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1. INTRODUCTION 

One of the simplest topological variations of the phase space of a one-parameter 
family of differential equations (vector fields, flows) is the creation of periodic 
orbits from equilibria as the parameter crosses a critical value. The study of 
such topological variations about an equilibrium was initiated and developed by 
Poincare perhaps 90 years ago and belongs today to the classical theory of 
periodic solutions. It was Hopf [23] who presented the bifurcation theorem in 
1942 and it is now commonly known as the Hopf bifurcation theorem. Specifically, 
consider a one-parameter family of ODE (ordinary differential equations) 

Suppose that ~(oL, 0) 3 0 and f  admits the linearization 

j(t) = A(n)&). 

Assume that A(a) has a pair of complex conjugate eigenvalues h(a) and @ol) 
such that 

Rex’(O) > 0, Re h(0) = 0, and Im h(0) # 0.r 

* This research was supported by the National Science Foundation under GP 28931X3 
and in part by the United States Army under DA-ARO-D-31-124-73-G-130. 

1 If Im n(O) = 0, then it is not periodic but equilibrium states which bifurcate from 

the zero solution. Such bifurcation theory is not within the scope of the present paper. In 
[S, 91, we consider bifurcation problems under precisely the condition Im X(0) = 0. 
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FIG. 1. Amplitude-parameter graph: (a) supercritical; (b) subcritical; (c) vertical. 

Then, it was shown by Hopf that there are periodic orbits bifurcating from the 
zero solution. If  one plots the amplitude-parameter graph (see Fig. l), the three 

situations (a), (b), and (c) are all possible. Moreover, all three cases are of great 
physical interest. For example, Fig. la represents the first stage of transition to 
turbulance in fluids as postulated by Landau [31]; Fig. lb represents an “inverted 
Hopf bifurcation” which often occurs for flows that exhibit an immediate 
transition behavior (see [38]); Fig. lc represents a “degenerate Hopf bifurcation” 
which is related to the Liapunov center theorem (see [l]). The existence of Hopf 
bifurcation is a very elementary application of the implicit functians theorem. 
However, to determine the specific type of bifurcation depends upon certain 

analytic conditions which involve nonlinearities in the equation. 
The purpose of this paper is to describe how, using the classical method of 

averaging (see [16, 181) one can give conditions on the vector fields which ensure 
a supercritical or subcritical Hopf bifurcation. This is done in such a way that 
the theorems for FDE’s (functional differential equations) and PDE’s (partial 
differential equations) are essentially analogous to those of ODE’s. The basic 
idea is to decompose the equation into three coupled equations which are 
equations for the amplitude r, the phase angle 8, and the stable part y. The 
decomposition is natural in the method of integral averaging. By means of a 
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series of coordinate changes one then decouples the r equation up to a certain 

order in Y. Examples from FDE’s and PDE’s are also included. Many of the 
transformations and techniques used in this paper are useful for problems 
involving a vector parameter 01, as well as radial and angle coordinates (T, 0) 
which are vectors. This situation arises, for example, in the study of the bifurca- 
tion of an invariant torus from around a periodic orbit. See Lanford [32], 

Ruelle and Takens [40], and Sacker [41]. 
Since the appearance of Hopf’s paper, there have been many papers related 

to similar problems, notably, Alexander and Yorke [I], Brunovsky [4], Brus- 
linskaya [5], Chafee [6, 71, Freedman [12], Friedrichs [13], Iooss [24], Josepg and 
Sattinger [26], Jost and Zehnder [27], Judovich [28], Kopell and Howard [30], 

Lanford [32], Marsden [35], M ars d en and McCraken [36], McCracken [37], 
Ruelle and Takens [40], Sacker [41], Sattinger [42], Schmidt [43], Sotomayor [44], 
and Takens [46]. 

This paper is organized as follows. In Sections 2, 3 the method of averaging 
is described, without regard to any specific bifurcation problem. Although the 

exposition here is for ordinary differential equations, the mechanics of the 
averaging procedure carry over directly to infinite-dimensional systems (func- 
tional and partial differential equations). That is, many infinite-dimensional 
systems can be studied with averaging simply by rewriting them as an ordinary 
differential equation in a Banach space and proceeding formally from there. A 
more precise description of these ideas, as well as examples, is found in Sections 

7-11. 
In Section 4, the averaging method is applied to study the Hopf bifurcation 

in R”, and in Section 5 these ideas are extended to the situation in R”. Although 
a rather detailed study of the Hopf bifurcation is presented here, it should be 
noted that the techniques used have a much wider application. For example, 
the problem of bifurcation of an invariant torus from a periodic orbit can be 
treated in essentially the same manner, as is described at the end of Section 5. 
Thus the Hopf bifurcation (although an extremely interesting and important 

phenomenon) is presented here essentially as one illustration of the averaging 
technique. 

In Section 6 the center manifold theorem is described. With this theorem one 
can give a rigorous proof of the existence of the periodic solutions formally 
obtained in the previous sections. This idea is especially important for infinite- 
dimensional systems. 

The relation between infinite-dimensional systems and ordinary differential 
equations in a Banach space is explored in Sections 7, 8. The emphasis here is 
on writing such systems so that averaging can be applied as for finite-dimensional 
systems. Finally, in Sections 9-11 some specific examples of Hopf bifurcation 
are studied. 
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2. THE METHOD CF *~VERA&ISG 

Let us begin with a description of the averaging procedure for a class of 

ordinary differential (ODE’s); in later sections this will be generalized an.d 
applied to solve bifurcation problems in both ODE’s as well as functional 
differential equations (FDE’s) and certain partial differential equations. 

Consider first a two-dimensional system in polar coordinates (T, 6) of period 

2a in 0, given by 

T’ = ER,(T, 6, Lx) + 2R2(1, 6, cd) -k ... ) 
e (3.r) = w 

+ EWl(Y, 89, Lx) + E’W*(Y, 6, cd) + 
..- 

, 

where E and a! are parameters, E E (-Ed , c,,) G R, and w f  0 is constant. We 
assume this differential equation is sufficiently smooth for the foliowing calcula- 
tions to be performed; moreover, since only a finite number of coefficients of 8 
will be considered, it is sufficient that (2.1) represent a finite Taylor series, with 
a remainder term. We seek periodic solutions of (2.1), or integral manifolds in 
more general systems. In bifurcation problems, a is the bifurcation parameter 
while E represents a scaling factor so that we need only consider F near a constant 
r0 > 0; later, 01 will be chosen as a particular function of C. 

Now if each Rj is independent of 0, so Rj(r, 0, CX) = R&p, oi), in principle WC 
are done, for the periodic solutions are precisely those circles Y = r0 satisfying 

Thus, we strive to find new coordinates (r:, 8) for (2.1) in which enough of the 

Rj’s are independent of 0. (In general, we can only hope a finite number of them 
will be, but this is sufficient.) In the Hopf bifurcation problem treated in this 
paper, it is necessary only to transform r 4 F, as the dependence of the Wj on d 

is not important. For completeness however, in this section we transform 0 + 0 
as well, as this is important in considering bifurcation from a periodic orbit to 
a torus. These coordinate changes are constructed via integral averaging; here- 
we present a description of them. 

Suppose the coefficients of & for 1 < j < k - 1 are independent of 8, so that. 
w-e have 

Consider a transformation of the form 

f  = T + &&, 6, cl!), 8 = 6 -+ E%(P, B, a). (2.3) 
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Clearly (2.3) brings (2.2) to the form 

i = eR1(F, Lx) + e-m + E”-lR&,,(r; a) + e”R,(f, 8, a) + o(E”+y, 

8 = w + EFTI,(F, E) + . ** + dwv&1(7; a) + EkFvk(l: 0, a) + 0(&l), 

where 

a#, 0, a) = R,(F, 0, a) + w(au/as)(f, 0, cd), 

r&(f, 8, a!) = W,(F, 0, a) + co(av/ae)(~, 8, a). 

Thus u and v  must be chosen to make i?, and Wk independent of 8; this choice 
is given in the following lemma. 

LEMMA 2.1. Consider the relation 

where A is given and all functions are 2rr-periodic in 0. If b is chosen as 

then J(r, 8, CC) = &r, CL) is independent of 0. IH fact, A is the mean value of A, so 

Lqr, cd) = (1/27r) 1”” A@, 8, a) de. 
0 

Proof. All that has to be checked is the easy fact that 6 is 2r-periodic in 8. 
This lemma then guarantees the existence of a transformation (2.3) so that the 

coefficients of &, 1 < j < K, in (2.1) are independent of 0. Observe that the 

sequence of transformations averaging the E, e2,..., 8 terms may be written as 
a single one, 

i = r + EU1(Y, e, a) + ... + dqr, 8, a), 

Q = e + +, 8, a) + ... + Ekvk(r, 8, a). 

