = 0. (4.49)

Once we have B = 0, T = 0, P j = 0 and Q j = 0 for j � 4, let us continue with Gauss’ equation (EG). We have

• X = e2, Y = e3, Z = e2 (resp. Z = e3)

ϕ(ϕ − c2 H) + A F + 2
∑
k�4

SkUk = 0,

e2U j =
∑
k�4

ωk
2 j Uk, e3 S j =

∑
k�4

ωk
3 j Sk, (4.50)
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• X = e2, Y = e j , Z = e2 (resp. Z = e3), j � 4

[
AL + (c1 + c2)Hϕ

]
δ jk = 2V j Sk,

e2 V j =
∑
k�4

ωk
2 j Vk, e j Sk =

∑
l�4

ωl
jk Sl, (4.51)

• X = e3, Y = e j , Z = e2 (resp. Z = e3), j � 4

[
F L + (c1 + c2)(ϕ − c2 H)H

]
δ jk = −2V j Uk,

e3 V j =
∑
k�4

ωk
3 j Vk, e j Uk =

∑
l�4

ωl
jkUl, (4.52)

• X = e1, Y = e j , Z = e2 (resp. Z = e3), j � 4

e1 V j = LV j +
∑
k�4

ωk
1 j Vk. (4.53)

So, for n � 5 we can take j �= k and we get, from the first equation in (4.52), that y j = 0 for all j � 4. Therefore, it follows
that

ϕ(ϕ − c2 H) + A F = 0,

(c1 + c2)Hϕ + AL = 0,

(c1 + c2)(ϕ − c2 H)H + F L = 0. (4.54)

Hence we obtain[
(c1 + c2)

2 H2 + L2]A F = 0.

In our hypothesis, this is a contradiction.
When n = 4, we have c1 = −2 and c2 = 4. Moreover, we have S4 = U4 = 2V 4. The third equations in (4.32) and (4.33)

lead to either

(a) y4 = 0 and hence S4 = U4 = V 4 = 0, or
(b) A + F = 0 when y4 �= 0.

In case (a), we may proceed as above (see (4.54)) and obtain A F (L2 + 4H2) = 0, which is a contradiction.
In case (b), we get A = L, namely

2He1ϕ = (e1 H)(ϕ + 2H). (4.55)

The first equations in (4.50), (4.51) and (4.52) become

ϕ(ϕ − 4H) + A F + 2S2 = 0, (4.56a)

AL + 2ϕH − S2 = 0, (4.56b)

F L + 2(ϕ − 4H)H + S2 = 0, (4.56c)

where we put S for S4.
Adding (4.56a) with (4.56b) and subtracting (4.56c) give

A F + ϕ(ϕ − 4H) + L(A − F ) + 8H2 = 0. (4.57)

By replacing the expression of A from (4.26) in (4.27) we find

e1e1ϕ = 2A2(ϕ + 2H) − 2ϕH(ϕ + 2H) + 2Ae1 H . (4.58)

Similarly, by replacing F from (4.26) in (4.29) we get

4e1e1 H − e1e1ϕ = −2F 2(ϕ − 6H) − 2H(ϕ − 4H)(ϕ − 6H) − 2F e1 H . (4.59)

Adding (4.58) and (4.59) yields

e1e1 H = −H
(
ϕ2 − 4ϕH + 12H2) + 1

(A − F )e1 H + 1
A2(ϕ + 2H) − 1

F 2(ϕ − 6H). (4.60)

2 2 2



14 B.-Y. Chen, M.I. Munteanu / Differential Geometry and its Applications 31 (2013) 1–16
We may compute using also that F + L = 0:

A2(ϕ + 2H) − F 2(ϕ − 6H) = 8A F H + 4(A − F )e1 H . (4.61)

On the other hand, from (4.57) we find

A F H = −ϕH(ϕ − 4H) − 1

2
(A − F )e1 H − 8H3. (4.62)

By combining (4.61) and (4.62) and replacing in (4.60) we derive that

e1e1 H = 1

2
(A − F )e1 H − H

(
5ϕ2 − 20ϕH + 44H2). (4.63)

Now, by considering (4.36) for n = 4, we find

e1e1 H = (A − F )e1 H + (e1 H)2

2H
+ 2H

(
ϕ2 − 4ϕH − 12H2). (4.64)

Then (4.31) yields

e1e1 H − 3(e1 H)2

2H
= −8H3. (4.65)

From (4.63)–(4.65) we get

e1e1 H = −H
(
9ϕ2 − 36ϕH + 86H2), (4.66)

(A − F )e1 H = −4H
(
2ϕ2 − 8ϕH + 21H2). (4.67)

By acting with e1 on both sides of (4.67), and using (4.27) and (4.29) we have(
A2 + F 2)e1 H + (A − F )e1e1 H = −16H(e1ϕ)(ϕ − 2H) − 4(e1 H)

(
2ϕ2 − 16ϕH + 61H2).

