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Abstract

We consider the singular perturbations of two boundary value problems, concerning respec-
tively the viscous and the nonviscous Cahn–Hilliard equations in one dimension of space.
We show that the dynamical systems generated by these two problems admit global attrac-
tors in the phase spaceH1

0 (0,�) × H−1(0,�), and that these global attractors are at least
upper-semicontinuous with respect to the vanishing of the perturbation parameter.
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1. Introduction

In this paper, we consider the singular perturbations of two boundary value problems,
concerning respectively the viscous and the nonviscous Cahn–Hilliard equations in one
dimension of space. Our goal is to show that, at least when the perturbation parameter
is sufficiently small, the dynamical systems generated by these two problems admit
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global attractors in a suitable phase spaceX, and that these global attractors are at
least upper-semicontinuous with respect to the vanishing of the perturbation parameter.
In another paper[25], we have shown that these semiflows also admit an exponential
attractor and an inertial manifold inX.

1.1. The differential equations

1. The equations we consider have the unified form

�utt + ut + �
(
�u− u3 + u− �ut

)
= 0, (1.1)

where ��0 and ��0. The unknownu is a function of the space and time variables
(x, t), with x ∈]0,�[ and t > 0, and� := �2/�x2.
More specifically, we distinguish the following four cases, according to whether� or

� vanish or not:
(1) The nonviscous Cahn–Hilliard equation (see[4]), corresponding to� = � = 0, i.e.

ut + �
(
�u− u3 + u

)
= 0. (1.2)

(2) The viscous Cahn–Hilliard equation (see[18]), corresponding to� = 0, � > 0, i.e.

ut + �
(
�u− u3 + u− �ut

)
= 0. (1.3)

(3) The perturbed nonviscous Cahn–Hilliard equation, corresponding to� > 0, � = 0,
i.e.

�utt + ut + �
(
�u− u3 + u

)
= 0. (1.4)

(4) The perturbed viscous Cahn–Hilliard equation, corresponding to� > 0, � > 0, i.e.

�utt + ut + �
(
�u− u3 + u− �ut

)
= 0. (1.5)

2. The long-time behavior of the semiflows generated by the first two equations is
relatively well understood; in the next section, we recall some of the main results that
are of interest for the sequel. Here, we consider the semiflows generated by the other
two equations, that is, (1.4) and (1.5), with the goal of establishing analogous results
for these equations. Our motivations for this study reside in part in the fact that (1.4)
and (1.5) are examples of nonlinear beam equations with viscous dissipation, which are
hyperbolic. The qualitative properties of their solutions are quite different than those
of the reduced equations (1.2) and (1.3), which are parabolic; for example, there is
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no smoothing property fort > 0, and their orbits are not compact. However, in many
situations it is found that the asymptotic properties of the solutions of the parabolic
equations and those of their hyperbolic perturbations are similar; a typical case is given
by models which exhibit the so-called diffusion phenomenon of hyperbolic waves. For
example, this is the case for some initial-boundary value problems associated to the
quantum mechanics equations (1.10) below, studied in[12]. Hence, it is of importance
to be able to describe the long-time behavior of the solutions to nonlinear dissipative
hyperbolic equations such as (1.4) and (1.5), specifically in terms of attracting sets
such as the global attractor, the exponential attractor and the inertial manifolds. One
of the goals of this investigation is that of comparing the asymptotic behavior of the
“hyperbolic” solutions with that of the corresponding “parabolic” ones; for example,
one of the results of this paper is the upper semicontinuity of the global attractors of
the semiflows associated to these equations.
3. In all four equations written above, we subjectu to homogeneous boundary con-

ditions of Dirichlet type, i.e.

u(0, t) = u(�, t) = 0 �u(0, t) = �u(�, t) = 0, for t�0. (1.6)

We could also consider boundary conditions of Neumann or mixed type; the qualitative
results would be the same, but their formulation, and their proof, is more involved.
As we have mentioned, Eqs. (1.2) and (1.3) are parabolic, and we impose the initial

condition

u(x,0) = u0(x), x ∈]0,�[ ; (1.7)

conversely, Eqs. (1.4) and (1.5) are nonlinear beam equations with viscous damping,
i.e., they are “hyperbolic”, and we impose the initial conditions

u(x,0) = u0(x) ut (x,0) = u1(x) x ∈]0,�[. (1.8)

4. In conclusion, we shall refer to the following initial-boundary value problems
(IBVP in short):
1. ProblemCH00: The IBVP for the nonviscous Cahn–Hilliard equation, i.e. problem

(1.2)+(1.7)+(1.6);
2. ProblemCH0�: The IBVP for the viscous Cahn–Hilliard equation, i.e. problem

(1.3)+(1.7)+(1.6);
3. ProblemCH�0: The IBVP for the nonviscous, perturbed Cahn–Hilliard equation, i.e.

problem (1.4)+(1.8)+(1.6);
4. ProblemCH��: The IBVP for the viscous, perturbed Cahn–Hilliard equation, i.e.

problem (1.3)+(1.8)+(1.6).
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1.2. Statement of results

The parabolic problemsCH00 andCH0� have been extensively studied; in particular,
the global existence and uniqueness of solutions to each problem is known, and the
asymptotic behavior of these solutions ast → +∞ is also well understood. For the
Cahn–Hilliard equation, we refer e.g. to[10,19,20,23]; see also[17,22, Chapter 3.4.2 or
21, Chapter 5.5.5]and the references cited in these books. These authors consider the
case of Neumann boundary conditions, but the same type of results hold for Dirichlet
boundary conditions, with proofs obtained along similar lines. For the viscous Cahn–
Hilliard equation, we refer to[1,3,6,8,9]. In summary, we know that problemsCH00
and CH0� generate a semiflow in the spaceH := L2(0,�), and that these semiflows
admit a compact global attractor inH. Moreover, the global attractors are lower- and
upper-semicontinuous as� → 0.
In this paper, we show, first, that analogous results hold for the perturbed equations;

that is, that problemsCH�0 and CH�� each generate a semiflow in the phase space
X := H 1

0 (0,�) × H−1(0,�). This result is summarized in Theorem2.1. We proceed
then to show that these semiflows admit, for fixedε and�, a global attractor (Theorem
3.4) in X. We also give a regularity result for the attractors when� > 0 (Theorem
3.6). If � > 0, all the above-mentioned results hold without limitations on� (i.e. for
all � ∈]0,1]), while if � = 0 they are guaranteed to hold at least if� is sufficiently
small. This difference is not surprising, since the term−��ut has a regularizing effect
on the solution.
Our third goal is to compare, in a suitable sense, the global attractors of problems

CH�0 and CH�� with the global attractors of the corresponding limit problemsCH00
and CH0�. More specifically, we show that the global attractors of the “hyperbolic”
semiflows, generated by problemsCH�0 andCH�� are upper semicontinuous as� → 0;
that is, they converge, in a sense to be specified, to corresponding limit setsA0� and
A00 in X, naturally constructed from the global attractorsA0� andA00 of the semiflows
generated respectively by the “parabolic’’ problemsCH0� and CH00. These results are
presented in Sections3.4.1 and 3.4.2, where we consider the upper semi-continuity
of A�� as � → 0, respectively for fixed� > 0 and for � = 0. An earlier result on
the existence and upper semicontinuity of the attractors for the semiflowS�0 (i.e., in
the nonviscous case) was given, under somewhat more restrictive conditions, in[5].
In addition, in Section3.4.3 we also prove the upper semicontinuity of the global
attractorsA�� as � → 0. Since the upper semicontinuity ofA0� (the attractors of
the semiflows generated by the viscous Cahn–Hilliard equation) toA00 (the attractor
of the semiflow generated by the Cahn–Hilliard equation) has been proved in[6],
combining this result with the ones we describe in Sections3.4, we obtain the following
commutative diagram:

A�� −→ A�0
↓ ↓

A0� −→ A00

, (1.9)
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where the vertical arrows mean convergence as� → 0, and the horizontal arrows mean
convergence as� → 0.
Investigations on nonlinear parabolic equations of second order as limits of singularly

perturbed nonlinear hyperbolic equations of second order, i.e., nonlinear damped wave
equations (for example, the so-called “quantum mechanics” equation

�utt + ut − �u+ u3 − u = 0, (1.10)

often mentioned in the literature), have been extensively studied; see, e.g.,[12–14],
and the references cited therein. However, in contrast to the case of nonlinear damped
wave equations, where the natural phase space for(u, ut ) is H 1

0 ×L2, for Eq. (1.1), the
natural phase space isH 1

0 ×H−1. Dealing with distributions inH−1 introduces a higher
degree of difficulty in our problem; this becomes apparent, when we try to establish
estimates on the nonlinear terms of the equations, which depend only on bounds ofu
in H 1

0 . In particular, the restriction to one space dimension seems to be essential.
Finally, we would like to mention that other types of perturbations, different than

CH�0 and CH��, can of course be considered. For example, in[6,7] various phase
field models are studied, in which the viscous and nonviscous parabolic Cahn–Hilliard
equations are obtained as the limit of a perturbed system (which, in contrast to our
perturbed system, is also a parabolic system), with coupled equations containing the
temperature as an additional unknown.