The situation in dimension greater than two is somewhat more complicated. 
The equations here take the form 

(2.4) 

where (P, 8) is the rotational part of the differential equation, and y  E RQ is the 
stable (or saddle point) part. It is thus assumed that the constant matrix A, 
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has no eigenvalues on the imaginary axis. This implies that for any solution 

e-(t), w,~(o) of (2.4) b ounded for all real t, we must have y  = O(E), since 

(if -4, is stable) 

y(t) zz. E s1, e”Q- P’d+>, ‘44, Y(S), 4 + O(41 ds (2.5) 

with the analogous formula in case of a saddle point. It is not clear how to entirely 

eliminate the presence of 6’ and y  in Rj and Wi; however, under very general 
conditions (but not always) we shall see it is possible to average (2.4) so that in 
the new coordinates, 

where wz = m(j) is given and 1 < j < k. In view of (2.5), this is sufficient, 

In particular, this can always be done if A, is a stable matrix. 
Assuming the coefficients of E j, 1 < j < k - 1, are already averaged and so 

satisfy (2.6), let us describe the averaging of R.+(T, 8, y, IX); the situation for Wr, 
is the same, so it is omitted. First expand R, in powers of y, 

m-1 

R,(r, 8, y, LX) = c RR,,@, 0, a) y” + o(i y i”“), 
I=0 

so R,, takes values in the vector space fl, z of symmetric Z-linear maps from 
Ro x . . . x Rq = RQ” into R. Letting 

it is seen that in the transformed variables (f, 0, y), the coefficient of cTZ in B is 

+ WI Y I”)* 

The notation Zu,,(r; 8, CX) A, of (2.7) needs some explanation. Recall that zdtiE 
(here we suppress the arguments (1’, 0, CX)) is a symmetric Z-linear map 
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By u,,Ao we mean that element of A,$ given by 

(%24(% ,..., a,) = (l/Z) c U&r ,...) Boai )...) a& 
i=l 

I f  1 = 1, u$r is a linear functional on R@ and thus may be denoted by a row 
vector; in this case, u,,Ao is the usual matrix multiplication. Observe also that 
the map 

A,“: Aqz -+ Aqz by lJ-+ UA, 

is linear. Clearly Aor is just the adjoint of 8,: Rq -+ RQ. 
Now, in order to obtain (2.6), it is necessary that 

R&F, 19, LX) + w + (F, 8, a) = independent of 6, (2.8) 

R,,(f, ‘J, 4 + w 3 (F, 8, cd) + Zu,,(l 0, a) A, = 0 for 1 <Z<m-1. 

(2.9) 

To get (2.8), simply choose ZQ,, as described in Lemma 2.1. The right-hand side 

of (2.8) is thus the average 

(112~) 1’” R&1; 8, a) d0 = (l/24 1”” Ii&> d, 0, a) d0. 
” 0 

To obtain (2.9), observe that for each (F, 01), ulil satisfies a linear inhomogeneous 
equation in 8, with periodic forcing term R,, . A well-known result in differential 

equations asserts that (2.9) has a unique 2?r-periodic solution if and only if the 
homogeneous equation 

w(du/dQ) + luA, = 0, uEA,z 

has no nontrivial 2r-periodic solutions; and this is true if and only if the linear 
map BoE: fl,’ ---f fl, z has no eigenvalues of the form &n/l, for all integers n. 
This is certainly true for I = 1 since dol: fl,l--, /IQ1 is just right-matrix 
multiplication of row vectors by A, , and A, was assumed to have no pure 

imaginary eigenvalues. However, for I > 1, do may have iwn/Z as an eigenvalue, 
and this motivates the following definition. 

DEFINITION. A Q x q matrix M is called Z-simple if the induced linear 
transformation W: flgz 3 A, z by U + UM has no eigenvalues of the form in/l 

for all integers n. 
Thus (2.9) has a unique solution if and only if (l/w) 9, is Z-simple. In Sec- 

tion 3, we shall give a necessary and sufficient criterion for a matrix to be 
Z-simple; in particular, any stable matrix (all eigenvalues in the left half-plane) 
will be shown to be Z-simple for all I > 1. 
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Here let us summarize the above as a theorem. 

THEOREM 2.2. Consider the dzj’jfereztial equation 

F = ERl@, 8, y, w.) + 2R&, 8, y, CL) + -.., 

e = w + EHqY, f3, y, a) + E”W&, 8, y, a) f  .‘I, 

*Q = A,y + EE;(f, 6, y, ff) + H2(Y, 0, y, a) + .-., _1 

for which the matrix (l/w) Ao is l-simple for each I < 1 < m - 1. Then there 

exists a transformation 

P = Y + &4(Y, 8, y, a), 

Tohere u is a polynomial in y  of degree at most m - 1, such that in the new (1:, 6, y) 

coo4nates, tlze term R, becomes R,,,(F, a) + (1 y  !‘fr’), where 

By means of a tmmfomzation 

e = 0 + C%(Y, 0, y, a) 

where v  satisjies the same conditions as a, the tePm Mjk. maff be similarly averaged. 

We shall see that even for the simplest bifurcation problems, it is necessary 
to average not only 0 terms, but also y  terms as above. The problems associated 
with (l/w) A, not being Z-simple, however, do not arise in the generic case. 

In studying the bifurcation from a periodic orbit to an invariant torus, one 
arrives at a system of the form (2.4) except that Rj , Wj , and Yj are also 2~ 

periodic in t. Consider then 

t = CR&, 6,y, t, L-L) + GR&, 6,y, t, a) + ..u, 

67 = w + .ml(r, 8, y, t, a) + ““W&, 0, y, t, a) -/- “‘, (2.10) 

3 = do y  + EIil(l., 0, y, t, Lx) + ET&, 0, y, t, a) + ...I 

where w, A, are constant as before, and all other terms are 2r-periodic in t. 

To average the term ~R,(Y, 0, t, CX)~“, consider a transformation 

i; = 1’ + E%&, 8, t, at) yl 

of period 2n in both 6 and t. The analogs of (2.8), (2.9) in this case are then 

(2.11) 

(2.12) 
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By expanding R,, and uko in Fourier series 

R&T, 0, t, u.) = 1 Rko&r, a) ei(me+nt), 

(2.13) 
u&, 0, t, a) = c Uk.omn(Y, a) eicme+nt,, 

one sees that (2.11) is equivalent to 

which in general can be solved only if wwz + n # 0 for all integers (m, n) f  
(0, 0) occurring in the expansion (2.13) for Rk,, . Very often this expansion is 

simply a trigonometric polynomial in 0, so this imposes only finitely many 
resonance conditions on w. How such conditions arise in the bifurcation to a 
torus are described in Section 5. 

To solve (2.12), again the Fourier expansion shows that one must assume a 
condition analogous to the Z-simplicity of Theorem 2.2, namely, that the 

induced linear transformation & . I* A,l+ Aa2 have no eigenvalues of the form 
;(m, + n)/Z for integers (m, n) appearing in the Fourier expansion of R,, . 

In practice, this restriction is generally of little consequence, as it appears only 
if terms of sufficiently high order must be averaged. Results of Section 3 show 
there is never any restriction when A, is a stable matrix. 

3. CHARACTERIZATION OF Z-SIMPLICITY 

In this section, we prove the following result. 

THEOREM 3.1. Let M be a q x q matrix with ezgenvalues A, ,..., A,, and 

MC flnz + A,l the induced linear transformation described in Section 2. Then 

the eigenvalues of M1 are precisely 

Two immediate consequences of this theorem are stated without proof. 

COROLLARY 3.2. The matrix M is l-simple ;f and only Ijp 

& Gb f  in 

for all integws nf > 0 with z nj = 1 and all integers n. 
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COROLLARY 3.3. If  all eigenvalues of M lie in the left half-plane, then iI!l is 

l-simple for each 1 > 1. 

Proof of Theorem 3.1. It suflices to consider the case where M is diagonaliz- 

able, since any M can be approximated by a diagonaliiable matrix, and the 
eigenvalues of iW vary continuously with M. 

Assume then there is a basis {el ,..., e<j such that Me, = hiei for each 2.. 

Letting d be the set of multiindices 

it is clear that any U E flGz is uniquely determined by the values 

We,, ,..., e,,), aEd. 

For any j3 E de, let Us E A,l be defined by 

(3.1) 

Clearly, the iJ, form a basis for d,l. Now we compute 

by (3.1). Hence Up is an eigenvector of Mz, with eigenvalue (l[Z) C:=, XBi . There 

are no other eigenvectors of Mz since the Ub form a basis. 

Remark. In order to solve Eq. (2.1 l), we must assume 

mw+nfO (3.2) 

for all (m, n) + (0,O) in the Fourier expansion of R,, . In order to solve (2.12), 
we must assume 

for all nj > 0, C nj = 1, where &LLi) are the eigenvalues of A, . 

Remark. Professor Y. Bibikov has pointed out to us the possibiiity of 
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dispensing with some of the above restrictions if one is willing to transform they 
variable as well as (r, Q namely, to consider transformations 

7 = y  + &(r, 8, y, a). 

Such ideas are briefly described by Pyartli [39]. In order to average (2.4), the 

Z-simplicity restrictions are not necessary. Instead, one further decomposes 
y  = ( y1 ,y2) into a stable and unstable part, corresponding to eigenvalues with 
real parts negative and positive. In the equation for f,  the terms involving y  are 
not averaged; rather, in the equations for yj one averages those terms which are 
independent of y, . After sufficiently many averagings one sees as in (2.5) that 

in fact y(t) = O(E~). S ome of the restrictions that arise in the time dependent 
case (2.10), specifically (3.2), are, however, essential and cannot be eliminated, 

4. HOPF BIFURCATION FOR AN ODE IN R2 

Our study of bifurcation begins with a discussion of the Hopf bifurcation for 
an autonomous ODE in the plane Rz. Consider such a system depending on a 

scalar parameter CL near zero, such that the origin x = 0 is a fixed point for all 01. 
To be specific, consider 

Assume the linearized equation about x = 0 is an exponentially stable spiral 
for 01 < 0, a center when az = 0 with eigenvalues fiws # 0, and an unstable 
spiral when 01 > 0. The eigenvalues of this equation are thus r(a) & ;~(a) 

where y(O) = 0, a?(z) > 0 for DI + 0, and w(O) = w,, . We stipulate that 
r’(0) # 0, and in fact, by using y( 01 instead of a: as a bifurcation parameter we ) 
assume y(o1) 2 01. The differential equation then takes the form 

k = A(cx)x + F(x, a), 

I F(x, 41 = O(l x 12), 

where /l(a) has eigenvalues 01 & iu(a) with w(O) = w0 . By means of a linear 
coordinate change x + P(M)x, where P(U) is an appropriate 2 x 2 matrix, we 

may assume A(Q) is in Jordan form 

Let us write 



INTEGRAL AVERAGING AND BIFURCATION 123 

Expanding in a Taylor series yields 

&i = homogeneous polynomial of order j in (x1, x”). 

