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A uniform general purpose garbage collector may not always provide optimal perfor-
mance. Sometimes an algorithm exhibits a predictable pattern of memory usage that
could be exploited, delaying as much as possible the intervention of the collector. This
requires a collector whose strategy can be customized to the need of an algorithm. We
present a dynamic memory management framework which allows such customization,
while preserving the convenience of automatic collection in the normal case. The Cus-
tomizable Memory Management (CMM) organizes memory in multiple heaps, each one
encapsulating a particular storage discipline. The default heap for collectable objects
uses the technique of mostly copying garbage collection, providing good performance
and memory compaction. Customization of the collector is achieved through object ori-
entation by specialising the collector methods for each heap class. We describe how the
CMM has been exploited in the implementation of the Buchberger algorithm, by using
a special heap for temporary objects created during polynomial reduction. The solution
drastically reduces the overall cost of memory allocation in the algorithm.

c© 1996 Academic Press Limited

1. Introduction

We faced the task of developing memory management facilities for a large research project
in symbolic algebra: the ESPRIT BRA PoSSo which aims at building a state of the art
system for solving systems of polynomial equations. Researchers working on different
parts of the system had different requirements on memory management. Someone pre-
ferred a copying garbage collector in order to achieve better data locality; others preferred
a mark-and-sweep approach because of its efficiency with data of fixed size; still some
others claimed they could perform explicit memory management better than with any
general purpose algorithm.

In fact, one of the core algorithms of PoSSo, the Buchberger algorithm for computing
Gröbner bases (Buchberger, 1985), is quite memory intensive and even the best tradi-
tional garbage collection techniques lead (Wilson, 1992 and Zorn, 1993) to thrashing
where significant amounts of time are spent in garbage collection. However, an analysis
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of the algorithm shows that it exhibits a particular pattern of memory usage, which could
be exploited to achieve optimal performance. There are precise points, at the end of one
step in the algorithm, where all data created during the previous step become irrelevant
and can be deallocated in block. By performing some kind of manual allocation within
this portion of the algorithm significant improvements in performance have been reported
(Faugère, 1994).

Nevertheless automatic memory management through garbage collection still has sev-
eral advantages over manual management since it improves: safety, avoiding the risk of
deallocating an object too soon; accuracy, avoiding the risk of forgetting to deallocate
unused memory; simplicity, assuming a computational model with unlimited memory;
modularity, the program does not have to be interspersed with bookkeeping code not
related to the application; burden on programmers who are relieved from taking care of
memory management.

The ideal solution would be to be able to use a garbage collector under normal cir-
cumstances but to be able to deviate from its policies when an algorithm requires so.

Unfortunately, traditional collection algorithms assume total control of memory man-
agement and it is impossible to customize the collector to the particular needs of an
algorithm. Even if the user wanted to manage memory by himself, some form of coor-
dination with the general collector is still necessary. Suppose in fact that a programmer
manages by himself an area of memory and that pointers are allowed from within such
area to objects external to it. Such objects might still be reachable but the general
collector would not be aware of them and might unduly reclaim their space.

For a similar reason, with a traditional collector it is hard to integrate code or li-
braries which are unaware of garbage collection and use pointers without restrictions, it
is impossible to mix code from programming languages with different memory models.

The Customizable Memory Management (CMM) framework achieves the goal of al-
lowing several collector policies to coexist. Users can choose the most appropriate one,
ranging from manual management to fully automatic garbage collection, and can also im-
plement their own specialized memory management. The extensibility of the framework
is achieved by exploiting the object oriented paradigm of C++, thereby maintaining a
consistent and simple interface for programmers.

The CMM consists of:

1. A general purpose garbage collector for C++; this collector is called primary garbage
collector and exploits the technique of Bartlett’s mostly copying collector (Bartlett,
1989);

2. A programmer interface: the interface for programs which use CMM;
3. A heap programmer interface: a set of facilities used by heap programmers to define

specific memory management policies as appropriate for their applications.

Using the CMM a programmer can specify individually, for each object created, which
policy to adopt for its storage. The CMM admits the presence of several collectors,
each one in charge of its own heap, which coordinate with each other for proper memory
management. The heap where an object resides determines the policy used for the object,
but to achieve coordination it must be possible for the collector of one heap to look at
objects in other heaps.