1.3. Notations

In the sequel,j, k, m, n, will denote positive integers, unless otherwise specified.
If X is a Banach space, we denote byX′ its topological dual, and by〈 ·, · 〉X′×X the
duality pairing betweenX′ andX. We setH 0 := L2(0,�) =: L2 and, for integerm�1,
Hm := Hm(0,�) ∩ H 1

0 (0,�), H
m
0 := Hm0 (0,�), andH

−m := (
Hm0

)′. We denote by
‖ · ‖m the norm inHm, by | · |p the norm inLp(0,�), 1�p� + ∞, and by〈 ·, · 〉 the
scalar product inL2(0,�). We abbreviate‖ · ‖0 = | · |2 = ‖ · ‖. Because of Poincaré’s
inequality, we can, and in fact will, choose inH 1 the norm

‖u‖1 = ‖∇u‖ . (1.11)

We consider−� as an unbounded operator inL2(0,�), with domainH 2; since−�
is a positive operator, for each� ∈ R we can define the fractional powers(−�)� (see
e.g. [22, Chapter 2.2]). We set then

H � := D
(
(−�)�/2

)
, (1.12)

which is a Banach space with respect to the norm

‖u‖� := ‖(−�)�/2u‖, u ∈ H � (1.13)
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and, foru and v ∈ H−1,

[u, v] :=
〈
v, (−�)−1u

〉
H−1×H1

; (1.14)

we easily check that

[u, v]� ‖u‖−1 ‖v‖−1 , [u, u] = ‖u‖2−1 . (1.15)

In the sequel, we shall often consider the equation formally obtained from (1.1) by
taking (−�)−1, that is, the equation

�(−�)−1utt + (−�)−1ut − �u+ u3 − u+ �ut = 0. (1.16)

Indeed, by establishing suitable energy estimates onu, seen as solution of (1.16), we
shall see that Eq. (1.1) defines a semiflow in the spaceX := H 1 ×H−1, which arises
as the natural “energy’’ space for Eq. (1.1). Correspondingly, (1.1) can be considered in
the associated chain of spacesHm+1×Hm−1, m ∈ N ; in particular, we shall establish
regularity results in the spaces

X1 := H 2 × L2 and X2 := Y ×H 1, (1.17)

where

Y := {u ∈ H 1 | −�u ∈ H 1}. (1.18)

We shall also refer to the space

X−1 := H−1 × Y ′; (1.19)

note thatH 3
0 ↪→ Y ↪→ H 3 (the second inclusion being a consequence of standard

elliptic theory), so thatY ′ ↪→ H−3. Finally, we recall that, sincen = 1, the continuous
imbeddingH 1 ↪→ L∞ holds; we reserve the letterK to denote a constant such that the
inequalities

‖u‖−1 �K ‖u‖ �K2 ‖∇u‖ , |u|p �K ‖u‖1 = K ‖∇u‖ , (1.20)

hold for all u ∈ H 1, and 1�p� + ∞. Without loss of generality, we can assume that
K�1.
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2. Semiflows and a priori estimates

In this section, we show that problemsCH�� and CH�0 define semiflows on the
spaceX := H 1 × H−1, and establish various a priori estimates on weak solutions of
these problems; that is, a bound on the norm of

(
u(·, t),√�ut (·, t)

)
in X, independent

of t when t�0, and of � and �. There are several methods to establish existence
and uniqueness results for these problems; for example, the semigroup approach, in
which Eq. (1.16) is reduced into a first-order evolution equation in the unknown vector
function (u, ut )�, or the Faedo–Galerkin method, as described in[15]. Since these
approaches are quite standard, we can omit the details here. In either case, the global
existence of a weak solution to these problems can be deduced from the estimates we
establish in the sequel. Since, in the light of our goals, we are eventually interested in
small values of the parameters� and �, in the sequel we shall assume, without loss
of generality, that 0< ��1 and 0���1; however, we will indicate the necessary
modifications for the case� > 1.
Weak solutions to problemsCH�� and CH�0 are defined as follows.

Definition 2.1. Let u0 ∈ H 1, u1 ∈ H−1. A function u : [0,�]×[0,+∞[→ R is a weak
solution of problemCH��, 0���1, if u ∈ Cb([0,+∞[;H 1) ∩ C1

b([0,+∞[;H−1), if
it satisfies the initial conditions (1.8), and if for all test functions� ∈ L2(0,+∞;Y ),
with �t ∈ L2(0,+∞;H 1) and compact support in[0,+∞[,

∫ +∞

0

(
− �

〈
ut ,�t

〉
H−1×H1 + 〈ut ,�〉H−1×H1

+
〈
�u− u3 + u− �ut ,��

〉
H−1×H1

)
dt

= � 〈u1,�(0)〉H−1×H1 . (2.1)

2.1. A priori estimates

In this section, we establish a priori estimates on weak solutions to problemsCH��
andCH�0. In these estimates, we call a constant “universal’’ if this constant is positive,
and independent of�, �, t, and any solutionu. We consider inX an equivalent norm,
whose square is defined by

E0(u, v) := � ‖v‖2−1 + �[u, v] + 1
2 ‖u‖2−1 + ‖∇u‖2 , (u, v) ∈ X. (2.2)

If ��1, the square root ofE0 does define a norm: indeed, by (1.20) we immediately
derive that for all(u, v) ∈ X,

1
2

(
� ‖v‖2−1 + ‖∇u‖2

)
�E0(u, v)��

(
� ‖v‖2−1 + ‖∇u‖2

)
(2.3)
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with

� := max

{
3

2
,K4 + 1

}
. (2.4)

We also introduce the function�0 : X → R defined by

�0(u, v) := E0(u, v)+ 1
2 |u|44 − ‖u‖2 + 1

2� ‖u‖2 ; (2.5)

it is easy to verify that�0 is bounded from below; in fact, there existsM0 > 0 such
that for all (u, v) ∈ X,

�0(u, v)�E0(u, v)−M0� −M0. (2.6)

Proposition 2.1. Let u be a weak solution of problemCH�� or CH�0. There exists a
universal constantM1, such that for allt�0,

�0(u(t), ut (t))� (�0(u0, u1)− �M1)e
−t/� + �M1, (2.7)

where� is as in (2.4).

Proof. We begin by multiplying Eq. (1.16) in H first by 2ut and then byu. Recalling
(1.15), this yields (omitting the variablet for convenience)

d

dt

(
� ‖ut‖2−1 + ‖∇u‖2 + 1

2
|u|44 − ‖u‖2

)
+ 2‖ut‖2−1 + 2� ‖ut‖2 = 0,

d

dt

(
�[u, ut ] + 1

2
‖u‖2−1 + 1

2
� ‖u‖2

)
− � ‖ut‖2−1 + ‖∇u‖2 + |u|44 − ‖u‖2 = 0.

Adding these identities, we obtain

d

dt
�0(u, ut )+ (2− �) ‖ut‖2−1 + ‖∇u‖2 + |u|44 − ‖u‖2 + 2� ‖ut‖2 = 0, (2.8)

from which, recalling that��1,

d

dt
�0(u, ut )+ � ‖ut‖2−1 + ‖∇u‖2 + |u|44� ‖u‖2 . (2.9)

From (2.3) and (2.5), since also��1,

�0(u, ut )��
(
� ‖ut‖2−1 + ‖∇u‖2

)
+ 1

2 |u|44 − 1
2 ‖u‖2 ; (2.10)
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thus, from (2.8) and (2.10), and noting that�� 3
2, we obtain

d

dt
�0(u, ut )+ 1

�
�0(u, ut )+ 1

2�
‖u‖2 + 2

3
|u|44 � ‖u‖2 �C + 2

3
|u|44 . (2.11)

From this, we conclude that

d

dt
�0(u, ut )+ 1

�
�0(u, ut )�M1, (2.12)

and (2.7) follows by integration. �
Recalling (2.6), Proposition2.1 yields, as a first consequence, the desired time-

independent estimates on weak solutions of problemsCH�� and CH�0.