As usual it is sufficient that this expansion be only a finite series. Passing to polar 
coordinates (.x1,x2) = (r cos 8, Y sin 0) gives 

I’==W$- rqe, u) f  rqe, cx) + .*. I 

B - W(U) + rD,(B, a) + r’D,(e, cd.) + ‘.. , 
(4.2) 

where 

C;(O, U) = (cos 19) B~~_,(cos 0, sin 8, a) + (sin 0) B~~,(c~s e, sin 0, CS) 

D,(P, a) = (COS e) 3;~,(COS e, sin 8, a) - (sin 19) B~~_,(cos 8, sin 8, a>, 

Observe that C, and Di are homogeneous polynomials of degreej in (cos 8, sin 0). 
We seek, for cc + 0, periodic solutions of (4.2) with r -+ 0. Scale F and OL by 
replacing 

1’ - El’, 01 -+ Ecf, 

where the new r is to be considered near a constant r,, > 0: to be determined 
later; we shall also later specify ci as a function of E, but it is not clear how to do 
this yet. hfter scaling, (4.2) becomes 

f  = +I. + +c,(e, +j f  wqe, Euj + ... , 

6 = CIA,, + e[uw'(O) + rD,(B, a)] + .-- . 
(4.3) 

Although this is not quite in the form (2.1) (since C, and Dj depend on c> it is 
clear that the averaging procedure still works. 

Let us now work through the averaging of (4.3). The generic situation will be 
completely determined by averaging the E and e2 terms in +, and, in fact, there 
is no need to average the terms in 0. Thus the coordinate change 

I: = T + E~~l(~, 8, u, cj + &“,(T, e, u, ej (4.41 

is considered. The argument B appears in ur and 21, since it appears in the coeffi- 
cients of the expansion in (4.3). Note that the inverse of (4.4) is 

r = 1: - e%(~, 8, u, e) + c+y. 
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Substitution into (4.3) yields 

Following Lemma 2.1, u1 is given by 

z+(T, 0, a, c) = -(Y~/co~) ie C3(s, ~a) ds 

since C, , being a homogeneous trigonometric polynomial of degree 3, has mean 
value zero. The coefficient of E is thus old. Next, ua is chosen as in the lemma; 
it is not necessary to determine ua explicitly since the coefficient of ~a is the mean 
value 

mean [F3Ca + (*) (LX? + +C3) -j- (,$$-) (cwJ’(O) + FD,) 

= mean 
c 
?C, -” C,D, 1 def 

= ?K. 
WO 

This is summarized as a theorem. 



INTEGRAL AVJXR4GING AND BIFURCATION 125 

THEOREM 4.1. Consider the dz~eerential equation 

i = E[011. + X3(8, a)] + &3C,(B, ml) + O(2), 

s = w. + +.w’(O) + YD,(B, a)] + O(G) 
(4.51 

arising from the Hopf bifurcation problem in R” described above, and tile scaling 
r -+ EY, a! + EOL. TJzen there exists a coordinate change 

transforming (4.5) into the averaged system of the fovm 

wJael,e K is the constant 

K = (l/274 s’” C&t 0) - (l/we) c,(e, o) D,(B, 0) do. (4.7) 
0 

The generic case occurs when K i; 0; for definiteness suppose K < 0. This 

suggests the choice CL = E, for then (4.6) becomes (dropping the bars) 

f = G(I. + y3K) + O(2), 
e = wg + O(e), 

so a periodic solution for P near 

To = (-Q-l:" 

seems likely. This is, indeed, the case although we must verify that all periodic 
solutions are obtained in this manner (i.e., none are lost in scaling). 

To see this, consider any periodic solution of the unscaled equation (4.2) 
bifurcating from r = 0, OL = 0. At some point (rl , B,) of the solution F must 
vanish, and after scaling by E = rr/r,, , f  vanishes at (r. , PI). Thus 

0 = ‘al-0 + 2r03K f O(2) = ElfO(O1 - E + O(G)) 

so that 01 = E f  O(G). Consider an annulus of the form 
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We see that for an appropriate y  = y(c), SY must be positively invariant since 

Y = (1 + y) PO 3 + = G(l + y) To (4 - (1 + y)’ + O(E)) < 0, 

r = (1 - y) PO 2 + = 2(1 - y) Yg (% - (I - y)Z + O(t)) > 0, 

hence the periodic solution lies entirely in &‘. This then implies the following 
theorem. 

THEOREM 4.2. Let the constant K de$ned in (4.7) satisfy K < 0, and let 
r,, = (-K)-lf2. Then all periodic solutions of the original bifurcation problem 

2 = f(x, a), XER” 

bifurcating from the origin Y = 0, 01 = 0 ma>) be obtained by scaling r -+ ET, 01 + EDL 

and averaging as above to obtain 

then letting 01 = E and considering F near r0 . About each such solution, there is a 
positively invariazt annulus S-Z! as in (4.8). 

If K > 0, the same result holds except now r0 = K-Ii”, c1 = -E, and ~2 is 

negatively invariant. Thus in either case, we haue in the unscaled variables 

a = -(sgn K) G, 

r - ) K ]-W. 

In the critical case K = 0 nothing more can be said until more terms of (4.5) 
are averaged. In order to study this situation, the following lemma is useful. 

LEMMA 4.3. Consider tlze system (4.3), but expanded in powers of E 

r: = <[as + v’c,(e)] + 2[r3C,(B) + ar”c3ye)] + ... ) 

s = w. + +xw’(O) + rD,(e)] -t *.- ) 
(4.9) 

where C,(e) = Cj(B, 0), C,‘(Q) = (a/&) Cj(B, 0), etc., and let the coeficients of 
E,..., EB in + be averaged by a series of coordinate changes 

1: = Y + &aj(Y, 8, a), 1 <j<k. 

Then the following properties hold for the averaged system: 
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(1) For all nz, the coefficient R,(r, 0, a) of E xi2 in P is a poEyrwmiaI in (r, aj 

qf the form 

VI.+1 

(2) For all m, the coefficient W,&, 0, a) of 8jz in 0 is a pol+mial in (t, ffj 
of the form 

(3) The terms P&0) and VJO) are polSyzomials in (cos 8, sin 8) wd sattiiy 

P”,j(B + n) = (- l)“‘V,j(S), 

Vmj(6 -j- 7-r) = (-l)“+V~&). 

That is, only the terms cosp 0 sina 0 appear, wheep f  q = m t j (mod 2). 

Proof. Observe that 1 and 2 simply say that under the reverse scaling 
r -+ (l/~.)r, cy -+ (l/~)a, that E is absent from the’differential equation. Condition 3 

says that under the substitution 01+ -01, E + -6, B + 8 f  rr, the equation 
remains unchanged. It is thus clear that the unaveraged equation (4.9) (see also 
(4.2), (4.3)) satisfies these three properties. We induct on k, so assume the 
E,..., 8-l terms have been averaged, and 1, 2, and 3 hold for all terms. Cleadg, 
then, upon averaging the & term, u, must have the same form as the coekTicient 
Rr: in the sense that 