CMM users can select among a few predefined memory management disciplines, define
their own, or customize those provided in the framework exploiting the mechanisms of
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inheritance and specialization. The mechanism to implement these alternative policies
is the heap abstraction. Specific algorithms are used and particular data structures are
maintained by each heap to ensure its proper behaviour.

In the rest of the paper, we review the requirements for a customizable memory man-
ager, we present the design and implementation of the CMM. Then we present the CMM
interface for both Computer Algebra programmers and heap programmers. We illustrate
both interfaces by showing how the CMM is exploited in the PoSSo implementation of
the Buchberger algorithm. Finally we present the results of various benchmarks which
show the performance of the collector and the benefits of customization.

2. Design Goals and Constraints

In designing the CMM we tried to achieve the following goals:

1. Algorithm specific customization : the allocation policy can be customized to suit the
particular needs of an algorithm. This is different from other solutions, where the
allocation policy is associated to the type of an object (Ellis and Detlefs, 1993). For
the purpose of our applications, it is necessary to allocate the same type of object
sometimes with one policy and sometimes with another. For example, in PoSSo
there is only one class of polynomials, but sometimes a polynomial is allocated in a
special heap which can be freed quickly once a certain portion of the simplification
algorithm is complete; in other cases the lifetime of the polynomial cannot be
predicted, so it must be allocated in the general heap.

2. Multiple logical heaps: At least two heaps are necessary, one for collectable objects
and one for uncollectable objects. However two is not enough: for instance col-
lectable objects containing data which cannot be relocated for some reasons must
be handled differently from other objects which are copied by the collector. For this
reason the CMM provides multiple logical heaps.

3. Usability : Only a minimal burden should be placed on the programmer who uses
the collector. The CMM currently required the programmer to supply a traversal
method for each class of collectable objects them, a task which might, however, be
automated.

4. Separation of concerns : Memory management code needs not to be included within
algorithms, and it is possible to change the memory policy just by selecting which
heap is employed by the algorithm.

5. Efficiency : The implementation should be efficient enough to be as good as and
possibly better than hand tuned allocation.

We had, moreover, to satisfy these constraints, for the practical applicability of the
solution:

1. Portability : The solution could not rely on changes to the underlying language or
compiler. Therefore the CMM is built as a program library, which can be used with
any C++ compiler.

2. Coexistence: Code and objects built with the CMM can be exchanged with tradi-
tional code and libraries. No restrictions should exist on whether a collected object
can point to a non-collected object and viceversa. We must be able to pass collected
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objects to programs unaware of garbage collection, allowing them to store such ob-
jects in data structures, without special burden on the programmer or risk that the
object would be garbage collected. Alternative solutions require the programmer to
put an object in an “escape list” before passing it to an external procedure.

The CMM allows customization of the collector and provides a few pre-built variants.
One could argue whether a single general collection strategy could fit all the needs. For
instance an ephemeral garbage collector ensures that memory is reclaimed quickly. How-
ever even an ephemeral garbage collection is not good enough for applications like PoSSo
where one must prevent or delay garbage collection as much as possible. An ephemeral
garbage collector is useful to reduce the latency of collection, which is essential in inter-
active applications, but its overall performance is worse than that of other techniques,
as we verified experimenting with the ephemeral version of Boehm and Weiser (1988).

For the vast majority of applications a general purpose strategy is adequate, and the
CMM provides a good one by default. Exploiting customization one can use the CMM
also in applications that have special or high performance demands.

3. Design

The task of a garbage collector (Wilson, 1992) is to distinguish live objects from
garbage, for instance by tracing them through memory starting from a root set (local
and global variables, machine registers).

Depending on the kind of information available during the traversal of objects from
the root set, a tracing collector can be conservative or type-accurate.

A conservative garbage collector does not require cooperation from the compiler and
assumes that anything that might be a pointer actually is a pointer. In this case an integer
(or any other value) is assumed to be a pointer by the collector if it corresponds to an
address inside the current heap range: any such value is called an ambiguous pointer. A
root containing an ambiguous pointer is called an ambiguous root. A garbage collector is
type-accurate when it is able to distinguish which values are genuine pointers to objects.

The main limitations of a purely conservative collector are memory fragmentation in
applications dealing with objects of various sizes, which arises from the inability to move
objects, and the risk that a significant amount of memory might not be reclaimed in
applications with densely populated address spaces of strongly connected objects (Went-
worth, 1990).

These limitations are avoided in the partially conservative approach proposed by
Bartlett (1988) for his mostly-copying garbage collector.