Corollary 2.1. In the same conditions of Proposition2.1, there exists a constantM2 >

0, depending on the norm of the initial values(u0, u1) in X, such that for allt�0,

E0(u(t), ut (t))�M2. (2.13)

As we have stated, the corresponding estimates carried out on suitable Faedo–Galerkin
approximations allow us to establish the global existence of a weak solution to these
problems. In Section2.3 below, we show that weak solutions to these problems are
unique, and depend continuously on the data{u0, u1}; therefore, problemsCH�� and
CH�0 generate continuous semiflowsS�� = (S��(t))t�0 and S�0 = (S�0(t))t�0 on X.
We also remark that if(u, ut ) ∈ Cb([0,+∞[;X), then

�utt ∈ Cb([0,+∞[;Y ′). (2.14)

Indeed, from Eq. (1.1) we have that, at least as a distribution,

�utt := �(�ut − u+ u3 − �u)− ut ; (2.15)

we now see that the right side of (2.15) is in fact inY ′ (pointwise int). In fact, we first
note that, sinceu ∈ H 1, andH 1 is an algebra under pointwise multiplication because
n = 1, u3 − u ∈ H 1, so that�(u3 − u) ∈ H−1. Next, we note that, on one hand,
�(�u− �ut ) ∈ H−3, since�u and ut ∈ H−1; on the other, for� ∈ H 3

0 we have

〈
�(�u− �ut ),�

〉
H−3×H3

0
= 〈

�u− �ut ,��
〉
H−1×H1

0
�

∥∥�u− �ut
∥∥−1

∥∥�
∥∥
Y
.

This shows that the right side of (2.15) is in Y ′ as claimed; therefore, (2.14) holds.
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Finally, we would like to mention that we can obtain analogous estimates also if
� > 1. The only modification is that in this case we would consider, instead ofE0, the
equivalent norm whose square is given, for(u, v) ∈ X, by

E0r (u, v) := � ‖v‖2−1 + r�[u, v] + 1
2 r ‖u‖2−1 + ‖∇u‖2 , (2.16)

wherer ∈ ]
0, 1�

]
is suitably chosen. To estimateE0r we would then multiply Eq. (1.16)

by 2ut and ru instead of 2ut and u. We can proceed in the same way also for the
estimates we establish in the next sections.

2.2. Absorbing sets

A second consequence of Proposition2.1 is the existence of bounded, positively
invariant absorbing sets for the semiflowsS�� and S�0.

Proposition 2.2. Assume that the same conditions of Proposition2.1 hold, and letM0
be as in(2.6). Then, for any R0 > �M1 +M0, the ball

B0 := {(u, v) ∈ X | E0(u, v)�R0}

is absorbing forS�� and S�0. Moreover, for any R > �M1, the set

B := {(u, v) ∈ X | �0(u, v)�R} (2.17)

is bounded, positively invariant and absorbing forS�� and S�0.

Proof. The first claim follows from (2.6) and (2.7). In particular, for allt�0,

E0(u(t), ut (t))�(�0(u0, u1)− �M1)e
−t/� + �M1 +M0. (2.18)

Assume now that(u0, u1) is in a bounded setG ⊆ X. There exists then��1 such
that E0(u0, u1)��. Now, from (1.20) and (2.5), recalling also (2.4),

�0(u0, u1)�E0(u0, u1)+ 1
4 |u0|44 �� + 1

4K
4�2���2; (2.19)

thus, from (2.18) we deduce that for allt�0,

E0(u(t), ut (t))��(�2 −M1)e
−t/� + �M1 +M0. (2.20)

From this it follows that if�(�2 −M1)�R0 − (�M1 +M0), thenE0(u(t), ut (t))�R0
for all t�0, while if �(�2 −M1) > R0 − (�M1 +M0), thenE0(u(t), ut (t))�R0 for
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all t�TG, with

TG := � ln
�(�2 −M1)

R0 − (�M1 +M0)
.

This proves that the ballB0 is absorbing. The boundedness of the setB follows from
(2.6) and (2.7), and its positive invariance is a direct consequence of (2.7). In fact, if
�0(u0, u1)�R, then for all t�0

�0(u(t), ut (t))�(R − �M1)e
−t/� + �M1�(R − �M1)+ �M1�R.

Finally, we prove thatB is absorbing exactly in the same way as we did forB0; we
find that�0(u(t), ut (t))�R for all t� T̃G, where now

T̃G :=


0 if �(�2 −M1)�R − �M1;
�(�2 −M1)

R − �M1
if �(�2 −M1) > R − �M1.

This concludes the proof of Proposition2.2; we remark that the setB is not a ball
of X. �

2.3. Well-posedness and contractive estimates

In this section, we establish suitable estimates on the difference of two solutions
of problemsCH�� and CH�0. The first consequence of these estimates is that these
problems are well-posed inX, and therefore they generate corresponding semiflowsS��
and S�0 in X. In Section3, we shall use these estimates to show that these semiflows
admit a global attractor inX.
1. Let z := u − ũ be the difference of two solutions of (1.1). Then z solves the

equations

�ztt + zt + �
(
�z− (u3 − ũ3)+ z− �zt

)
= 0, (2.21)

�(−�)−1ztt + (−�)−1zt − �z+ (u3 − ũ3)− z+ �zt = 0. (2.22)

As in Section2.1, we multiply (2.22) in H by 2zt andz, and add the resulting identities.
Settingh := u2 + uũ+ ũ2, we obtain

d

dt

(
� ‖zt‖2−1 + �[zt , z] + 1

2
‖z‖2−1 + ‖∇z‖2 +

〈
u3 − ũ3, z

〉
+ 1

2
� ‖z‖2

)

+(2− �) ‖zt‖2−1 + ‖∇z‖2 +
〈
u3 − ũ3, z

〉
+ 2� ‖zt‖2 (2.23)

= 〈htz, z〉 + 〈z,2zt + z〉 .
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Because of Corollary2.1, we can assume that bothu and ũ are bounded inX; thus,
by (2.13), we can estimate the first term of〈htz, z〉 at the right side of (2.23) by

〈uutz, z〉 � ‖ut‖−1

∥∥∥uz2∥∥∥
1

�C
(
‖∇u‖ |z|2∞ + 2 |u|∞ |z|∞ ‖∇z‖

)
, (2.24)

whereC depends only onM2 of (2.13). Resorting then to Agmon’s inequality

|z|∞ �C ‖∇z‖1/2 ‖z‖1/2 + C ‖z‖ , (2.25)

we obtain from (2.24)

〈uutz, z〉 � C
(‖∇z‖ ‖z‖ + ‖∇z‖3/2 ‖z‖1/2 + ‖z‖2)

� 1
18 ‖∇z‖2 + C2 ‖z‖2 . (2.26)

The other terms of〈htz, z〉 are estimated in the same way.
We now proceed to establish further estimates, which differ for� > 0 and for� = 0.
In the case� > 0, we estimate

〈z,2zt + z〉 �� ‖zt‖2 +
(
1

�
+ 1

)
‖z‖2 . (2.27)

Calling 	(z, zt ) the differentiated term of the left side of (2.23), i.e.

	(z, zt ) := � ‖zt‖2−1 + �[zt , z] + 1
2 ‖z‖2−1 + ‖∇z‖2

+
〈
u3 − ũ3, z

〉
+ 1

2� ‖z‖2 , (2.28)

by (2.26) and (2.27) we obtain from (2.23) that, for ��1,

d

dt
	(z, zt )+ � ‖zt‖2−1 + 5

6
‖∇z‖2 +

〈
u3 − ũ3, z

〉
+ � ‖zt‖2 �C� ‖z‖2 , (2.29)

whereC� is a positive constant depending only on�. Since the functionu �→ u3 is
monotone, and�, ��1,

	(z, zt )� 3
2

(
� ‖zt‖2−1 + ‖∇z‖2 +

〈
u3 − ũ3, z

〉)
+

(
1
2 +K2

)
‖z‖2 . (2.30)

From (2.29) and (2.30), it follows that, with a differentC�,

d

dt
	(z, zt )+ 1

2
	(z, zt )�C� ‖z‖2 ; (2.31)
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integrating (2.31), we obtain that for allt�0

	(z(t), zt (t))�	(z(0), zt (0))e−t/2 + C�

∫ t

0
‖z‖2 ds. (2.32)

From (2.28) and (2.3), we deduce that

	(z, zt )�
1

2

(
� ‖zt‖2−1 + ‖∇z‖2

)
� 1

2�
E0(z, zt ), (2.33)

and we also have that

0�
〈
u3 − ũ3, z

〉
= 〈h z, z〉 �

(
|u|2∞ + |u|∞ |ũ|∞ + |ũ|2∞

)
‖z‖2 �C3 ‖∇z‖2 ,

whereC3 depends only onM2 andK. Hence, recalling (2.28), and that��1,

	(z, zt ) �
(
� ‖zt‖2−1 + �[zt , z] + 1

2 ‖z‖2−1 + (1+ C3 +K) ‖∇z‖2
)