U&, 0, cd) = c r~+%hJ*“(Bj, 
j=0 

7Jhj(8 + 27) = (-l)“j T&j(0), 

~~~~(6) = polynomial in (cos e, sin 6). 

(4.10) 

This is because Lemma 2.1 shows that uk is obtained basically by integrating R, 
with respect to 8; in particular, each ~~~(0) (liie Pkj(f?>) involves only terms 

co@-’ 0 sing 0 with p + q = k + j (mod 2). The coordinate change 

has the property that under the reverse scaling, E is absent; this property thus 
carries over when the ~1 term is averaged, that is, the averaged equation satisfies 
I and 2. We also see that from (4.10), the transformation (4.11) remains un- 

changed under the substitution a + -01, E -+ -E, 0 -+ 8 + V; thus 3 also 
holds. This then proves the lemma. 
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Lemma 4.3 implies that when (4.9) has been averaged, it must have the form 
(for Y bounded) 

r’ = Ecu + E”[Y”Kz + O(Lx)] + 0(&x) 

+ e”[r”K4 + O(a)] + *** + EyYfP+lK2D + O(m)] 

+ op+y, 

e = wg + O(E), 

where Kz , I& ,..., Ka, are computable constants and k = 2~. The generic case 

K2 f  0 was analyzed above, so here assume 

K, = ... = Kzee2 = 0, K “zf K,, f :  0. 

Thus we are considering 

t = ECXY + O(&) + SW’+lK + 0(++1), 

e = wg + O(E). 

For the same reasons as in the generic case, the choice 

I $P-1 

O1 = (-& 
K < 0, 
K > 0, 

(4.12) 

(4.13) 

is made, and we work near r,, = 1 K I- l/ap. This leads immediately to the natural 

generalization of Theorem 4.2. 

THEOREM 4.4. Let the avtiaging procedure be perforfned on the terms in 1: in 
(4.3) until (4.12) is obtained for some p 3 1, K + 0. Then the conclusions of 
Theorem 4.2 hold with the following changes: 

(1) Choose 

a = -(sgn K) 9-l (scaled), 

r. z.zz j K I-l/Q’, 

(2) The annulus ~2 is positively invariant ;f  K < 0 wd negatively invariant 
if K > 0, as before. 

(3) In the unscaled variables, 

01 = -(sgn K) &‘, 

Y - / K j-1/2% 

We omit any further justification of this theorem. 
Of course Theorems 4.2 and 4.4 do not establish the existence of periodic 

solutions, but merely estimate the region where they may be found. In Section 6, 
existence of such solutions will be proved. 
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Let us close this section by briefly examining van der Pal’s equation 

5 - E(l - x2)* + .2’ = 0 (4.14) 

from the point of view of averaging; we wish to compare this with the equations 
obtained in the Hopf bifurcation. It is known that (4.14) has a unique periodic 
solution for all E, stable when E > 0, and with amplitude near 2 for small F. 
Only E near zero is considered here. In polar coordinates (x, 9) = (‘TV cos N, 

r sin @), (4.14) becomes 

f  = I-(1 - 1’2 COG e) sin2 6, 

e=-l+E(l- r2 cos2 6) cos B sin 0. 

Upon averaging via a transformation 

we obtain 
r = 1’ + EU(r, e>, 

1’ = E((f/2) - (P/8)) + O(G), 
(4.15) 

8 = -1 + O(e), 

because of the computation of the mean value 

(1/2~) [02m r(l - r2 co9 0) sin2 8 d0 = (r/2) - (r3/8). 

This suggests the existence of a periodic solution, for small E, near r = 2, the 
unique positive root of (y/2) - (~~18) = 0. 1) 7 is instructive to compare (4.15) 
with the normal forms listed below, obtained for the Hopf bifurcation by 
Theorems 4.2 and 4.4. 

f = 2(r + T-SK) + O(2) 
i = 2(-r + 7%) + O(S) 
9 = ,2P@ + y2D+ljq + qEZPtl) 

1' = ,2P(+ + r2P+lJq + q&+1) 

B = wg + O(E) 

(generic case, K < 0), 

(generic case, K > 0), 

(P 3 2, .K < o>, 
(P >, 2, K > 01, 
(all cases). 

5. HOPF BIFURCATION IN HIGHER DIMENSIONS AND 

MORE GENERAL BIFURCATIONS 

Our object in this section is first to carry over the results in Section 4 to ODE’s 
in R, (12 > 3) and then study more general systems such as bifurcation to an 
imariant torus. This will pave the way to considering infinite-dimensional 
evolution systems (FDE’s and PDE’s)-in Section 7. 
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Consider an ODE in coordinates (x, y) E RZ x Rn-” = R”, depending on 
the parameter 01, such that the origin (x, y) = (0,O) is a fixed point for all IY, 
with linearized equation 

3i = Ap(a) x + dqa) y, 

i’ = dY(cL) x + [A, + cm(a)] y, 
(5-l) 

with Ap(~) the matrix in (4.1), and where A, has no pure imaginary eigenvalues. 
When 01 = 0 these linear equations decouple, and it is seen we are considering 
the appropriate generalization of the situation in Section 4. Expand the nonlinear 
equation as follows: 

Ji = B,(y, a) + B,(y, a) x + B,(y, a) x2 + -.- ) 

jj = To(x, cc) + r&x, Lx) y  + I--&, a)y2 + .-* . 
(5.2) 

Then the origin is a fixed point of (5.2) with variational equation (5.1) if and only 

if 

Rl(O, 4 = 0, ~,(O, 4 = a 

(q&)(0, 4 = a4 (ar,/ax)(o, CL) = aH(a), 

J4(0, 4 = ,4&), r&A 4 = 42 + ~Jq4, 

and this implies B,, , Br , I’,, , r, have the form 

NY, 4 = a-%)~ + F(Y, a)~“> 

4(y, 4 = A&) + G(Y, 4r, 

r&c, a) = ck!H(~)X + J(x, a) 9, 

r&c, cc) = A, + aM(OI) + A@, a)x, 

for some functions F, G, J, N. The differential equation (5.2) then takes the form 

* = oIE(a)y + F(y, 4y@ + 444~ + WY, 4 v  

+ qy, 4 a? + WY, 4 x3 + . . . . 

j = &(ol)x + J(x, a) x2 + A,y + aM( + A+, a) xy 

+ l-2(x, 4 y2 + T3(% a) y3 + . .-, 

which in polar coordinates x = (r cos 0, r sin l3) becomes 

r: = pqe, 4 Y + qe, Y, 4 Y~I + rra + G,(e, Y, 4 ~1 
+ x-,(6 Y, 4 + r3c,(e, Y, 4 + - , 

0 = i [olE,*(e, a> 3~ + F,*(e, Y, 4 ~“1 + k+) + G,*(e, Y, 4 ~1 (5.3) 

+ rD3(e, Y, 4 + rw(e, 4’, 4 + - , 
j = as above but with x = (I cos 8, P sin 0). 



INTEGRAL AVERAGING AND BIFURCATION 131 

The notation is such that E1 , El*, Fr , etc., are computed from E, P,..., just as 
Cj and Dj are computed from BjMl as in Section 4. Moreover, the subscript j in 
(5.3) (such as on El , Er*, Fl , Cs , etc.) means the indicated function is homo- 

geneous of degree j in (cos 6, sin 6). Scale (5.3) by 

Y - El’, y - cy, a!-+- ELI! 

to get 

8 = w. + E 
1 
LA(O) + I-D& q, ,a) + : I?,*(@, a) y 

and we are ready to average, The generic case ought to be determined by 
averaging the CC, my, and 2 terms in (5.4) as we anticipate y  = O(E). Thus the 
associated transformation has the form 

with the inverse satisfying 

Y = r - a& 8, z, c) + O(E / y  1) + O(2). 

Substituting into (5.4) yields 
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where C, , El ,... are evaluated at (0, 0, .~a!) and 3 = (I’ cos 0, r sin 0). As before, 
the coefficient of E (when -y = 0) is averaged by letting 

u&, 8, 01, c) = (--yz/wo) Jo C3(s, 0, ~01) ds; 
0 

this coefficient then becomes the mean value G. To average the coefficient of EJJ, 
neglect the lower order term mE1 and let W(F, 8, QI, c) be the unique 2n-periodic 
row vector solution of 

rG(4 0, 4 + (awpe)(~, e, a, <) w. + W(T, 8, a, <) A, = o. (5.5) 

Finally, average the coefficient of .~a (with y = 0) by choosing ua so as to obtain 
the mean value 

mean [1:“C4 + (+I (a:f + P3Ca) + ($q (aw’(0) + FD3) + w(cdf3 + Jq] 

= F3 mean 
[ 
CG - i C3D3] + mean[wJ?] + O(a). 

,Observe this is not the same quantity obtained in Section 4, due to the additional 
term mean(zlJ9). Thus even in the generic case, the terms involving y cannot be 
ignored. It is clear from (5.5) that 

for some w*, and so, since f = (1; cos 0, r sin B), we have 

mean(WJ?a) = F3K** 

for some constant K**. This gives the analog of Theorem 4.1. 

THEOREM 5.1. Consider the differential equation 

f  = E[LYP + s,(e, Ey, Eci) + mEI@‘, cd)3 

+ F,(e, Ey, ca) y  + rG,(e, EJ’, Ea) y] + E+qe, Ey, cm> + O(G), 

8 = wo + E 
[ 
ad(O) + a,(e, cy, a) + f  E,*(B, ‘“)J’ 

-t ~~1”(~, <Y, +Y’ + G?;*(e, EY, +Y] + w), 
(54 

j = /lay + +dqEcd) x + JEX, ax) x2 + d!q,a.)y 

+ N(cc, Ecd) xy + rz(<x, a) yy  + O(G), 
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arising from the Hopf bf i urcation problem in Rn described above in Section 5, and 
the scaling r + EY, 3’ -+ EY, a: + ECL Then there exists a coordirzate change 

1’ = Y + EU&, 0, CL, c) + l u(r, 8, 01, E)J’ + A&, 6, 01, c) 

transforming (5.6) into the averaged qlstenz of tlze form 

P = EC@ + EVK + O(, 1 “y I”) + O(E2 j y  I) + o(Eyt 

e = wg + O(E), 

j = ‘Gy + O(4, 

mhere K is the constant 

K=K*+K**, 

K* = +; 1”” C&l, 0,O) - &, C&Y, 0,O) D3(S, 0,O) de, 
“0 

1 
s 

“77 
K”” - 

277 0 
w*(B) JO, O)(cos 19, sin @a d0, 

where w*(6) is the unique 2z--periodic solution of 

G,(& 0, 0) i w*‘(e) cog + w*(e) A, = 0. (5.7) 

We recall that for each (x, a), J(x, LX) is a bilinear form in the x-space EP, taking 
values in the y-space; in the theorem J(0, 0) acts on the point (cos 0, sin 0) E X2. 
Also note that the easiest way of solving (5.7) and computing K** may be to 
expand G, and w* in Fourier series; see for example, Wright’s equation in 
Section 9. Observe the following interesting fact: the property K f  0 depends 

only on the differential equation at 01 = 0 and not on the particular parameteriza- 
tion passing through this equation, since the formulas for ‘KS and K** do not 
involve derivatives of terms with respect to 01. We are assuming Re h(e) = 0~ 
for the eigenvalues X(U) of &LX), but if more generally, we have Re xl(O) = 

u f  0, then a generic bifurcation wiII still occur if K # 0. In this case the 
averaged equation for 1’ would be 

f  = Re(h(ca?))r + ~~r3K + O(G) 

= Ecmr + 2FK + O(S) 

= +&1/r + r3K) + O(c3), & = -sgn(lTK), 