The CMM allows customization through the heap abstraction. Each heap class imple-
ments a different allocation discipline. Here we present the built-in heaps in CMM and
the discipline they implement.

3.1. the default heap

The default heap of CMM uses the technique of mostly-copying garbage collection
(Bartlett, 1988).

The default heap consists of a number of equal size pages, each with its own space-
identifier (either From or To in the simplest non-generational version). The FromSpace
consists of all pages whose identifier is From, and similarly for ToSpace. The collector
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Figure 1. Mostly-copying collector.

conservatively scans the stack and global variables looking for potential pointers. Objects
referenced by ambiguous roots are not copied, while most other live objects are copied.
The process is illustrated in Figure 1. If an object is referenced from a root, it must be
scavenged to survive collection.

Since the object cannot be moved, the whole page to which it belongs is saved. This is
done by promoting the page into ToSpace by simply changing its page space-identifier to
To. At the end of this promoting phase, all objects belonging to pages in FromSpace can
be copied and compacted into new pages belonging to ToSpace. Root reachable objects
are traversed with the help of information provided by the application programmer: the
programmer must supply the definition for a member function for each class of objects
which traces the internal pointers within objects of that class. Further details on the
implementation can be found in (Attardi and Flagella 1994b).

3.2. the uncollected heap

Besides the copy-collected heap, also the traditional uncollected heap is supported
by providing the primitives malloc or new on uncollected classes. The uncollected heap
cannot be eliminated since there are programs and libraries which may use uncollected
objects in an unsafe way for the collector (Ellis and Detlefs, 1993), and there are objects
that can’t be relocated. However, we allow objects in the uncollected heap to point to
objects in the collected heap and viceversa.

3.3. user collected heaps

Our goal is to allow users to build their own heaps with specific allocation strategies
for their applications.

We must however fulfill some essential requirements for the solution to be consistent
and practical:
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Figure 2. Multiple heaps.

Allow pointers across heaps : Restricting the range of pointers is difficult and incon-
venient.
Transitivity of liveness : If an object is pointed to by a live object it is live as well.
We must ensure that a pointer crossing heap boundaries does not go unnoticed by
the collector.
Independence of collectors : It must be possible to write a collector for a particular
heap, without relying on the collectors for other heaps, provided the root set for
this heap is known.
Coordination among heaps : A simple set of conventions is established to ensure that
pointers across heaps can be properly traversed.

In Figure 2 three heaps are present: the uncollected, the copy collected, and one user
collected heap.

All six possible cross-heap pointers are shown. The user heap is maintained by the
user, who keeps a record of the roots into his heap, so that he can perform a collection of
that heap when appropriate, without involving the general collector. However the general
collector must be capable of identifying for instance object e as live, even though this
involves passing through several heaps.

3.4. customising the GC

The basic operations of a copying tracing collector are traversal and scavenging. The
traverse procedure is used in the first phase of the collector to identify live objects, the
scavenge procedure is used to copy an object or perform whatever action is needed to
preserve it.

One way to customize these operations is to use the mechanism of callbacks, used for
instance in programming window based user interfaces. With this schema, a user would



     

Memory Management for PoSSo 299

B1
A1

A2

Heap A Heap B

Figure 3. Pointers across heaps.

register a specific callback routine with the general garbage collector, for use on specific
type of objects. So when the garbage collector recognizes one of these objects during
traversal, it applies the appropriate callback to collect the object.

Callbacks can be different for each individual object, but this is not necessary for our
purposes, so we prefer to replace callbacks with member functions. This makes these
functions more convenient to define and to retrieve by the collector through the standard
mechanism of C++.

Moreover the traverse function could actually be generated automatically and no
instructions for registration have to be included in the application programs.

3.5. coordination

To achieve coordination among collectors for the various heaps, one has to agree to a
mechanism that allows traversing objects in different heaps on behalf of the collector for
another heap. While traversing a foreign heap, a collector should not be allowed to make
changes to the objects it visits, except to update recognized pointers to an object in its
own heap, after the object has been moved.