� (1+ C3 +K)E0(z, zt ) =: C4E0(z, zt ). (2.34)

Finally, we recall that, by Schwartz’ inequality, for all(u, v) ∈ X
E0(u, v)� 1

4 ‖u‖2 . (2.35)

Consequently, from (2.32), (2.33), (2.34) and (2.35),

E0(z(t), zt (t))�2�C4E0(z(0), zt (0))e−t/2 + 8�C3

∫ t

0
E0(z, zt ) ds. (2.36)

In the case� = 0, we replace estimate (2.27) by

〈z,2zt + z〉 � 8
5 ‖zt‖2−1 + 5

8 ‖∇z‖2 + ‖z‖2 (2.37)

and (2.29) becomes instead

d

dt
	(z, zt )+

(
2

5
− �

)
‖zt‖2−1 + 5

24
‖∇z‖2 +

〈
u3 − ũ3, z

〉
�C ‖z‖2 . (2.38)

Assume now e.g. that�� 1
3. Then,

2
5 − � > 1

6�, so that from (2.38) we deduce, instead
of (2.31),

d

dt
	(z, zt )+ 1

6	(z, zt )�C ‖z‖2 . (2.39)

The rest of the proof, leading up to (2.36), proceeds then in the same way.
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In conclusion, we obtain that, in either case,z satisfies the estimate

E0(z(t), zt (t))�M �E0(z(0), zt (0))e−t/6 +M �
∫ t

0
E0(z, zt ) ds, (2.40)

for a suitable constantM; we recall thatM depends on the initial values of either
solution u or ū.
2. We can now conclude with

Theorem 2.1. For all � ∈]0,1] and � ∈]0,1], problemCH�� is well-posed in X, and
defines a corresponding continuous semiflowS�� in X. If � = 0, the same is true if
� is sufficiently small; that is, there is �0 ∈]0,1], such that for all� ∈]0, �0], problem
CH�0 is well-posed in X, and defines a corresponding continuous semiflowS�0 in X.

Proof. The existence of a weak solution to both problems can be obtained by a
straightforward Faedo–Galerkin approximation method. The uniqueness of these solu-
tions, as well as their continuous dependence on their initial data on compact time
intervals, is a consequence of estimate (2.40). Indeed, by Gronwall’s inequality, from
(2.40) we deduce that for allt�0,

E0(z(t), zt (t))�M �E0(z(0), zt (0))eM�t . (2.41)

In particular, (2.41) shows that, for eacht�0, the operatorsS��(t) andS�0(t) are locally
Lipschitz continuous inX; consequently, the solution operatorsS�� = (S��(t))t�0 and
S�0 = (S�0(t))t�0, defined inX by

S��(t)(u0, u1) := (u(t), ut (t)), (u0, u1) ∈ X, (0���1), (2.42)

are semiflows, with the limitation�� 1
3 =: �0 if � = 0. �

3. Global attractors

In this section, we show that the semiflowsS�� and S�0 admit global attractors in
the spaceX, given by the
-limit sets

A�� := 
��(B) :=
⋂
s�0

⋃
t� s
S��(t)B, (3.1)

A�0 := 
�0(B) :=
⋂
s�0

⋃
t� s
S�0(t)B, (3.2)

whereB is the bounded, positively invariant absorbing set defined in (2.17).
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In the sequel, we shall often refer to the following characterization of global attrac-
tors:

Lemma 3.1. Let S be a semiflow on a Banach space X, and assume that S admits a
global attractor A. Letx ∈ X. Thenx ∈ A if and only if there exists a complete orbit
through x, contained in A.

Proof. The “if’’ part is obvious, while the “only if’’ part is proven in Proposition 1.3
of [2, Chapter 3.1]. �

3.1. Global attractors via�-contractions

Since problemsCH�� andCH�0 are hyperbolic, following[12], we can establish the
existence of a global attractor for the corresponding semiflows in one of two ways.
The first is to show that the semiflowsS�� or S�0 can be decomposed into the sum of
two families of operators, one of which is uniformly compact, and the other, (which
needs not be a semiflow) is uniformly decaying to 0 (see also[22, Chapter 4]). The
second method consists in showing that the semiflows are�-contractions onX (see
below). In our case, the situation is somewhat different, according to whether� > 0
or � = 0. If � > 0, we can prove thatS�� both admits the stated decomposition and is
an �-contraction, and that the global attractor exists for all� ∈]0,1]; in contrast, when
� = 0 we can only prove thatS�0 is an �-contraction, and that the global attractor
exists for all � sufficiently small. In the sequel, we show that the semiflowsS�� and
S�0 are �-contractions inX, the latter at least if� is small.
1. To this end, we first recall the notion of�-contraction, and state the main results,

which guarantee that the
-limit sets defined in (3.1) and (3.2) are indeed the global
attractors for the semiflowsS�� and S�0.

Definition 3.1. Let X be a Banach space, and� be a measure of compactness inX
(see DefinitionA.1 of the Appendix A). LetB ⊆ X. A continuous mapT : B → B

is an �-contraction onB, if there exists a numberq ∈]0,1[ such that for every subset
A ⊆ B,

�(T (A))�q �(A). (3.3)

The following results describe the existence of an attractor, first for discrete semiflows
generated by�-contractions, and then for continuous semiflows.

Theorem 3.1. Assume thatB ⊆ X is closed and bounded, and that T : B → B is
an �-contraction on B. Consider the semiflow generated by the iterations of T, i.e.
S := (T n)n∈N . Then the set


(B) :=
⋂
n�0

⋃
m�n

T m(B) (3.4)

is compact, invariant, and attracts B.
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Theorem 3.2. Assume that S is a continuous semiflow on X, admitting a bounded,
positively invariant absorbing set B, and that there existst∗ > 0 such that the operator
S∗ := S(t∗) is an �-contraction on B. Let

A∗ :=
⋂
n�0

⋃
m�n

Sm∗ (B) = 
∗(B) (3.5)

be the
-limit set of B under the mapS∗, and set

A :=
⋃

0� t� t∗
S(t)A∗. (3.6)

Assume further that for allt ∈ [0, t∗], the mapx �→ S(t)x is Lipschitz continuous from
B to B, with Lipschitz constantL(t), L : [0, t∗] → ]0,+∞[ being a bounded function.
ThenA = 
(B), and this set is the global attractor of S in B.

Theorems3.1 and 3.2 can be proven along the same lines of the results proven in
[12, Chapters 2 and 3]. However, since these do not apply exactly to our situation, for
the readers’ convenience we include a self-contained proof in the Appendix A.
2. To apply Theorem3.2 to problemsCH�� andCH�0, we need an intermediary step,

which assures that if an operatorT fails to be contractive only because of a precompact
pseudometric, it is still an�-contraction.

Definition 3.2. A pseudometricd in X is precompact inX if every bounded sequence
has a subsequence which is a Cauchy sequence relative tod.

Theorem 3.3. Let B ⊂ X be bounded, let d be a precompact pseudometric in X, and
let T : B → B be a continuous map. Suppose T satisfies the estimate

‖T x − Ty‖X �q ‖x − y‖X + d(x, y) (3.7)

for all x, y ∈ B and someq ∈]0,1[ independent of x and y. Then T is an�-contraction.

3. We can now show that Theorems3.2 and3.3 can be applied to the semiflowsS��
and S�0. That is, we show that there ist∗ > 0 such that the operatorsS��(t∗), S�0(t∗),
are �-contractions inX, up to a precompact pseudometric.

Theorem 3.4. For all �, � ∈]0,1], the semiflowS�� generated by problemCH�� admits
a global attractorA�� in X, given by (3.1). If �� 1

3, the semiflowS�0 generated by
problem CH�0 admits a global attractorA�0 in X, given by (3.2). Moreover, these
global attractors are compact and connected.
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Proof. It is sufficient to note that, as a second consequence of estimate (2.40), we
can apply Theorem3.2 to the semiflowsS�� andS�0. Indeed, if e.g. we chooset∗ > 0
such that

q∗ := M �e−t∗/6 < 1,

the operatorsS��(t∗) and S�0(t∗) are strict contractions inX, up to the pseudometric
�∗ defined by

�∗ ((u, v), (ũ, ṽ)) :=
(
M �

∫ t∗

0
‖z(s)‖2 ds

)1/2

, (3.8)

where, for(u, v), (ũ, ṽ) ∈ X, z := u− ũ is the difference of the solutions to problems
CH�� and CH�0, with initial values (u, v) and (ũ, ṽ). This pseudometric is clearly
precompact, because of the compactness of the injection

{
u ∈ L2(0, t∗;H 1) | ut ∈ L2(0, t∗;H−1)

}
↪→ L2(0, t∗;L2). (3.9)

Thus, by Theorem3.3, the mapsS��(t∗) andS�0(t∗) are�-contractions. In turn, Theorem
3.2 implies that the
-limit sets of the setB defined in (2.17) are the global attractors
for the semiflowsS�� and S�0. Finally, for the connectedness of the global attractors,
we (refer to[22, Chapter 1, Lemma 1.3]). �

3.2. Uniform boundedness of the global attractors

Since the global attractorsA�� are compact inX, they are bounded sets. In this
section, we show that, in fact, they are uniformly bounded with respect to� and �. In
this section and the next, universal constants are also understood to be independent of
any choice of initial values(u0, u1).