where LX = -sgn(vK)E. Thus, if’ K f  0 for the equation at OL = 0, then a 
generic bifurcation should occur if Re A’(0) # 0. We recall that the assumption 
here that Re h(a) = OL is simply for convenience. As long Re A’(0) # 0, a# of 
the averaging techniques described here app[v. 
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Higher order terms of (5.6) can be averaged provided A, is I-simple for 
appropriate 1. In the following lemma, the terms E, G,..., l 2p are averaged. The 

proof involves essentially the same arguments as .in Section 4, especially Lemma 
4.3, so it is omitted. 

LEMMA 5.2. Let A, be l-simple for all 1 ,( 2 < 2p - 1. Then the coejicients 

of Gyi, 1 < i < 2p, 0 <j < 2p - i in the expression for 1: in (5.6) may be 
averaged with a transformation of the form 

F = Y + 5 EQ.4i(T, e, y, 01, E), 
i-l 

ui = polynomial in y  of degree (2p - i). 

The resulting avaaged equations have the form 

P = EOY + O(c2a) + <V3K, + cq5K4 

+ z O(& j y  p-i”“) + q&3+1) 
i=l 

e = w. + O(E), 

jl = -&y + O(e), 

where K, , K4 ,..., K2p are computable constants. 

In the nongeneric case K2 = 0; if KS = ..* 
then we are considering (dropping the bars) 

= 

. . . + +7”“tlK2, 

= K2W-2 = 0, K ‘2’ K,, + 0 

t = EW + 0(&x) + ~“*r~p+lK + C O(8 1 y  j”“i+‘) + O(++l), 
i=l 

e = w. + O(E), (5.8) 

9 = A oy + Eq-, 6, y, % c), 

for some function Y. 

If  w>, w, y(t)) is any solution bounded on (-co, co) (e.g., a periodic 
solution) then the equation Tory can be written in integrated form 

y(t) = es”, eAQctps) Y(T(s), B(S), Y(S), 01, c) ds (5.9) 

if A, is a stable matrix. (If A, is hyperbolic then two integrals are needed, one 
from - co to t, the other from t to + CO.) Temporarily choose <‘as the supremum 
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of I Nl + lY(4i ( unscaled), so that upon scaling, ! r(t)1 + ! y(t)\ has 1 as its 
supremum. But from (5.9), we have for appropriate constants 4 > 0,52 > 0 

so that \ r(t)[ > 1 - 2Q / E / for some t. Thus as long as we scale so that Y 
remains in a bounded region, as E + 0, we have (uniformly) y  = O(E). In 
particular, in (5.8), ~~$O(& / y  \2P-“+1) = O(&*l ), and this justifies the choice 

of a = -(sgn K) &‘-l. Finally, the annulus Se* surrounding a periodic 
solution is given by 

Observe that A@’ may not be invariant as before; if K < 0 but A, is not stable, 
for example, then solutions will enter &* along the boundary r = (1 & y) P@, 
but may leave along / y  / = D ( E j. We obtain then the folIowing theorem. 

THEOREM 5.3. Let(5.6)b e avwa e g d as in Lemma 5.2, and assume the form (5.8) 
for some K f  0. Then allperiodic solutions of the unscaled equation (5.3) bifurcating 
fkm r = 0, y  = 0, CL = 0 may be obtained by letting DI = -(sgn K) &-r in 

(5.8) to give 

p = $P(*r $ $q‘q + o(&v+l), 

s = w. + O(E), 

,i, = A,y + O(E), 

& = -sgn K, 

(5.11) 

and by considering Y near Pi = j K j--l/$g and y  near zero. The annzdus .-d* in (5.10) 
is positively invariant if K < 0 and A, is stable. 

Let us now briefly describe the phenomenon of bifurcation of an invariant 
torus from a periodic orbit. Suppose in Rn an autonomous differential equation 
f  = f(x, a) has for a! = 0 a nonconstant periodic solution p(t), which is non- 
degenerate, that is, the characteristic multiplier JA = 1 is simpIe; It is well known 
that for \ 011 small there is a unique periodic solution p(t, a), smooth in (t, (~-1, 
with p(r, 0) = p(t). We may assume also by resealing the time that p(t, a) has 
period 2~. In an appropriate coordinate system around the periodic orbit, the 
autonomous equation may be rewritten as a nonautonomous equation 

where x1 E; P+r, fr is 2n-periodic in t, and fr(t, 0, CX) = 0. The solution x1 = 0 
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corresponds in this coordinate system to the periodic orbit p(t, m). We may 
write (5.12) as 

21 = A(a) x1 fF(x, ) t, a), 

I%%, t, 41 = O(( x1 I”). 
(5.13) 

The linearized equation 3;; = A(a) X, here has been made autonomous by a 
linear transformation, using Floquet theory. Assume the same conditions as 
before on the eigenvalues of A(m). In particular, the eigenvalues -&~a at 01 = 0 

correspond to characteristic multipliers p.== e-- +“aio~ of the original periodic orbit. 
The averaging of (5.13) then proceeds exactly as for the Hopf bifurcation, but 
with the appropriate modifications described in Section 2. In particular, in order 
to average the terms &Ca(0, t) and E%~C,(O, t) (as in (5.6)) it is necessary to 
assume mw,, + n # 0 for (m, 12) + (0, 0), and / m [ < 4. That is, one must 
assume the critical characteristic multipliers f~ = e*zriiwo satisfy 

PN# 1, iv = 1, 2, 3,4. 

Under these conditions, averaging and scaling gives rise to a normal form as in 
(5.1 l), where p = 1, K is constant, and the higher order terms are periodic in t. 
I f  K # 0, one may expect a two-dimensional invariant manifold near the torus 

y  zzz / K I-W, y  = 0, 0, t = arbitrary, 

where (0, t) are the coorinates on the torus. This is indeed the case and follows 

from standard results on invariant manifolds. 

6. EXISTENCE OF THE BIFURCATING SOLUTIONS 

We have yet to actually prove that the system (5.11) obtained by scaling and 

averaging (5.2), (5.3) h as a periodic solution bifurcating from the fixed point 

F = 0, 3’ = 0; this will now be shown. Briefly, the system (5.11) possesses an 
invariant manifold Z, the center manifold, given by y  = y(r, 8, c). It is defined 
near r = 0, E = 0, and passes through the origin for each E, so thaty(O, 8, E) = 0. 
All orbits which stay near the origin for all t E (-co, co) lie on the center 
manifold; in particular, all periodic solutions lie on 2. By substituting 3’ = 
~(r, 8, c) into the differential equation (5.11) the search for periodic solutions has 
been reduced to a two-dimensional problem, as the equations now involve only 

(r, 6. 
Strictly speaking, it is not necessary to use the center manifold, as it is not 

difficult to prove the existence of periodic solutions of (5.11) directly. Its 
advantage lies in the fact that many infinite-dimensional systems (such as 
functional and partial differential equations) have center manifolds. Obtaining 
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periodic solutions of such systems directly may be very difficuIt; by looking only 
on the center manifold, however, the problem is reduced to a two-dimensional 

ODE. 

To obtain the center manifold, augment the original system (5.2) by con- 
sidering the parameter 01 as a state variable satisfying & = 0. The linearized 
equation about the origin (x, y, CX) = (0, 0,O) is then 

2 = A,(O) x, 

j = A&v, 

&! = 0. 

Since no eigenvalues of A, are purely imaginary, the center maniford theorem 
guarantees the existence of a smooth invariant three-dimensional manifold 2: 
passing through (x, y, CX) = (0, 0,O) and tangent to the (x, CL) space. In polar 
coordinates x = (r cos 8, I’ sin 6) then Z has the form 

z: y = y”(r, 6, a), 

0 = Y”(O, 0, 0) = g (0, e, 0) = g (0, 0, O), 

for some function y*. Since the fixed point r = 0, y  = 0 must lie on Z for all E 
we also have y*(O, 0, a) = 0, so that 

y*(Y, 8, a> = ?%*(I’, 8, 011, 

zyo, 0,O) = 0 

for some smooth xc. After scaling P + ET, y  ---f ey, a -+ FOI and averaging by 
7 -+ 1’ + O(E), and setting 01 = j&-r, the equation for .Z takes the form 

2’ = Yx*(Er + O(G), 0, &ZE’2P) + O(B) “zf y(r, 8, c). 

Note that y(r, 0, C) = O(E) uniformly, from (6.1). Thus substitution of y  := 
y(r, 8, F) into (5.11) yields the differential equation on Z 

f = &y&y + r'3~zMjq + qE2P+I), f  =sgnK, 

e = w. + O(E). 
(6.2) 

The above reduction of the bifurcation problem to L’ carries over for more 
general (infinite-dimensional) systems whenever the following hold: 

(1) there exists a smooth invariant manifold Z given by y  = y+(r, 8, a) 
through the origin (Y, y, a) = (0, 0,O) and tangent to the (I., 8, ol)-space; 
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(2) each point of Z lies on a trajectory of the differential equation, that is, 
the differential equation induces a smooth flow on g and 

(3) all orbits lying near the origin for all time t E (- co, 03) lie on L’. 

Quite generally, if the equations generate a semigroup T(t, X, L-X) such that the 
map (x, a) -+ T(t, X, CX) is smooth for each fixed t, then a center manifold with 
these properties exists. This is the case for retarded functional differential 
equations and for many classes of PDE’s such as certain nonlinear parabolic 
equations, and the Navier-Stokes equation. 

It is now very easy to obtain periodic solutions for the two-dimensional 
system (6.2). 

LEMMA 6.1. For r 1Festricted to a sujiciently large bounded region, the system 
(6.2) has a unique pmiodic solution r(t, E), 0(t, l )fo~ small 1 E [ # 0. As E + 0, 

r(t, e) -+ r. = j K I--lj*D uniformZy, 

def 
r(c) = period of tlze solution + 27r/w0 . 

The solution, restricted to Z, is stable when K < 0 and unstable when K > 0. 

THEOREM 6.2. Let the Hopf b@cation problem (5.6) be averaged, and the 
substitution 01 = -(sgn K) &‘--1 made, as described in Theorem 5.3, so that 

f  = ,*J(&r + r”“+lK) + O(E”P+~), & = -sgn K, 

s = wg + O(E), 

j = &y + O(4, 