This means that one must perform scavenging only for objects in the heap being
collected. In other words the scavenge procedure must remain the same throughout a
collection, but the scavenge for one heap must not operate on objects in other heaps.
scavenge is then implemented as member function of each heap class.
traverse instead must be specialized according to the type of the object, so we im-

plement it as a member function of each class of objects.
The interplay between scavenge and traverse is explained considering the situation

in Figure 3.
Suppose a garbage collection is started in heap A which uses a copy collector. While

traversing object A1, the garbage collector identifies a pointer to the object B1, belonging
to heap B. Object B1 is scavenged by the scavenge function of the heap A. This function
recognizes object B1 as external to heap A, so it does not copy the object, as it would if
it were internal to the heap, but only traverses the object to determine whether further
objects in heap A can be reached from it. The behaviour of scavenge changes again
when object A2 is reached which belongs to heap A. Applying the scavenge function of
heap A has the effect of copying object A2.
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4. Implementation

Heap memory is divided into pages of equal size. The allocator for each Heap requests
pages from the low level page allocator, where to allocate its objects. Each page is tagged
with the heap to which it belongs.

Collected objects are instances of class CmmObject or its derivatives, which have their
specialized version of traverse. No space overhead is present in CmmObject except for
what required by C++ for the support of virtual functions.

A bitmap is used to deal with internal pointers to objects. Whenever a CMM object
is created, the bit corresponding to its first word is set. Using this information, a pointer
inside that object can be normalized to the beginning of the object, simply scanning the
bitmap backward until the first set bit is found.

When an object has been moved, its first word is replaced by a forwarding pointer to
the new object. As already mentioned, this happens only during garbage collection and
the collector can determine this situation from the fact that the object is marked live
and it is in a page in FromSpace.

Overall, one can estimate the space overhead required for using CMM as one word
per object (C++ vtable pointer) and 2 bits for each word in the heap. No extra pointer
indirection is required, which might introduce execution overhead.

4.1. the CmmObject class

The run time support required for collectable objects is provided by the class CmmObject
from which every class of collectable objects must be derived.

The creation of collectable objects is performed by the overloaded new operator which
takes care of allocating the object in a specific heap. Other member functions of class
CmmObject are used by the primary collector or by user defined collectors.

Here is the public interface for this class.

class CmmObject
{
public:

void* operator new(size_t, CmmHeap*);
virtual void traverse();
int size(); // returns the size of the object
CmmObject *next(); // returns the next adjacent object
bool forwarded(); // tells whether the object has

// been forwarded
void SetForward(CmmObject *); // sets the forwarding pointer
CmmObject *GetForward(); // returns the forward location
CmmHeap *heap(); // returns the heap to which the

// object belongs
void mark(); // marking primitives
bool Marked();

}
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5. Interface for Computer Algebra Programmers

A Computer Algebra programmer who wants to use CMM for allocating objects, must
define them by means of a collected class, i.e. a class derived from class CmmObject. The
default collector calls the method traverse on collected objects to identify their internal
pointers to other objects. Users have to provide traverse methods for each class whose
data members contain pointers. traverse must be defined according to well defined rules
presented below, so that the CMM can identify the structure of user defined collected
objects.

These rules ensure that superclasses or class objects contained in the class are correctly
handled. The following example illustrates the rules, which are a generalization of those
in (Bartlett, 1989). Suppose the following collected classes were defined:

class BigNum: public CmmObject
{

long data;
BigNum *next; // Rule (a) applies here
void traverse();

}

class monomial: private BigNum // Rule (c) applies here
{

PowerProduct pp; // Rule (b) applies here
void traverse();

}

A BigNum stores in next a pointer to a collected object which needs to be scavenged,
so traverse becomes:

void BigNum::traverse()
{

scavenge(&next); // Applying rule (a)
}

Because monomial inherits from BigNum, the method traverse for this base class must be
invoked; finally, since a monomial contains a BigNum in pp, this object must be traversed
as well:

void monomial::traverse()
{

BigNum::traverse(); // Applying rule (c)
pp.traverse(); // Applying rule (b)

}

Finally, to deal with multiple base classes, we must identify the hidden pointer to the
base class present inside an object. This cannot be done in a compiler independent way,
so the CMM provides a macro VirtualBase which is compiler specific.

In summary the rules are:
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(a) for a class containing a pointer, say class C { type *x; }, the method
C::traverse must contain scavenge(&x);

(b) for a class containing an instance of a collected object, say class C { GcClass x;
}, the method C::traverse must contain x.traverse();

(c) for a class derived from another collected class, say class C:GcClass {...}, the
method C::traverse must contain GcClass::traverse();

(d) for a class deriving from a virtual base class, say class C: virtual GcClass {...},
the method C::traverse must contain scavenge(VirtualBase(GcClass));.