Using now (4.55), we obtain(
A2 + F 2)e1 H + (A − F )e1e1 H = −4(e1 H)

(
4ϕ2 − 16ϕH + 53H2). (4.68)

On the other hand, from (4.57) and combining with (4.67) we get

A F = 3ϕ2 − 12ϕH + 34H2. (4.69)

By subtracting 2A F e1 H from both sides of (4.68) and using (4.69), we find

(A − F )2e1 H + (A − F )e1e1 H = −2(e1 H)
(
11ϕ2 − 44ϕH + 140H2).

At this point use (4.66) and (4.67), we compute the following expression

17(A − F )H
(
ϕ2 − 4ϕH + 10H2) = 2(e1 H)

(
11ϕ2 − 44ϕH + 140H2). (4.70)

If we multiply (4.70) by e1 H and then by using (4.65), (4.66) and (4.67), we have

α2 − 29α + 120 = 0

with the solution α1 = 5 and α2 = 24, where we put

α = ϕ2 − 4ϕH + 10H2

H2
.

By taking the derivative with respect to e1 and using (4.55) we get

e1α = −e1 H

H
(α − 6). (4.71)

Now, by applying e1 to (4.70) and using (4.27), (4.29), A + F = 0, (4.66) and (4.71), we derive that

−17αH3(3α + 8) + 51(A − F )e1 H

= −2H3(9α − 4)(11α + 30) − 11(α − 6)
2(e1 H)2

H
.

Finally, by applying (4.65), (4.66), and (4.67), we get 9α2 − 83α + 426 = 0. Since neither α1 nor α2 are solutions of this
equation, we obtain a contradiction.
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Finally, let us study the remained particular situations as well as the case (i) of the lemma. For all of them, the shape
operator S can be written in the form:

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1 H 0 0 0 . . . 0
0 c2 H 0 0 . . . 0
0 0 c3 H 0 . . . 0
0 0 0 (c1 + c2 + c3)H . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . (c1 + c2 + c3)H

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.72)

where c1, c2 and c3 are real constants.
We have to analyze the following five situations: (i) c1 = c2; (ii) c1 = −c2; (iii) c1 = c3; (iv) c1 = −c3; (v) c2 = c3.
Notice that (iii) is similar to (i); and (iv) is similar to (ii). Thus they will be omitted. Now, we consider the remaining

cases.
Case (i): c1 = c2 = − n

2 , c3 = n(n−1)
n−2 . In this case, by writing the equation of Codazzi for X = e1 and Y = e2 we get as

coefficient of e2 that c2e1 H = 0, which is a contradiction since e1 H is nonzero.
Case (ii): c1 = − n

2 , c2 = n
2 , c3 = n

n−2 . This situation is very similar to that we had for the δ(2)-ideals. After we obtain
equations analogue to (3.25), (3.26), and (3.27), the contradiction follows immediately.

Case (v): c1 = − n
2 , c2 = c3 = n2

4(n−2)
. We may use the same strategy as in the general case. By applying in a convenient

way the equations of Gauss and Codazzi, we have

e1

(
e1 H

H

)
+ c2

c1 − c2

(
e1 H

H

)2

+ c1(c1 − c2)H2 = 0.

After doing the computations, we obtain

e1e1 H − 4(n − 1)

3n − 4

(e1 H)2

H
+ n2(3n − 4)

8(n − 2)
H3 = 0. (4.73)

Moreover, we may compute

�H = −e1e1 H + 2n

3n − 4

(e1 H)2

H
.

Now, using (2.4), we find

−e1e1 H + 2n

3n − 4

(e1 H)2

H
+ n2(3n2 − 16)

8(n − 2)2
H3 = 0. (4.74)

Combining (4.73) and (4.74) yields again a contradiction.
Therefore, we have proved that the assumption “H is non-constant” implies that H = 0. This leads to a contradiction.

Consequently, we have proved the following.

Theorem 4.3. Every δ(3)-ideal biharmonic hypersurface of En+1 with n � 4 is minimal.
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