is obtained. Tlzen in the original (unaveraged and unscaled) equation, there is a 
unique periodic solution bifuzating from the origin, either for ~11 > 0 (when K < 0) 
OP 01 < 0 (when K > 0). Mme precisely, in the original coordinates (x, y, IX) 
with x = (Y cos 8, Y sin 0) the solution has the form 

lft, e) = ET0 + O(2), l’. = 1 K j-W’, 

w, 4 = mot + O(e), 

y(t, 6) = O(E2), 

T(C) = puiod of the solution = (2a/w,) + O(E), 

where E is related to the bifurcation parameter 01 by 

01 = -(sgnK)E2”. 

The solutions obtainedfor E and --E are identical and only d#er by a time translation. 
TJze solution is stable if and only ifall eigenvalues of A, lie in the left half-plane and 
K < 0. 
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In case the eigemalues h(u), G) of the (Y, 6) -su A by ace of the linemized epaticirr 

satisfy wrmely Re h’(0) f  0 rather than Re X(E) = o(, then all of the above carries 
over with the obvious modifications. 

Only Lemma 6.1 will be proved, as the theorem is a simple application of this 
lemma to the scaled and averaged system considered in Theorem 5.3. 

Proof ojL.emma 6.1. Consider the solution r(t)? 0(t) of (6.2) for E fixed, with 
initial conditions 

l’(O) = p, 6(O) = 0, 

and define R(p, E) = ( ) h Y 7 w ere S(r) = 27. Periodic solutions then are given by 
solving 

NP, 4 = P> (62j 

and r = ~(p, cj is the period. From the form of (6.2) it is clear that 

T(P, 4 = (27&J,) + O(4 
R(p, e) = p + Es”(2+J,)(*-p + p+lK) t o(ey. 

Thus (6.3) reduces to solving 

S(p, cc) “zf byR(p, e) - p) 

= (27+,)(&t-p + /3-K) f  O(E) 

= 0. 

It is immediate that S(rs , 0) = 0, (&‘S/&,)(r,, , 0) f  0. Hence by the implicit 
function theorem there is a unique zero p = p(e) of S, with p(O) = ~a . This 
establishes the existence of the periodic solution. The assertions about stability 
are a consequence of the existence of the annulus A? in Theorem 4.3; alternativeIy 
one may observe that 

R < 0 * (Xj”jar,,)(p(~), E) < 0 3 stability (in Xc>, 

K > 0 * (aS/&,,)(p(~), 6) > 0 3 instability. 

7. INFINITE-DIMENSIONAL SYSTEMS 

Here we show how the averaging procedure and its application to bifurcation 
carries over to certain classes of infinite-dimensional evolution equations, such as 
functional and certain partial differential equations. Assume the equation can 
be written abstractly as 

2 = f(X, a) = A(a) z + F(2, a), 

F(x, a) = O(j z I”), 
(7.1) 
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where z and 1 lie in (generally different) Banach spaces. Specifically, assume 

is sufficiently smooth, where X1 and X2 are Banach spaces with X, continuously 
and densely contained in X2 . For example, if (7.1) represents a parabolic 
equation of the form 

ax/at = g(x,x, ax/ax, a4/as, m), 
x E !2 = smooth, open, bounded set in P, 

x=0 for XE 22, 

then choices for (X1 , X2) would possibly be (Ho2(G), P(-L2)) or (C,+=(G), C?(G)). 
We also assume, as before, 

f&-h 4 = 0, 
(wa.d(o, 4 = 44 

= bounded linear operator from X, to X2 , 

so that the linearized equation about the origin x = 0, when (Y = 0, is 

2 = 24(0)x. 

By considering X, as a subset of X2 , then A(0) (or more generally A(U)) may be 
regarded as an unbounded closed operator from X2 into itself, with domain 
X1 _C X2 . Typically,. the space X1 (when not considered a subset of X2) will be 
eldowed with the graph norm of A(0). We have the spectral decomposition 

X2 = P 0 Q, 

where P is the two-dimensional eigenspace of A(0) corresponding to simple 
eigenvalues j+, f  0 and the spectrum of A,(O) (= A(O) restricted to Q) is 
assumed to lie a positive distance 6 from the imaginary axis. In fact, we assume 
the decomposition 

X2 = P(4 0 Q(4 
dim P(z) = 2 

holds for all 01 near 0, the positive distance S holds uniformly, and the eigen- 
values of A(z) restricted to P(a) are DI & k(a). Since the eigenspace P lies in 
X, _C X2 the decomposition restricts to Xr 

X, = P @ (Q n X,) zfP 0 81. 
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It is now clear that (7.1) can be decomposed by writing 

~=x+~EP@Q~=X~, 

,%=x+yEP@Q=x~, 

x = (r sin 8, r cos 0). 

Assuming all of the above conditions on the spectrum of a(a), and the resulting 
decomposition, the only other assumption needed is the existence of a center 
manifold 

‘5 y  = y”(r, 8, Lx) E x, ) 

0 = y”(0, 8, a) = (ay*/aY)(o, e, O), 

through the origin T = 0, and tangent to the (r, 8, a) space. It is important that 
y* be a smooth map taking values in X1 , since after averaging, we must sub- 

stitutey = y*(r, 19, a) into the right-hand side of (7.1). As described in Section 6, 
a smooth flow is induced on .Z, and all periodic orbits bifurcating from the 
origin lie on Z. The basic assumption on (7.1) necessary for Z to exist is that 
the nonlinear semigroup T(t, z, a) in Xi generated by (7.1) be smooth in (.z> a) 
for each fixed t. 

With the above setup, all there remains to do is to rigorously justify the formal 
averaging procedure applied to (7.1). Recall from Theorem 5.1 the coordinate 
change 

(7.2) 

used to compute the first order constant K. (For simplicity we consider only 
this case, as averaging of higher order terms is similar.) Here ui and u, are scalar 
valued, while w takes values in the dual Q1* of they-space ,Q1 . In fact ZU(Y, 8, a, C) = 
rw*(B) whereas in (5.7), w* is the unique 2z-periodic solution of 

G2p, 0, 0) + w*ye) w. + w*(e) A, = 0. (7.3) 

Let us consider more carefully the meaning of Eq. (7.3) and trasformation (7.2) 
in the infinite-dimensional space. Now G, arises as a coefficient of y  in the 
differential equation involving f  (after decomposing); hence G,(B, 0,O) for each B 
is a linear functional acting on y  E Q, . In particular, writing G, as a Fourier 
series yields 

G,(B, 0,O) = f  g,eine, 
n=-cc 
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By expanding ~“(0) as a Fourier series 

w*(e) =rz f  w,eino, 
n-;--m 

(7.4) 

inserting this into Eq. (7.3) and equating coefficients, we arrive at 

w,n = -g&4, + imJ&l. (7.5) 

Since Ao is a bounded operator from Qr into Q, then (A, + inw,)-r is bounded 
from Q into Qr . This implies in particular 

Thus by defining w* by (7.4) and (7.5), both w* and its derivative w*’ are square 
integrable functions taking values in Q *. This is stronger than saying they take 
values in Q1*, and is due to the presence of the smoothing operator (A, + z&)-r 
in (7.5). This last observation is important since when Eq. (7.1) is rewritten in 

terms of the new averaged coordinates (f, 0, y), it is seen that the functional 
W(Y, 0, 01, l ) acts onj E Q. Indeed, this is what happens when (7.2) is differentiated 
with respect to time. 

One thus concludes that the form of the equation, that is, x E Xr , and 
f  E X, , is preserved under any sequence of averaging transformations (7.2), and 
(of course) scaling; the equation y  = y(r, 0, C) describing the center manifold in 
scaled, averaged coordinates may be substituted into the infinite-dimensional 
system, to reduce the problem to the two-dimensional case, as before. 

8. FUNCTIONAL DIFFERENTIAL EQUATIONS 

In order to average retarded functional differential equations, care must bc 
taken as to how the equation is interpreted as an (abstract) ordinary differential 
equation in a Banach space, as in (7.1). Consider the RFDE 

where the notation of Hale is followed. In particular, assume z E R", and zt is 
the function defined by 

.z#) = z(t -I- 8), --r<e<oo; 

zt E C E C([-r, 01, Rn), 
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where r is fixed. The phase space of (8.1) is thus the Banach space C, and 
f = f($, 0~) satisfies 

f: c x (-ao, %) -+ A”, 

f(0, 01) = 0. 

Equation (8.1) can be solved forward in time by specifying an initial condition 
x,=#~Cattimet=O. 

Some remarks on notation are in order here. As there is some overlap in the 
notation for FDE’s and that of the previous seven sections, it will be necessary 
to adopt several new conventions for the integral averaging. For example, we use 
0 from now on to denote the argument of zt, so that 0 E [--r, 01, and not the 
angle variable as before. The symbol 5 henceforth denotes the angle in polar 
coordinates (r, 5). 

Write (8.1) as 

2(t) = L(a) xt + qx, ) a), 

Jx4 = WP#X@ 4 (8.2) 

I w, 41 = O(l$ IS), 

so that the linearized equation at the origin is, for each 01, 

i(t) = L(a) xt . 

Here L(m) is a linear functional on C but takes values in Rn; it thus has the 
Stieltjes integral representation 

where the n x n matrix ~(cL, 0) is of bounded variation in 0 E [-Y, 01, and smooth 
in (Y when considered as a BV[--r, 0] valued function. 

Equations (S-l), (8.2) certainly do not fit the framework of Section 7, in 
particular (7.1). The left-hand side i(t) lies in RRn and this cannot be considered 
a phase space of (8.2). The clue to writing (8.2) as .an abstract ODE comes from 
the variation of constants formula for retarded equations. 

First scale x -+ EZ, 01+ EOL so that (8.2) takes the form (with a differentF) 

2(t) = Lz, + EF(‘z, , 01, E), 

L = L(0). 
(8.3 

The linear equation 2(t) = Lxt at E = 0 generates a strongly continuous 
semigroup T(t) of bounded linear operators on C, with infinitesimal generator A 