Preprocessing (Edelson, 1992) or compiler support (Samples, 1992) could be adopted
to avoid hand coding of these functions and risks of subtle errors in programs. We plan
to address this issue in the future.

5.1. object creation

When creating a collected object one can specify in which heap to allocate it. The
parameter heap can be supplied in the standard C++ placement syntax for the new
operator:

p = new(heap) Person(name, age);

If the user does not specify any heap, the default heap heap is used:

p = new Person(name, age);

which is equivalent to:

p = new(heap) Person(name, age);

where heap is a global variable initialized to the system heap.
When creating collected objects, the programmer can decide case by case where to

allocate them. In summary, the following are the alternatives for object allocation:

Heap Classes Creation

uncollected uncollected new/malloc

copy collected collected new

user collected collected new(heap)

where we call collected those classes which inherit from CmmObject and uncollected all
others.

With the CMM, object allocation is not tied to the type of an object as in other
proposals, so a programmer can design his classes without committing to a particular
memory policy. The policy can be decided later, or even be different in different portions
of an application. It is essential that this can be done without changing a single line in
user code implementing operations on the objects. The following example illustrates this
point.
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6. Example

A foremost algorithm in the PoSSo algebra system (Attardi and Traverso, 1994b) is
the Buchberger algorithm (Buchberger, 1985) for computing the Gröbner basis of a set
of polynomials. Dependencies between temporaries and persistent data make the use
of explicit memory allocation/deallocation nearly impossible, so the use of a garbage
collector was essential. The main step of the algorithm consists of the simplification of
a polynomial and involves operations which create many intermediate polynomials of
which only the last one is relevant and is inserted into the basis. Once this polynomial
has been computed, all the temporary structures allocated can be removed.

The peculiar dynamics of the problem offers an opportunity to exploit the CMM
facilities to implement a specific memory management. We created a heap in which the
allocation is stack-like (and thus fast), and the garbage collector is called synchronously
after each step. Its actual implementation is described in the next section.

The reduction of the S-polynomial p of the critical pair pair, with respect to a list of
polynomials simplifiers produces a new polynomial to be inserted in the basis. Here
is a fragment from the actual code in the PoSSo library performing this step:

Poly *p = pair->SPolynomial();

if (p != NULL) {
p = simplify(p, simplifiers);
if (p != NULL)

p = normalize(p);
}

The relevant aspects of the algorithm with respect to memory management are:

1. Large amounts of memory are allocated during simplify and most of this memory
can be freed at the end of this step. The only data to be preserved is the simplified
polynomial which must be inserted into the final basis.

2. In many cases simplify returns a zero polynomial. In these cases no memory must
be preserved.

3. Since the complexity of the algorithm is exponential, the amount of memory allo-
cated by simplify also grows exponentially with the size of the ideal.

We can tune the memory management for this algorithm by means of the CMM,
adopting two different heaps: the default one (CmmHeap::heap) and a special one for this
algorithm (tempHeap), an instance of the HeapStack class sketched below.

Memory is usually allocated inside the default heap, but before calling simplify the
heap is switched to the tempHeap. All the memory allocated during simplify is therefore
obtained from the tempHeap heap.

Notice that this does not require any changes to any of the remaining functions in the
PoSSo library: the algebraic operations on polynomials, coefficients etc. are unmodified
and use the standard new operator to allocate objects.

After returning from simplify we switch back to the default heap, and the polynomial
returned by simplify is copied into the default heap. At this point the tempHeap con-
tains no live data and can be freed with a single operation without involving a garbage
collection.



    

304 G. Attardi and T. Flagella

Here again is the code augmented with instructions for CMM memory management.

CmmHeap *previousHeap = CmmHeap::heap; // Save the current heap
CmmHeap::heap = tempHeap; // Set the current heap to tempHeap

Poly *p = pair->SPolynomial();

if (p != NULL) {
p = simplify(p, simplifiers);
if (p != NULL)

p = normalize(p);
}

CmmHeap::heap = previousHeap; // Restore the previous heap
p = new Poly (*p); // Copy p out of the tempHeap
tempHeap->clear(); // empty the tempHeap

The last operation on the tempHeap is very fast: it involves just resetting a few internal
variables to empty the heap.