Theorem 3.5. There exists a bounded setG ⊆ X such that for all� ∈]0,1] if 0< ��1,
or for all � ∈ ]

0, 13
]
if � = 0, A�� ⊆ G. More precisely, there exists a universal constant

M3 > 0, such that for all(u0, u1) ∈ A��,

‖u1‖2−1 + ‖∇u0‖2 �M3. (3.10)

Proof. Let (u0, u1) ∈ A��. By Lemma 3.1,(u0, u1) belongs to a complete orbit
(u(t), ut (t))t∈R, contained inA��. Arguing as in (2.14), we note that�utt (t) ∈ Y ′ ↪→
H−3 for all t ∈ R. We have then the following preliminary result:
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Proposition 3.1. There areM4 > 0 and ε1 ∈]0, ε0] such that for allε�ε1, all � ∈
[0,1], if (u(t), ut (t))t∈R is a complete orbit contained inA��, then for all t ∈ R,

ε ‖utt (t)‖2−3 + ‖ut (t)‖2−1 �M4. (3.11)

Proof. By (3.1), A�� ⊆ B, whereB is the bounded absorbing set defined in (2.17);
since the constantsR, � andM1 appearing in the definition ofB are independent of�,
� and (u0, u1), we deduce that there is a universal constantC1 > 0, such that for all
t ∈ R,

ε ‖ut (t)‖2−1 + ‖∇u(t)‖2 �C1. (3.12)

1. As a preliminary step, we show that there exists a universal constantC > 0, such
that for all t ∈ R,

‖ut (t)‖−3 �C. (3.13)

Multiplying Eq. (1.16) by 2(−�)−2ut we obtain, recalling (1.15),

ε
d

dt
‖ut‖2−3 + 2‖ut‖2−3 + 2� ‖ut‖2 = 2

〈
�u− u3 + u, (−�)−2ut

〉

= 2
〈
(−�)−1/2(�u− u3 + u), (−�)−3/2ut

〉
�2‖�u− u3 + u‖−1 ‖ut‖−3 . (3.14)

Because of (3.12),

‖�u− u3 + u‖−1�C, (3.15)

uniformly in t ∈ R; hence, we obtain from (3.14)

ε
d

dt
‖ut‖2−3 + ‖ut‖2−3 �C2. (3.16)

Integrating this inequality on an arbitrary interval[t0, t], and recalling (3.12) again, we
deduce the estimate

‖ut (t)‖2−3 �e−(t−t0)/ε ‖ut (t0)‖2−3 + C2�C3
(
1

ε
e−(t−t0)/ε + 1

)
. (3.17)

We can then deduce (3.13) by letting t0 → −∞ in (3.17).
2. We now differentiate Eq. (1.16) with respect tot, and multiply the resulting

equation by 2(−�)−2utt and �(−�)−2ut , with � > 0 to be determined (sufficiently
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large). Adding the resulting identities, as well as a common term to both sides, we
obtain

d

dt

(
� ‖utt‖2−3 + ��

〈
(−�)−1utt , (−�)−2ut

〉

+1

2
� ‖ut‖2−3 + ‖ut‖2−1 + 1

2
�� ‖ut‖2−2

)

+(2− �ε) ‖utt‖2−3 + � ‖ut‖2−1 + 2� ‖utt‖2−2 + 1

8
�� ‖ut‖2−2

= −
〈
(3u2 − 1)ut ,2(−�)−2utt + �(−�)−2ut

〉

+1

8
�� ‖ut‖2−2 =: R�. (3.18)

By the interpolation inequality

‖ut‖2−2 �C ‖ut‖−1 ‖ut‖−3

and recalling (3.12), (3.13), we can estimate the right side of (3.18) by

R� � 2
∥∥∥(3u2 − 1)ut

∥∥∥−1

(‖utt‖−3 + � ‖ut‖−3
) + C� ‖ut‖−1 ‖ut‖−3

�
(
C4 + 1

4 �
) ‖ut‖2−1 + 1

2 ‖utt‖2−3 + C�. (3.19)

3. We assume now that��4C4 and, correspondingly,� is so small that�ε�1. Then,
replacing (3.19) into (3.18), and denotingE�(ut , utt ) the quantity under differentiation
at the left side of (3.18), we obtain

d

dt
E�(ut , utt )+ 1

2 �
(
� ‖utt‖2−3 + ‖ut‖2−1

)
+ 1

8
�� ‖ut‖2−2 �C�. (3.20)

We can easily verify that, if in addition�� max{2,K4} and ��� 1
2,

1
2

(
� ‖utt‖2−3 + ‖ut‖2−1

)
� E�(ut , utt )

� 2�
(
� ‖utt‖2−3 + ‖ut‖2−1

)
+ 1

2 �� ‖ut‖2−2 . (3.21)

Consequently, we obtain from (3.19) and (3.20) that

d

dt
E�(ut , utt )+ 1

4
E�(ut , utt )��C5. (3.22)
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Integrating (3.22) on an arbitrary interval[t0, t] ⊂ R, we obtain

E�(ut (t), utt (t))�e−(t−t0)/4E�(ut (t0), utt (t0))+ 4�C5. (3.23)

4. From (1.1) for t = t0 we have

εutt (t0) = −�
(
u(t0)− (u(t0))3 + �u(t0)− �ut (t0)

)
− ut (t0); (3.24)

hence, because of (3.12),

E�(ut (t0), utt (t0))�C6
1

ε
. (3.25)

Consequently, we obtain from (3.23)

E�(ut (t), utt (t))�C7
(
1

ε
e−(t−t0)/4 + 1

)
, (3.26)

from which, lettingt0 → −∞ and recalling (3.21), we deduce (3.11), with M4 := C7.
This completes the proof of Proposition3.1, with �1 := 1

2� and� := max{4C4,2,K4};
note that both�1 and � are universal constants. �
We can then conclude the proof of Theorem3.5: Indeed, estimate (3.10) follows

from (3.11) and (3.12) for t = 0. �

3.3. Regularity of the attractors

In this section, we prove a regularity result for the global attractorsA�� when� > 0.
More precisely, we show thatA�� is contained, and actually bounded, in the “more
regular’’ spaceX2 = Y × H 1 defined in (1.17). This result is hardly unexpected,
given the presence of the damping term−��ut , which has a regularizing effect on the
solution. In contrast, we have not been able to prove an analogous result forA�0; in fact,
we are not even able to show an inclusion of the typeA�0 ⊂ X, with X2 ↪→ X ↪→ X,
X := H +1 ×H −1, 0<  < 2 (the factor spaces being defined as in (1.12)).

Theorem 3.6. For all �, � ∈]0,1], the global attractorA�� is contained in a bounded
set ofX2. For each fixed� ∈]0,1], this set is independent of�.

Proof. We follow a method presented by Grasselli and Pata[11] for a class of
damped semilinear wave equations. We proceed in three steps: we show at first that
A�� is bounded inX1 = H 2×L2, and then, bootstrapping the argument, we show that,
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in fact, A�� is bounded inX2. Finally, we establish the bound

‖∇u1‖2 + ‖∇�u0‖2�M, (3.27)

whereM > 0 is independent of� and (u0, u1) ∈ A��, but depends on�.
1. Let (u0, u1) ∈ A��, and consider the corresponding solutionu of (1.1). We de-

composeu = v +w, wherev andw ∈ Cb([0,+∞[;X) are the solutions of the initial
boundary value problems




�vtt + vt + �
(
�v − �vt

) = 0,
v(·,0) = u0, vt (·,0) = u1,
v(0, t) = v(�, t) = 0,

(3.28)




�wtt + wt + �
(
�w − w3 − �wt

) = �h,
w(·,0) = 0, wt (·,0) = 0,
w(0, t) = w(�, t) = 0

(3.29)

with h := v3+(v+w)(3vw−1). We next show that the functionv decays exponentially,
while w is more regular thanu and v. More precisely:

Proposition 3.2. Let � ∈ [0,1], and v, w be the solutions of(3.28) and (3.29).
(1) There exist universal positive constantsR1 and �, such that for all� ∈]0,1] if