given by 

A# = (w@ 4, 
+~Crn(b)\&O) =I& =domainofA. 

505/26/1-10 
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In integrated form, (8.3) becomes 

s 

t 
Zt = T(t) x0 + E T(t - s) X&x,, 01, E) ds (8.4) 

0 

where X0 = X0(0) is given by 

I = n x n identity matrix, xov9 = I(), -r < 8 < 0. 
e = 0, 

Strictly speaking X0 does not belong to C because of the discontinuity at 0 = 0; 
nevertheless X0 can serve as the initial condition for the linear equation, so the 
semigroup can act on it to produce T(t) X0 . Equation (8.4) must be interpreted 
as an equality for each 0 E [--Y, 01, but one may informally think of it as an 
equation in C. If (8.4) is differentiated with respect to t. we obtain the formal 
expression 

(d/dt) zt = Aq + cX,,F(zt , a, E). (8.5) 

As it stands, (8.5) does not make sense, for two reasons: 

(1) In general ,st does not belong to the domain of A; it is certainly Cl 
(at least for t > r) but may not satisfy 2(t) = Lq . 

(2) The nonlinear term is a multiple of X0 , hence does not belong to C. 

We shall show that (8.5) does make sense if interpreted correctly. Both of the 
above problems can be remedied at once if we think of zt as belonging to 

zt E CL = {+ E C / q5 is of class Cl) 

and extend the domain of A to all of Cl. 
To extend the domain of A, consider the formula for A-l; to solve A+ = # 

for + we have 

5w9 = #3 + s,B ?44 ds 

with 4(O) determined by 

VW) = L [4(o) + [ m ds] 

= [I” d?@j d(O) + I’O Qw) (9x4 ds- 
--T *--7 

(8.7) 

As long as 

det [JO+ 4(e)] f 0 
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then+(O) is uniquely determined, hence A has a bounded inverse. What is crucial 
is that formulas (8.6), (8.7) are defined even for # = X, . In this case, $ is the 
constant (matrix valued) function 

+ = A-1X0 = [jO+ a,(s)]-l. 

This means that the domain of A has been extended to include all constant 
functions, provided we let B take values in 

BC = C @ (X0), 

the space of all functions continuous on --7 < 0 < 0, with a jump discontinuity 
at 0 = 0. It is easy to see that A is well defined on Cl, since any C’r function 4 
can be uniquely written as 

# = P + 42, 

&O) = Lp, 

$a = constant function. 

Indeed, to attain this decomposition it is enough to let $3 be defined by 

Once this is done, we have A defined on all of c1 by 

from (8.8), which implies that 
D 

4 = 4 + -&[Ld - &)I (8.9) 

for all + E Cl. Observe here that we may now drop the restriction that A-* 
exist, and let (8.9) define A in its extended domain Cl. With A interpreted in this 
extended sense, we claim in the following theorem that (8.5) holds for solutions 
of the RFDE (8.2), as long as t > Y. 

THEOREM 8.1. Consider the retarded functional differential equation 

,i.(t> = Lz, + q.q , a, E), (8.10! 

where 

L# = j” d?7uw(e). --P 
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Let the operator A map Cl into BC = C @ (X0> by 

x4+ = c + XoP4 - &Oll. 

Then any solution of (8.10) for t 3 t, , satisfies 

(44 it = Axt 4 ~-??+t , a, 4 (8.11) 

as long as t 3 to + Y (OY, in fact, as long as .2+ E cl). 

The proof of this is immediate, so it is omitted. 
With this interpretation of the retarded equation (8.10) as the abstract ODE 

(8.1 l), all that needs to be done before averaging is to decompose BC as P @ Q 
with the two-dimensional eigenspace P C Cr and complement Q, according to 
the spectrum of A. This is done by Hale and we review the main points in 
preparation for the examples of later sections. 

The spectrum of A is determined, as with ODE’s, by exponential solutions 
of 2:(t) = Lx, . In particular, all spectral values X are isolated and of finite 
multiplicity, and are determined by solving the characteristic equation 

det XI - [ Jo dy(O) edO] = 0. 
-7. 

The elements of the eigenspaces are all exponential polynomials. A basis 0 = 
(+I, 4’) for P is chosen, as well as a dual basis Y = col(#r, #“) for the adjoint 
equation, where 

def p E c* = C([O, r], I+) (row vectors). 

With the bilinear form on C* x C defined by 

we assume (Y, @) = I. The projections Cp and 4Q of any4 E BC onto P and Q 
are given by 

4’ = @(Y> 4), 

+Q =.j -4’. 

Relative to the basis @, the operator A restricted to P may be represented by a 
matrix /Ip defined by 

A@ = (d/d@@ = @Ap; (8.12) 
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we let A, denote A restricted to Q. Thus, for each t we may decompose zt as 

Xt = ztp + zi* 

= @(K 3) + %Q 
d”&(t) + yt ) 

where s(t) lies in R2 and yt takes values in Q, but does not necessarily satisfy 
-vt(6) = >r(t + 0). With this decomposition (8.11) becomes 

z(t) = i+(t) + dqO)F(@x(t) + yt ) a, E), 

(d/WY, = AQY, + X,QF(@x(t) + yr , a, 4. 

By writing x in polar coordinates (r, 0, we may now average over the angle 5. 

9. WRIGHT'S EQUATION 

We studv the Hopf bifurcation for Wright’s equation 

4t) = --az(t - l)[l + x(t)] (9.1) 

with the real parameter a. This equation has been studied by many authors; 
in particular, it is known that the origin z = 0 is stable when 0 < a < rrj2 
and unstable when a > 7;/2. Moreover, for all a > ~12, (9.1) always has a 
periodic solution. Such solutions have been shown to exist by means of topolog- 
ical fixed point theorem; however, this method sheds no light on qualitative 

behavior, such as amplitude, period, or stability. Using integral averaging we 
shall study the local behavior of periodic solutions near the bifurcation points 

LzN = (-l)N[@/2) + NiT], u” = 0 (9.2) 

for each nonnegative integer N. In all cases the constant K turns out to be 
nonzero, so a generic bifurcation occurs. In fact, our computations reveal the 
following. 

THEOREM 9.1. Consider Wright’s equation (9.1). At each bifzcrcation point 
a = aN in (9.2), a generic Hopf bif urcation occurs from z = 0, The bifurcating 
solution has the form 

z(t) = [ 2;tN-ea;’ ],I2 cos a,t + O(a - UN) 

f  or a near aN . Thus bifurcation occurs to the r&ht of aN for N even, and the left 
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FIGURE 9.1 

for N odd, in accordance with Fig. 9. I. Only the solution at N = 0 is stable, and it 
then has the form 

44 = [ 
40(a-(~))]“2c4+) +O(a-+), 

-jfl _ 

with the constant 

[40/(3rr - 2)]l1” G 2 + 3210701. 

The proof of this theorem consists in writing (9.1) as an abstract ODE, and 
then averaging. The characteristic equation near s = 0 is 

h + a& = 0 P-3) 

and at a = aN has imaginary roots 

X = fibEl, 

bN = / aN 1 = (r/2) + NT. 

For a near aN , there is a unique pair of conjugate roots h(a), h(a) near fibN 
with h(aN) = ibN . This follows from the implicit function theorem; moreover, 

differentiating (9.3) shows 

v  = Re A’(aN) = a& + aN2) # 0. (94 

Let us scale .z -+ l Z and set a = aN . We compute the constant K of Theorem 
5.1, and as noted before, K depends only on the differential equation at a = aN . 
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Consider then 

2-(t) = -ugi(t - 1) - azNZ(f - 1) z(t). 

Hale gives a basis 

@p(6) = (cos bN6, sin bN6) 

for the eigenspace corresponding to X = iibN, and a dual basis 

cos b,0 - b, sin b,B 
y’e) = & (sin b N N 8 + 6, cos b N 0) 

relative to the bilinear form 

(hd) = +(O)+(O) - uN j:l +(6 + l)+(e) de. 
Thus (!P, @) = 1, the identity matrix. Upon decomposkg as in Section 8 we 
obtain the equations 

The defining condition (8.12) for d, implies 

bN), 
N 0. 

and we observe 

A$ = cj - X&z,rj( - 1) + J(O)], 4 E Cl, 

8, = A restricted to ,Q = (4 E Cl j (Y, 9) = 0), 

X,Q = x, - xg’ = x0 - W(0). 

In polar coordinates (9.5) becomes 

i = & (cos 5 + bN sin 5) f  (@.r t yt), 

5 = -b, + 
~(1 :tb,3 (bN 

cos i - sin t)f(@x + yi), 

(9.5) 

d 
zyi = as before, 

?c = col(r cos i=I, Y sin <), 

f(@x + yJ = -u.v((- 1y+1 1’ sin < + yt(- l))(r Cos Z; + y,(O)). 
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Therefore, with the notation of Theorem 5.1, and in particular (54, we have 

c&I, 0, 0) = & (cos ( + b, sin 6) sin 5 cos 5, 

G(L 0, 0) = 0, 

wr 0, 0) = + 
N2 

(b, cos 5 - sin <) sin 5 cos 5, 

w. = - bN, 

G&I, 0, 0) (b = & (cos 5 + bN sin t) 

X (4(O) sin 5 + (-l)N+l $(- 1) cos <), 

J2(0, O)(cos 5, sin 5)’ = b,(cos 5 sin 5) X,,Q. 

Direct calculation yields 

K” = (1/27rbn) J C&a & = 0. 
0 

Writing Ga as 

G2(S, 0,O) = 1 g,Pc 
we solve Eq. (5.7) 

G,(5) - w*‘(S) b, + w*(t) A, = 0 

to yield 

From Theorem 5.1 we then have 

K** = & 1 g,(inb, - -4,)-l X0& 1” eins cos [ sin 5 d[ 

= 2 [g,(2ib, - /lo)-1 + g-,(2ib,- + A,)-1] X00. 

Since X,,Q = X,, - @Y(O) and Ga(<, 0,O) are real, we have g-a = 87, , which 
implies 

K** = (-bN/2) Img,(2ib, - A,)-lX,,Q. 

First let us determine the linear functional g, . By writing cos I?,’ sin &’ in terms of 
&t it is easy to see 

g24 = 2c1 l;“b ‘> (1 - ibN)(-W i + (- l)“+l+(- 1)) 
N 
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for al1 + E C. Next we determine 

+ = (2ibN - A,)-lX,Q. 

To calculate, more generally, 

#I = (2ib, - A)-“# 
we must solve 

&6) = 2ib,+(e) - +(e) 

subject to the boundary condition 

4(O) = -%4(-l), 

The solution is easily obtained as 

For #J = X0 we then have 

$(O) = (5 + N7f1 (2i + (-l)“+“)-‘, 

4(-l) = -44% 

g2cj = g,(2ib, - A)-1 x0 

= 211 FbNyj (1 - &v)(-1 + (-1)Nj 