This solution is simple and works effectively for small problems but has a drawback
due to the fact that simplification requires exponential amounts of memory. Therefore
a heap of a fixed size will be quickly exhausted with larger problems before the end of
one simplification cycle is reached, when it could be recovered. Even if we make the heap
of variable size, as in the actual implementation, its size grows so quickly that it will
exhaust all available memory.

Therefore we need to reclaim memory from the tempHeap earlier, during simplify. In
this case we cannot just empty the tempHeap, because simplification is still in progress
and some of its data are in the tempHeap. A real garbage collection is required, but it
can be a very efficient one because:

which objects are still in use by simplify is known;
no pointer to objects in the tempHeap has been handed out to procedures which
might store them elsewhere.

Given these assumptions, before starting the simplification we register as roots for the
tempHeap the two variables which refer to objects used throughout simplify: the vari-
able containing the current polynomial and the one containing the current monomial.
Since the current monomial is part of the current polynomial, the collector will reach it
and copy it when traversing such polynomial. However in the code for simplify there
are references to such monomial directly through the variable CurrentMonomial. In or-
der for this reference to be automatically updated to the copy made by the collector,
CurrentMonomial must be also designated as a root.

After each reduction step, garbage collection on the tempHeap is invoked. The garbage
collector visits the two registered roots and copies all objects reachable from them. In
practice the current polynomial and the current monomial are copied into ToSpace. At
the start of the next reduction cycle a whole emispace is emptied and available for further
allocation.
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Two remarks: a collection is not actually performed after each step, but only when the
percentage of space left in the heap is below a certain threshold. Secondly, it may happen
that the heap fills up before the end of a reduction: in such case the heap is expanded as
necessary.

Here is a sketch of the code, where SL->first accesses the first element of the list of
polynomials SL, SL->next accesses the rest of such list and simplifier->head->powerp
selects the power product of the head monomial of polynomial simplifier:

Poly *simplify(Poly *p, PolyList &simplifiers)
{

if (simplifiers == NULL)
return p;

CurrentPolynomial = p;
CurrentMonomial = *p;

tempHeap->roots.setp(&CurrentPolynomial);
tempHeap->roots.set(&CurrentMonomial);

while (CurrentMonomial != NULL) {
bool reduced = false;
// iterate through the list of simplifiers
PolyList SL;
for (SL = simplifiers; SL != NULL; SL = SL->next) {

Poly *simplifier = &SL->first;

if (divisible(CurrentMonomial, simplifier->head->powerp)) {
CurrentMonomial = reduce(simplifier);

tempHeap->collect();
reduced = true;
break; // restart reductions

}
}

if (!reduced)
CurrentMonomial = &CurrentMonomial->next;

}
tempHeap->roots.unsetp(&CurrentPolynomial);
tempHeap->roots.unset(&CurrentMonomial);

return CurrentPolynomial;
}

7. Interface for Heap Programmers

To manage a heap one normally has to maintain the set of roots for the objects in
the heap, manage the pages where objects are allocated and implement the memory
allocation and recovery primitives. A suitable encapsulation for these functionalities is
provided by the Heap class.
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7.1. the CmmHeap class

A class implementing a heap must supply definitions for the following pure virtual func-
tions: allocate and reclaim, implementing the memory allocation strategy, collect to
perform collection, and scavenge, the action required to preserve live objects encoun-
tered during traversal. Heap classes are derived from the abstract class Heap, defined as
follows:

class CmmHeap
{
public:
CmmHeap(); // initializer
virtual CmmObject* alloc(int bytes) = 0;
virtual void scavenge(CmmObject **ptr) = 0;
virtual void collect() = 0;
bool inside(CmmObject *ptr); // checks if ptr is within this heap
RootSet *roots;

}

roots is a pointer to an instance of class RootSet, used for registering potential roots.
The CMM provides two predefined heap classes:

DefaultHeap: encapsulates the primary collector of the CMM which implements
Bartlett’s mostly-copying discipline;
UncollectedHeap: it provides the standard manual allocation discipline. It is avail-
able through the default new operator or the functions of the malloc library. Objects
not inheriting from CmmObject are allocated in this heap.

7.2. the root set

Some heaps may require the user to explicitly register the possible roots. The class
RootSet is designed to support managing roots. It provides the following primitives:

void set(CmmObject *);
void set(CmmObject **);
void unset(CmmObject *);
void unset(CmmObject **);
void scan();

set and unset are used to (un)register (pointers to) GC objects as roots. scan is
invoked to traverse objects reachable from the root set.