0< ��1, or for all � ∈ ]
0, 13

]
if � = 0, and all t�0,

E0(v(t), vt (t))�R1 e−t/�, (3.30)

whereE0 is the square of the norm in X defined in(2.2).
(2) If � > 0, the functiont �→ (w(t),

√
�wt(t)) is bounded from[0,+∞[ into X1;

more precisely, (w(t),
√

�wt(t)) ∈ X1 for all t�0, and there is a universal constant
R2 > 0 such that for allt�0,

� ‖wt(t)‖2 + ‖�w(t)‖2�R2
2. (3.31)

Proof. The first claim is proven with estimates analogous to those of Section2.1.
Indeed, in analogy to (2.8) we first obtain the identity

d

dt

(
E0(v, vt )+ �

2
‖v‖2

)
+ (2− �) ‖vt‖2−1 + 2� ‖vt‖2 + ‖∇v‖2 = 0. (3.32)

Setting

� := max

{
3

2
,K4 +K2 + 1

}
, (3.33)
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we easily see that

E0(v, vt )+ �
2

‖v‖2 ��
(
� ‖vt‖2−1 + ‖∇v‖2

)
; (3.34)

consequently, from (3.32) we deduce that

d

dt

(
E0(v, vt )+ �

2
‖v‖2

)
+ 1

�

(
E0(v, vt )+ �

2
‖v‖2

)
�0. (3.35)

The decay estimate (3.30) follows then by integration of (3.35); note that the corre-
sponding constantR1 is indeed universal, because, by Theorem3.5, A�� is contained
in a bounded set ofX, independently of� and �.
To show the additional regularity ofw, we multiply the equation of (3.29) in L2 by

2wt andw. Adding the resulting identities, and setting

�1(w,wt ) := � ‖wt‖2 + � 〈w,wt 〉 + 1
2 ‖w‖2 + ∥∥�w

∥∥2 +Q(w)+ �
2

‖∇w‖2 ,

whereQ(w) := 3
〈
w2∇w,∇w〉

, we obtain

d

dt
�1(w,wt )+ (2− �) ‖wt‖2 + ∥∥�w

∥∥2 + 3
〈
w2∇w,∇w

〉
+ 2� ‖∇wt‖2

= 〈
�h,2wt + w

〉
H−1×H1 + 3 〈wwt∇w,∇w〉 =: �1. (3.36)

We start the estimate of�1 as follows:

�1 � 2
∥∥�h

∥∥−1 (‖wt‖1 + ‖w‖1)+ 3 |w|∞ |wt |∞ ‖∇w‖2

� C ‖∇h‖ (‖∇wt‖ + ‖∇w‖)+ C ‖∇w‖3 ‖∇wt‖ . (3.37)

Since

‖∇h‖ � 3 |v|∞ ‖∇v‖ + 6 |v|∞ ‖∇v‖ |w|∞
+3 |v|2∞ ‖∇w‖ + 6 |v|∞ |w|∞ ‖∇w‖
+3‖∇v‖ |w|2∞ + ‖∇v‖ + ‖∇w‖ (3.38)

and bothv(·, t) and w(·, t) are uniformly bounded inH 1 ↪→ L∞, the function t �→
‖∇h(·, t)‖ is bounded. Hence, we deduce from (3.37) and (3.38) that

�1�C (1+ ‖∇wt‖)�C� + � ‖∇wt‖2 , (3.39)
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whereC is universal andC� is a positive constant depending on�, but not on� nor
on (u0, u1). Replacing (3.39) into (3.36), and adding‖∇w‖2 to both sides, we obtain
(for a differentC�)

d

dt
�1(w,wt )+ � ‖wt‖2 + ∥∥�w

∥∥2 + 3
〈
w2∇w,∇w

〉
+ ‖∇w‖2 �C�. (3.40)

From this we deduce, as usual, that

d

dt
�1(w,wt )+ 2

3
�1(w,wt )�C� (3.41)

and since�1(w(0), wt (0)) = 0, we conclude that, for allt�0,

�1(w(t), wt (t))�
3

2
C�. (3.42)

The conclusion of Proposition3.2 then follows. �
2. We now show thatA�� is bounded inX1. Let (u0, u1) ∈ A��. Because of (3.1),

there are sequences(tn)n�1 ⊂ [0,+∞[ and (
(�n,�n)

)
n�1 ⊆ B, such thattn → +∞

and S��(tn)(�n,�n) → (u0, u1) in X. Let vn and wn be the solutions of (3.28) and
(3.29), corresponding to the initial values(�n,�n): then, Proposition3.2 implies that,
as n→ ∞,

(vn(tn), (vn)t (tn))→ 0 (3.43)

in X, while (wn(tn), (wn)t (tn)) is in a bounded set ofX1. Thus, there is a subsequence,
still denoted by((wn(tn), (wn)t (tn)))n, converging to a limit(ū0, ū1) weakly in X1
and strongly inX. Since (3.43) implies thatS��(tn)(�n,�n)→ (ū0, ū1), it follows that
(u0, u1) = (ū0, ū1) is in a bounded set ofX1. Thus,A�� is bounded inX1, as claimed.
3. We now bootstrap this argument, and show that, in fact,A�� is bounded inX2.

For (u, v) ∈ X1 we set

E1(u, v) := � ‖v‖2 + � 〈u, v〉 + 1
2 ‖u‖2 + ∥∥�u

∥∥2 (3.44)

and claim:

Proposition 3.3. Let �, � ∈]0,1], (u0, u1) ∈ A��, and v, w be the solutions of(3.28)
and (3.29) corresponding to the initial values(u0, u1).
(1) There is a universal constantR3 > 0, such that for all� ∈]0,1] and all t�0,

E1(v(t), vt (t))�R3 e−t/�, (3.45)

where� is as in (3.33).
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(2) The functiont �→ (w(t),
√

�wt(t)) is bounded from[0,+∞[ into X2; more pre-
cisely, (w(t),

√
�wt(t)) ∈ X2 for all t�0, and there is a universal constantR4 > 0

such that for allt�0,

� ‖∇wt(t)‖2 + ‖∇�w(t)‖2�R2
4. (3.46)

Proof. The proof is similar to that of Proposition3.2. Multiplying the equation of
(3.28) in L2 by 2vt and v, and adding the resulting identities, we obtain

d

dt

(
E1(v, vt )+ �

2
‖∇v‖2

)
+ (2− �) ‖vt‖2 + ∥∥�v

∥∥2 + 2� ‖∇vt‖2 �0. (3.47)

Since

‖∇v‖2 = 〈−�v, v
〉
�

∥∥�v
∥∥ ‖v‖ �K

∥∥�v
∥∥ ‖∇v‖ ,

we have that‖∇v‖ �K
∥∥�v

∥∥; consequently,
E1(v, vt )+ �

2
‖∇v‖2 � 3

2
� ‖vt‖2 + ‖v‖2 + ∥∥�v

∥∥2 + ‖∇v‖2

� 3

2
� ‖vt‖2 + (K2 + 1) ‖∇v‖2 + ∥∥�v

∥∥2
� 3

2
� ‖vt‖2 + (K4 +K2 + 1)

∥∥�v
∥∥2 . (3.48)

Inserting (3.48) into (3.47) we deduce that

d

dt

(
E1(v, vt )+ �

2
‖∇v‖2

)
+ 1

�

(
E1(v, vt )+ �

2
‖∇v‖2

)
�0, (3.49)

from which (3.45) follows.
To show the additional regularity ofw, we multiply the equation of (3.29) in L2 by

−2�wt and−�w. Adding the resulting identities, and setting, for(u, v) ∈ X2,

�2(u, v) := � ‖∇v‖2 + � 〈∇u,∇v〉 + 1
2 ‖∇u‖2 + ∥∥∇�u

∥∥2 + �
2

∥∥�u
∥∥2 , (3.50)

we obtain, as usual,

d

dt
�2(w,wt )+ (2− �) ‖∇wt‖2 + ∥∥∇�w

∥∥2 + 2�
∥∥�wt

∥∥2
= −

〈
�h+ �(w3),2�wt + �w

〉
. (3.51)



S. Zheng, A. Milani / J. Differential Equations 209 (2005) 101–139 125

By Proposition3.2, we know that bothv(·, t) and w(·, t) are uniformly bounded in
H 2; therefore, as we can easily verify,�h + �(w3) is uniformly bounded inL2.
Consequently, we obtain from (3.51)

d

dt
�2(w,wt )+ (2− �) ‖∇wt‖2 + ∥∥∇�w

∥∥2 + 2�
∥∥�wt

∥∥2 �C� + �
∥∥�wt

∥∥2 .
From this, recalling that, in the usual way, for all(u, v) ∈ X2,

1
2

(
� ‖∇v‖2 + ∥∥∇�u

∥∥2) ��2(u, v)��
(
� ‖∇v‖2 + ∥∥∇�u

∥∥2) , (3.52)

we obtain that

d

dt
�2(w,wt )+ 1

�
�2(w,wt )�C�. (3.53)