x (+vy (2i + (- l)“+y, 

I$!.! Im[g2(2ib, _ A)-1 X0] _ _ bFJ2[3bN + (-1)““1 
20(1 + bN7[(742) f Nn] * 

The calculation of (2ib, - LJ”X,~ uses the fact that XoP = @P(O), and that A 
is represented by the matrix AP relative to the basis CD of P. Thus 

(2ibN - A)-1 x,p = @(2ib, - A,>)-1 Y(0) 



152 CHOW AND MALLET-PARET 

and this yields 

g,(2ibjv - A)-1 AT-/ = bN 
20 + 6,“) 

(1 + ibN) (3(1$,“) ,ii+k) 

6, - T Im[g,(2i6, - A)-l Xsp] = 0. 

We therefore finally obtain 

ON2[3bN + (- l>““l 
K = IT** = - 2()(1 + b,“)[(n/2) + NT] - - 

6,[36, + (-ljNfll 
20(1 + h/z) * 

Thus the averaged equation has the normal form 

i = EOIW + 2T3K + O(2), 

5 = --biv + Ok), 

a - aN = a, 

where v  is as in (9.4). The form of the bifurcating solution (in unscaled coordinates 
now) 

T - 1 v/K j%, a - aN = -sgn(vK) 3 

is clear, and this implies the theorem. 

10. EQUATIONS WITH FIRST INTEGRALS 

Consider the equation 

s 

t-r, 

z(t) = a A44 & (10.1) 
t-L1-LI 

where L, > 0 and L, > 0 are fixed constants, a is a parameter, and g is a 
known smooth function mapping the reals into the reals. Observe that (10.1) 
can be written as a functional differential equation: 

2(t) = ag(z(t -L,)) - ag(z(t -L, - L4)) (10.2) 

with a first integral 

&P) = 940) - le;ZL &P)) do, y  E C[-L, - L2, 01. 
2 

For appropriate choices of g, L, , and L, , there is an equilibrium c = c(a) 

obtained by solving 
c - aL,g(c) = 0. 
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The linearized equation about the equilibrium c = c(u) has the following 

characteristic equation 

x - ag'(c(a))[e-w - ,-wq = 0. 

Note that zero is always an eigenvalue because of the first integral f(p). In 
addition, we may have a pair of conjugate eigenvalues h(n) and x(a) crossing 

the imaginary axis with nonzero speed at a = a,, . 
In general, one may expect a Hopf bifurcation occurring on each integral 

surface 

I(y) = constant, 

where I is near zero. Since the integral surface 

is of interest in applications, we consider only the bifurcation in that surface. 
To do the integral averaging on the integral surface, we first decompose 

where 

CD(e) = (cos ~0, sin $), 

@&?) = 1 

P = Im X4, 

are the bases for the appropriate eigenspaces, x E R2, 0 E RI, and yt is in the 
complementary subspace. As in the case of Wright’s equation, we obtain the 
following equations after scaling, 

where Y(0), -(L, + L,) < 0 f  0, is the basis for the adjoint eigenspace 

(see Section 9), Y,(O) is some fixed constant, N is the nonlinearity, A, is the 

infinitesimal generator on the complementary subspace, X,Q is as in Section 9 
and 

-4 = ($ ;)- 

At the bifurcation, 

qc + @x + @tP + Yt) 

= [l - aLsg’(c(a))]o + O(1 x j2 + 0s + ] Yt ]a). 
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So, after scaling we may solve I = 0 to get 

Now, by eliminating u from Eqs. (10.3) we obtain two equations involving x 
and JQ only. Thus proceeding as in Section 9 we obtain the bifurcations. Details 
are omitted. 

Il. DIFFUSION EQUATIONS 

Consider the scalar parabolic equation 

at = u,, , t>O, O<x<l 

with nonlinear boundary conditions 

(11.1) 

(11.2) 

(11.3) 

where a is a parameter and 

g(u, w) = au + pw + O(u2 + w”). 

For simplicity, we assume 01 = 1 and /3 = 0. A necessary and sufficient condition 
for X = +J, p > 0, to be an eigenvalue is (o = &~/2)l/~) 

2a sinh u cos (T = a,, , 

2a cash o sin (T = -a, . 

It is also not difficult to see that for appropriate parameters the eigenvahtes cross 

the imaginary axis with nonzero speed as a passes through a, . 
Scaling (11.1), (11.2) and (11.3), we obtain 

Ut = Km , 

u&O, t) = 0, 

~~(1, t) = a&O, t) + l N(u(O, t), u(l) r), E), 

(11.4) 

where N is the nonlinearity. 
In order to write (I 1.4) as an ordinary differential equation, we consider the 

operator 

A: fP(0, 1) n A - P(0, l), 

u 3 (dyw)u, 
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where .V(O, 1) is the Lebesgue space, H2(0, 1) is the standard Sobolev space, and 
fi consists of functions such that 

(d/dx)u /o=o = 0, (d/d”@ lZ:=l = a&p 12=o. 

Note that H2(0, 1) n B is well defined by the trace theorem and is in fact a 
subspace of codimension two. The operator A is in fact a linear isomorphism 
with 2-l given by 

A-1: P(0, 1) + H”(0, 1) 17 B, 

u --f (1 /a,) Jr U(X) dx + .kE & u(s) ds dr. 
0 

(11.5) 

Because of the nonlinear boundary condition (lf.3), the solution v(., t) is in 
general not in ZP(0, 1) n I?. However, the solution ~1(.> tj E Hs(0, 1). Therefore, 
we extend the definition of A to H”(0, 1) by permitting the extended map A. 
to take values in a larger space. Specifically, observe that (11.5) is defined for 
the Dirac measures S(X) and 6(.x - l), and in fact 

A-‘(S(x)) = (1/+2,) + m, 

&(S(x - 1)) = (quo). 
(11.6) 

Now, for zc E P(0, 1) we have 

u(x) = it(x) + (-& + x) u,(O) + + (a,u(O) - U,(l)), 

where C(X) E H2(0, 1) n I? and 

ii(x) = u(x) - m.&(O) + $ [q(l) - U,(O) - a,u(O)]. 

Motivated by (11.6), we define 

A: zP(0, 1) -+P(O, 1) @ <S(X), S(X - l)), 

u(x) -+ u,,(x) + z&.(O) S(x) + [a,?.L(0) - z&&(O)] 6(x - l), 

where (S(x), S(X - 1)) denotes the vector space generated by S(X) and S(X - 1 j. 
Using the definition of A, we may rewrite (11.4) as an ordinary differential 

equation: 

du/dt = Au - u,(O) S(x) - [a,u(O) - u,(l)] 8(x - 1) 

= Au + EN(U(0, t), u(I, t), .Ej 6(x - 1 j 

= f (u1 4, 

where f: Ha(0, lj x (--co, eO) +L2(0, 1) @ (S(x), S(X - 1)i. NOW, we may 
proceed to discuss the bifurcations as before. 
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12. NOTES AND REnaiRKs 

Section 2. Changes of coordinates as (2.3) are given in the textbook of 
Hale [16] and a survey paper of Volosov [47]. For more references on integral 
averaging, see the references in Hale [15, 161 and Volosov [47]. 

In the literature, Eq. (2.4) is usually averaged by eliminating the variables r 
and 0 in the equation for j rather than eliminating the variable y  in the equations 

for ? and 0, as was done here. For example, in the book of Lefschetz [33] such an 
approach is to be used to study stability properties in which no bifurcation 
parameter appears (see also the papers of Hale [I91 and Hausrath [[22]). 

Section 3. The resonance condition of Corollary 3.2 for the eigenvalues has 
been used by a number of authors, notably, Sternberg [45], Hartman [21], and 
Lefschetz [33]. I f  the resonance condition is not satisfied, then it is impossible 
to average the equations as required since certain terms cannot be eliminated. 
In principle, one can eliminate these terms by a homeomorphic (but not diffeo- 
morphic) change of coordinates. In practice, these changes of coordinates are 
not necessary as one could analyze the problem even with the presence of these 
terms. 

Section 5. The existence of the invariant forms described at the end of this 
section follows from Chapter 18 of Hale [15]. 

Section 6. Apparently, the center manifold technique was first used by 

Chafee [6, 71 and also by Ruelle and Takens [39] (see also [32]). For PDE’s, it 
was used by Marsden [35] and McCracken and Marsden [36]. Dorroh and 
Marsden [I I] showed that for a large class of PDE, Properties (l), (2), and (3) 
hold. 

Section 8. For the theory of functional differential equations, see Hale [17]. 
The space BC = C @ (X0> was used by Hale [19] in studying stability proper- 
ties of equilibria of neutral FDE in critical cases. 

Section 9. Equation (9.1) has been studied by many authors, notably, 
Wright [48] and Kakutani and Markus [29]. J ones [25] first showed that there 

are periodic solutions of (9.1) for a > n/2. 

Section 10. Equation (10.1) is model of population growth introduced by 
Cooke and Yorke [IO]. Hale [20] h s owed that for generic g’s there is a Hopf 
bifurcation. Greenberg [14] studied the existence of periodic solutions for large 
values of a. 

Section 11. The problem (11 .l), (11.2), and (11.3) is a simplified model 
of a diffusion equation with nonlinear boundary conditions, occurring in the 
study of the interaction and production of two enzymes (see [3]). The actual 
system is: 
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Ut = u,, - Q%, 

vt = v,, - Q%, 

where P and Q are constants and f and g are nonlinearities. 
For parabolic equations in R* with nonlinear boundary conditions a similar 

procedure may be followed. Consider, for example, 

ut = Au in Sz Z Rn, 

au/an = &c) on as?, 

where 5 is a nonlinear function which may depend on values of u even in 8. 

Define 

A: H1(Q) --+ Hysz)“, 

u-+ [v+ -J-*VU * vv], 

where Hr(JZ)* is the dual space of W(L2). Formally, if ( , j represents the duality 
between W(G)* and H1(L?) we have 

= -I,, 5(4 v + J- u*v. 

Assume that the nonlinear functional 

and define 

<N(u), v> = J-.R E(u) ‘V. 

Thus we obtain for the differential equation 

s up = (Au + N(u), v>, v E kP(Q). R 
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I f  we identify the function ut with the element of S(Q)* defined by v  --f SD utv, 
a E W(Q), the differential equation may be written 

dujdt = Au + N(u), 

where u E fP(Q), dujdt E fl(Q)*. For more details see, for example, Lions 

and Magenes [34]. 
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