7.3. example

We illustrate the interface for heap programmer by showing how to build the HeapStack
used in the previous section, which is simplified version of the actual heap used in PoSSo.

In this version the size of the heap is fixed, and two spaces are used to perform a
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copying collection. The real solution adopted in the PoSSo library is more complex and
uses multiple spaces.

First we define the HeapStack class as a CmmHeap consisting of two areas which im-
plement the FromSpace and the ToSpace of the collector, and a RootSet to register the
roots to use for the collection:

class HeapStack: public CmmHeap
{

public:
CmmObject* alloc(int);
void reclaim(CmmObject*) {};
void scavenge(CmmObject **);
void collect();
HeapStack(int);

private:
char* FromSpace, ToSpace;
char* FromTop, ToTop;
int size;
CmmObject* copy(CmmObject *ObjPtr);

}

The creation of a HeapStack involves requesting two groups of pages for the two spaces:

HeapStack::HeapStack(int bytes)
{

size = bytes;
FromSpace = allocate_pages(bytes / BYTESxPAGE, this);
ToSpace = allocate_pages(bytes / BYTESxPAGE, this);

}

Allocating memory for an object consists just in advancing the index FromSpace:

CmmObject* HeapStack::alloc(int size)
{

int words = BYTEStoWORDS(size);
if (words <= size - FromTop) {

FromTop += words;
return (CmmObject *)(FromSpace + FromTop);

}
else return (CmmObject *)NULL;

}

The collector uses the root set to traverse the roots. After having moved to ToSpace
all the objects reachable from the roots, it traverses those objects in order to move all
further reachable objects. As the final step the collector exchanges the roles of FromSpace
and ToSpace.
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void HeapStack::collect()
{

char *tmpSpace;
CmmObject *objPtr;

// swap fromSpace and toSpace
tmpSpace = fromSpace; fromSpace = toSpace; toSpace = tmpSpace;
fromTop = toTop; toTop = 0;
// First traverse the objects registered as roots
roots.scan();
// Now traverse the objects just moved
objPtr = fromSpace;
while (inside(objPtr)) {

objPtr->traverse();
objPtr = ObjPtr->next();

}
}

This code relies on support provided by classes CmmObject and HeapStack.
The specific action required for scavenging objects is as follows:

void HeapStack::scavenge(CmmObject **ptr)
{

CmmObject *p = basePointer((GCP)*ptr); // find the start of the object
int offset = (char *)*ptr - (char *)p;
if (!inside(p))

visit(p);
else if (FORWARDED(p))

*ptr = (CmmObject *)((char *)p->GetForward() + offset);
else {

CmmObject *newObj = copy(p);
p->SetForward(newObj);
*ptr = (CmmObject *)((char *)newObj + offset);

}
}

8. Performance

To compare the performance of the CMM and the original Bartlett’s implementation,
we run several well-known test cases for the Buchberger algorithm on a SparcStation 10
with 32 Mbytes of physical memory. The timings in seconds achieved on these benchmarks
are summarized in Table 1.

The improvement appears to be significant across a variety of benchmarks, ranging
from 17 to 32%. It is also interesting to note that the CMM default algorithm has quite
better performance to Bartlett’s original, despite the overhead due to its use of C++ and
member functions rather than straight C.

To study in detail how much the garbage collector influences the overall performance,
we analysed the various versions by means of a program profiler.



       

Memory Management for PoSSo 309

Table 1. Benchmarks

Bartlett
CMM
default

CMM
TempHeap

Improv.

%

katsura5 3.59 3.79 3.17 17
cohn1 12.45 8.68 6.85 22
cyclic6 37.58 28.78 19.77 32
valla 56.96 46.43 34.3 27
katsura6 356.41 258.45 211.58 18

Table 2. Analysis

Bartlett
CMM
default

CMM
TempHeap

Katsura6 (profiled) 452.38 275.86 213.49
alloc 223.68 43.96 3.19+0.04
collect 215.07 37.06 2.47+0.03
pure alloc 8.61 6.90 0.72+0.01
gc calls 931 450 16584+2
gc average 0.23 0.08 0.00+0.01

In Table 2 we report the results of running the benchmark katsura6 (Katsura et al.,
1987), providing details on the timings of memory operations: alloc, the primitive al-
locator; gc, overall time spent in garbage collection; pure alloc, allocation time less
collection time; gc calls, the number of calls to the collector; gc average, average
time of a collection. In the last column we show two figures for each operation, one for
the default heap and the second for the TempHeap, since both heaps are used.