Since�2(w(0), wt (0)) = 0, integration of (3.53) allows us to conclude the proof of
Proposition3.3. �
4. We can now show thatA�� is bounded inX2. With the same notations of part (2) of

the present proof we now have that (3.43) holds also inX1, while (wn(tn), (wn)t (tn))
is in a bounded set ofX2. Thus, there is a second subsequence, still denoted by
((wn(tn), (wn)t (tn)))n, converging to a limit(ū0, ū1) weakly inX2 and strongly inX1.
Since (3.43) implies thatS��(tn)(�n,�n)→ (ū0, ū1), it follows that (u0, u1) = (ū0, ū1)
is in a bounded set ofX2. Thus,A�� is bounded inX2, as claimed.
5. We now proceed to show that, in fact,A�� can be bounded inX2 indepen-

dently of �. Let (u0, u1) ∈ A��. By Lemma 3.1 (u0, u1) lies on a complete orbit
(u(t), ut (t))t∈R, contained inA��; without loss of generality, we can assume that
(u0, u1) = (u(0), ut (0)). Since all the constantsC� appearing in the proof of the
boundedness ofA�� in X1 andX2 depend only on� (i.e., they are otherwise univer-
sal), we deduce from the uniform estimate (3.12) (which also holds for� > 0), that
the estimate

ε ‖∇u1‖2 + ∥∥∇�u0
∥∥2 �C2, (3.54)

holds, uniformly with respect to� and (u0, u1) ∈ A�� (however,C2 depends on�).
This provides part of (3.27); to remove the dependence of the term withu1 on �, we
prove

Proposition 3.4. Let (u(t), ut (t))t∈R be a complete orbit contained inA��. There exists
a positive constantC3, dependent on� but not on�, such that for allt ∈ R and � ∈
]0,1],

� ‖utt (t)‖2 + ‖∇ut (t)‖2 �C3. (3.55)
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Proof. The proof is similar to that of Proposition3.1; note that (3.55) involves a higher
regularity of the orbit than (3.11). In the sequel, we denote byC� various different
positive constants, depending on� but not on �, nor on t. Note that, sinceA�� is
invariant, and (3.54) holds uniformly with respect to(u0, u1) ∈ A��, we have that for
all t ∈ R,

ε ‖∇ut (t)‖2 + ∥∥∇�u(t)
∥∥2 �C�. (3.56)

As a preliminary step, we show that there isC̄� > 0, independent oft and �, such
that for all t ∈ R and � ∈]0,1],

‖ut (t)‖−1 �C̄�. (3.57)

Multiplying Eq. (1.16) by 2ut we obtain, by (3.56),

ε
d

dt
‖ut‖2−1 + ‖ut‖2−1 �

∥∥∥�u− u3 + u
∥∥∥2
1

�C�. (3.58)

Integrating (3.58) on an arbitrary interval[t0, t] ⊂ R, and recalling (3.56) again, we
obtain

‖ut (t)‖2−1 �C�

(
1

�
e−(t−t0)/� + 1

)
, (3.59)

from which we deduce (3.57) by letting t0 → −∞.
We now differentiate Eq. (1.16) with respect tot, and multiply the resulting equation

by 2utt + ut , to obtain

d

dt

(
� ‖utt‖2−1 + �[utt , ut ] + 1

2
‖ut‖2−1 + ‖∇ut‖2 + 1

2
� ‖ut‖2

)
+(2− ε) ‖utt‖2−1 + ‖∇ut‖2−1 + 2� ‖utt‖2

= −
〈
(3u2 − 1)ut ,2utt + ut

〉
=: R1. (3.60)

By the interpolation inequality

‖ut‖2 �C ‖ut‖1 ‖ut‖−1

and recalling (3.12) and (3.57), we can estimate the right side of (3.60) by

R1�� ‖utt‖2 + C� ‖ut‖2 �� ‖utt‖2 + 1
2 ‖∇ut‖2 + C�. (3.61)
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We now denote by�3(ut , utt ) the term under differentiation in (3.60). Replacing (3.61)
into (3.60), and recalling (3.57), we obtain, as usual, the inequality

d

dt
�3(ut , utt )+ 1

2�
�3(ut , utt )�C�. (3.62)

Integrating this inequality on an arbitrary interval[t0, t] ⊂ R, we obtain

�3(ut (t), utt (t))�e−(t−t0)/2��3(ut (t0), utt (t0))+ 2�C�. (3.63)

From (3.24) and (3.56) we have

�3(ut (t0), utt (t0))�C�
1

ε
; (3.64)

consequently, we obtain from (3.63)

�3(ut (t), utt (t))�C�

(
1

ε
e−(t−t0)/2� + 1

)
. (3.65)

Letting t0 → −∞ in (3.65) we can finally deduce (3.55). This completes the proof of
Proposition3.4. �
We can now conclude the proof of Theorem3.6: Indeed, (3.27) follows from (3.55),

taking t = 0. �

3.4. Upper semicontinuity of the global attractors

In this section, we present some results on the upper semicontinuity of the global
attractorsA��, either as� → 0 for fixed �, or as� → 0 for fixed �. As a byproduct, we
also deduce some results on the convergence of solutions of problemsCH�� to those
of problem CH0� when � → 0, or of problemCH�0, when � → 0. We shall loosely
follow the arguments developed by Hale[12, Chapter 4.10], from which we recall the
following definition of upper semicontinuity of a family of sets.

Definition 3.3. Let X be a complete metric space,� ⊆ R, and (C�)�∈� a family of
subsets ofX. Let �0 ∈ �. Then, (C�)�∈� is upper semicontinuous at�0 if

lim
�→�0

dist
(
C�, C�0

) = 0, (3.66)

where dist is the semidistance inX defined on subsetsA, B ⊆ X, by

dist(A,B) := sup
a∈A

inf
b∈B ‖a − b‖X . (3.67)
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In the sequel, for� > 0 and integerm we set

Xm−� := Hm+1−� ×Hm−1−�, (3.68)

with the factor spaces defined in accord to (1.12).

3.4.1. The case� > 0, � → 0
In this section, we consider the upper semicontinuity of the attractorsA�� as � → 0,

for fixed � ∈]0,1]. By Theorem3.6, we know that these attractors are bounded in
X2, uniformly with respect to�. For � ∈]0,1], let A0� be the global attractors of the
semiflowsS0� generated by the parabolic problemsCH0�. As stated in the introduction,
these attractors are known to exist and, by well known parabolic regularity results, to
be bounded inH 3. Hence, we can introduce the sets

A0� :=
{
(u, v) ∈ X : u ∈ A0�, v = −�(I − ��)−1

(
u− u3 + �u

)}
, (3.69)

which we consider as “natural’’ imbeddings ofA0� in X. We have then the following
result:

Theorem 3.7. Let ε1 be as in Proposition3.1. For 0 < ε�ε1 and 0 < ��1, let A��
be the global attractor of the semiflowS�� generated by the hyperbolic problemCH��.
Let A0� be as in(3.69). Then for any� ∈]0,1] and � > 0, the family(A��)0�ε�ε1 is
upper-semicontinuous atε = 0, with respect to the topology ofX2−�.

Proof. Recalling (3.66), we must show that

sup
(u,v)∈A��

inf
(ū,v̄)∈A0�

(
‖u− ū‖23−� + ‖v − v̄‖21−�

)1/2 → 0 (3.70)

as ε → 0. We reason by contradiction. Assuming (3.70) did not hold, we could find
r0 > 0, and sequences(εn)n∈N ,

(
(�n,�n)

)
n∈N ⊆ A�n�, such thatεn → 0, and for all

n ∈ N ,

inf
(ū,v̄)∈A0�

(∥∥�n − ū∥∥23−� + ∥∥�n − v̄∥∥21−�

)
�r20 . (3.71)

By (3.27), we have the uniform estimate

∥∥�n
∥∥2
1 + ∥∥�n

∥∥2
3 �M (3.72)

with M independent ofn; thus, there is a subsequence, still denoted by
(
(�n,�n)

)
n∈N ,

converging to a limit(�∗,�∗) weakly in X2 and, by compactness, strongly inX2−�.
We now claim that(�∗,�∗) ∈ A0�: if true, this would contradict (3.71).
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By Lemma3.1, for eachn ∈ N there is a complete orbit

(
un(t), unt (t)

)
t∈R := (

Sεn�(t)(�n,�n)
)
t∈R (3.73)

contained inA�n� and passing through(�n,�n). In particular, we can assume that

(�n,�n) = (un(0), unt (0)). (3.74)

From (3.55) and (3.56) we have the uniform estimates

�n
∥∥untt (t)∥∥2−1 + ∥∥unt (t)∥∥21 + ∥∥un(t)∥∥23 �M2

5, (3.75)

with M5 independent oft and �n. From this it follows that for allT > 0, the func-
tions uεn�, u�n�

t and
√

�nu
�n�
t t are, respectively, in a bounded set ofL∞(−T , T ;H 3),

L∞(−T , T ;H 1) and L∞(−T , T ;H−1). Consequently, for each� ∈]0,1] there are a
function u�, and a subsequence, still denoted(εn)n∈N , such that

uεn� → u� in L∞(−T , T ;H 3) weakly∗, (3.76)

u
εn�
t → u�

t in L∞(−T , T ;H 1) weakly∗, (3.77)

�nu
εn�
t t → 0 in L∞(−T , T ;H−1) weakly∗. (3.78)

We now show that, for each� ∈]0,1], u� is a weak solution of the parabolic problem
CH0� on R (which are defined similarly to Definition2.1, further replacing the interval
[0,+∞[ with all R).