The use of TempHeap produces striking results: the garbage collection time becomes
negligible and accordingly allocation time is also drastically reduced. The total allocation
cost using the default CMM heap is 44 sec which is slightly less than the gain from using
the TempHeap. Therefore the 18% improvement in the overall execution time achieved
by means of the TempHeap is quite close to using an ideal allocator with zero cost and
so this represents the maximum increase in performance one can expect to obtain by
improving memory management.

As Buchberger and Jebelean (1993) have noted, the cost of arithmetic computations
may become dominant in the Buchberger algorithm. This is the case with the katsura6
benchmark, where significant amounts of time are spent in the arithmetic of arbitrary pre-
cision integers (42.5% in mpn addmul 1, 10.2% in mpn mul 1, 4.3% in mpz mul, 3.3% in
mpn mul) which grow respectively to 50.4%, 12.9%, 4.8% and 4.1% when using the Tem-

pHeap. These are routines from the GNU Multiple Precision library (GMP) (FSF, 1994)
that are used in the PoSSo library: mpn addmul is an assembly code routine which mul-
tiplies a limb vector with a limb and adds the result to a second limb vector, mpn mul 1
multiplies a limb vector with a limb and stores the result in a second limb vector, mpn mul
multiplies two natural numbers and mpz mul multiplies two integers.

We have also received satisfactory reports on the performance of CMM by the partners
in the PoSSo project who used it in particular for implementing a linear algebra package
(Rouillier, 1994).
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9. Related and Future Work

The Böhm-Weiser collector (Boehm and Weiser, 1988) is another well-known collector
for C++ which is totally conservative and therefore quite convenient to use. However it is
not customizable and is subject to unduly retention of space and memory fragmentation
since it cannot compact memory.

Work on adding garbage collection to C++ has been done by D. Samples and D. Edel-
son (1992, 1992b). Samples (1992) proposes modifying C++, to include a garbage col-
lection environment as part of the language. This may be a good long term approach
for garbage collection in C++ but is not suitable for a project like PoSSo which needs
portable garbage collection facilities immediately. On the other hand, our work demon-
strates that the flexibility of object oriented languages allows us to implement a complex
environment, like CMM, without requiring modifications to the language.

Edelson (1992b) has been experimenting with the coexistence of different garbage
collection techniques. The flexibility of the solutions he adopts in his approach allows the
coexistence of different garbage collectors, but he does not provide any interface to the
user to customize and/or define his own memory management facilities.

Ellis and Detlefs (1993) propose some extensions to the C++ language to allow for
collectable object. The major change is the addition of the type specifier gc to specify
which heap to use in allocating the object or a class. With some minor modifications
discussed in Attardi and Flagella (1994), this proposal is compatible with the CMM.
The Ellis–Detlefs proposal contains other valuable suggestions, for instance making the
compiler aware of the garbage collection presence and avoid producing code where a
pointer to an object (which may be the last one) is overwritten. This can happen for
instance in optimizing code for accessing structure members.

We are investigating the possibility of incorporating the CMM in the run-time support
used by FOAM (Watt et al., 1994b), the intermediate language of A# (Watt et al., 1994),
a language for symbolic algebra. FOAM itself is implemented by translation into C code
which uses a run-time support which includes a totally conservative garbage collector.

Building a common run-time for A# and PoSSo would be a significant result, since it
will enable sharing of libraries and access to the facilities of both systems.

Another challenge would be to incorporate into a C++ compiler the minimal facilities
required for CMM support: the addition of the gc keyword, proposed by Ellis (1993),
could facilitate this.

10. Conclusion

The CMM offers garbage collection facilities which are both flexible and efficient.
Programmers can select the collector which is most suitable to the need of each al-

gorithm: either the default collector, or a specific collector or no collector at all. The
algorithm can be in control when necessary of its memory requirements and does not
have to adapt to a fixed memory management policy.

The CMM is implemented as a C++ library which can be linked with the application
code. It is being heavily used in the implementation of high demanding computer algebra
algorithms in the PoSSo project. The CMM provides the required flexibility without
degradation in performance as compared to versions of the same algorithms performing
manual allocation.
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11. Availability

The sources for CMM are available for anonymous ftp from site ftp.di.unipi.it in
the directory /pub/project/posso. Please address comments, suggestions, bug reports
to cmm@di.unipi.it.
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