Proposition 3.5. Let u� be defined as the limit in(3.76). Thenu� is a weak solution
of problemCH0� in R, with initial value u�(0) = u0. In fact, u� is a complete orbit
for problemCH0�.

Proof. Let � be a test function, as per Definition2.1, and fix T so that supp(�) ⊆
[−T , T ]. As in (3.9), the injection

{u ∈ L2(−T , T ;H 3) : ut ∈ L2(−T , T ;H 1)} ↪→ L2(−T , T ;H 2) (3.79)

is compact. Since the restriction operatoru �→ u|[−T ,T ] is continuous, denoting restric-
tions u|[−T ,T ] still by u we deduce from (3.76) and (3.77) that, taking if necessary a
further subsequence(εn)n∈N → 0,

uεn� → u� in L2(−T , T ;H 2) strongly. (3.80)
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From (3.80), recalling (3.12), it is easy deduce that also

(uεn�)3 → (u�)3 in L2(−T , T ;L2) strongly. (3.81)

Thus, we can letεn → 0 in Eq. (2.1), and deduce thatu� is a weak solution ofCH0�,
provided that we can show thatu�(0) = u0. To this end, we recall from Lions–Magenes
[16, Chapter 1, Theorem 3.1], that the space

{u ∈ L2(−T , T ;H 2) : ut ∈ L2(−T , T ;H 1)}

is continuously injected inC([−T , T ];H 1). Hence, (3.77) and (3.80) imply that

max−T � t�T
‖uεn�(t)− u�(t)‖1 → 0; (3.82)

that is,

uεn� → u� in C([−T , T ];H 1) strongly, (3.83)

as εn → 0. In particular, (3.82) implies thatu�(0) = u0, as claimed. With this, the
proof of Proposition3.5 is complete. �
We can now conclude the proof of Theorem3.7. By (3.82), �n = un(0)→ u�(0) in

H 1; hence,u�(0) = �∗, and, therefore,u�(0) ∈ H 3. Moreover, sinceu� is a complete
orbit of S0� passing through�∗, Lemma3.1 yields that�∗ ∈ A0�. By (3.75),

∥∥εnuntt (0)∥∥−1 = √
εn

∥∥√
εnu

n
tt (0)

∥∥−1 �√
εn M5; (3.84)

hence,εnuntt (0)→ 0 in H−1. Consequently,

unt (0)− ��unt (0) = −�
(
un(0)− (un(0))3 + �un(0)

)
− εnuntt (0)

= −�
(
�n − �3

n + ��n
)

− εnuntt (0)

→ −�
(
�∗ − �3∗ + ��∗

)
(3.85)

in H−1 weakly. Sinceunt (0) = �n, from (3.85) we deduce that

�∗ = −�(I − ��)−1
(
�∗ − �3∗ + ��∗

)
. (3.86)

Since�∗ ∈ A0�, (3.86) implies that(�∗,�∗) ∈ A0�, as claimed. Having thus reached
the desired contradiction with (3.71), the proof of Theorem3.7 is complete. �
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3.4.2. The case� = 0, � → 0
In this section, we consider the upper semicontinuity of the attractorsA�0 as � → 0.

By Theorem3.5, these attractors are bounded inX, uniformly with respect to�. Let
A00 be the global attractor of the semiflowS00 generated by the parabolic problem
CH00, which, as we have recalled above, is a bounded set ofH 3. We introduce the
set

A00 :=
{
(u, v) ∈ X : u ∈ A00, v = −�

(
u− u3 + �u

)}
, (3.87)

as a “natural’’ imbedding ofA00 in X. We have then the following result:

Theorem 3.8. Let ε1 be as in Proposition3.1. For 0 < ε�ε1, let A�0 be the global
attractor of the semiflowS�0 generated by the hyperbolic problemCH�0. Let A00 be
as in (3.87). Then for any� > 0, the family (A�0)0�ε�ε1 is upper-semicontinuous at
ε = 0, with respect to the topology ofX−�.

Proof. The proof is identical to that of Theorem3.7, except that the spacesH 3, H 1

andH−1 are replaced, respectively, byH 1, H−1 andH−3. Note that the analogous of
the uniform estimate (3.75), i.e. the estimate

�n
∥∥untt (t)∥∥2−3 + ∥∥unt (t)∥∥2−1 + ∥∥un(t)∥∥21 �M2

6 (3.88)

with M6 independent oft and �n, is a consequence of (3.11) and (3.12). More-
over, in the proof of (3.81), we only need the strong convergenceun → u� in
L2(−T , T ;L2), which holds also when� = 0. We can therefore omit the details of the
proof. �
We remark that the weak solutionu� found in Theorems3.7 and 3.8 is actually in

C∞ for t > 0, as can be easily shown by standard parabolic regularity techniques (see
e.g. [24]).

3.4.3. The case� → 0, � > 0
Our last goal is to prove the upper semicontinuity of the attractorsA�� as � → 0,

for fixed � ∈]0, �1]. By Theorem3.5, these attractors are bounded inX, uniformly also
with respect to�. We have then the following result:

Theorem 3.9. Let ε1 be as in Proposition3.1. For 0 < ε�ε1 and 0���1, let A��
be the attractors of the semiflowsS�� generated by the hyperbolic problemsCH��. For
any � > 0 and � ∈]0, �1], the family (A��)0���1 is upper-semicontinuous at� = 0,
with respect to the topology ofX−�.
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Proof. The proof proceeds in the same spirit of that of Theorem3.7. We must show
that

sup
(u,v)∈A��

inf
(ū,v̄)∈A�0

(
‖u− ū‖21−� + ‖v − v̄‖2−1−�

)1/2 → 0 (3.89)

as � → 0. Assuming otherwise, we could findr0 > 0, and sequences
(
�n

)
n∈N ,(

(�n,�n)
)
n∈N ⊆ A��, such that�n → 0, and for alln ∈ N ,

inf
(ū,v̄)∈A�0

(∥∥�n − ū∥∥21−� + ∥∥�n − v̄∥∥2−1−�

)
�r20 . (3.90)

As in Theorem3.7, we see that, since the constantM3 of (3.10) is also independent of
�, the sequence

(
(�n,�n)

)
n∈N admits a subsequence, still denoted by

(
(�n,�n)

)
n∈N ,

converging weakly to a limit(�∗,�∗) in X. We now claim that(�∗,�∗) ∈ A�0: if true,
this would contradict (3.89).
By Lemma3.1, for eachn ∈ N there is a complete orbit

(
un(t), unt (t)

)
t∈R := (

Sε�n(t)(�n,�n)
)
t∈R (3.91)

contained inA��n and passing through(�n,�n); again, we can assume that (3.74)
holds. We can establish an estimate analogous to (3.75); from this estimate, recalling
that � is now fixed, we deduce that for anyT > 0, the functionsuε�ntt are in a bounded
set ofL2(−T , T ;H−3). Consequently, for each� ∈]0, �1] there are a functionuε, and
a sequence

(
�n

)
n∈N , such that�n → 0 and

uε�n → uε in L∞(−T , T ;H 1) weakly∗, (3.92)

u
ε�n
t → uεt in L∞(−T , T ;H−1) weakly∗, (3.93)

u
ε�n
tt → uεtt in L∞(−T , T ;H−3) weakly∗. (3.94)

Proceeding as in Section3.4.1, it is easy to see thatuε is a weak solution of the
hyperbolic problemCH�0 on R, with the same initial valuesu0 and u1. As in (3.80),
by passing if necessary to a further subsequence(�n)n → 0,

uε�n → uε in L2(−T , T ;L2) strongly,

u
ε�n
t → uεt in L2(−T , T ;H−2) strongly; (3.95)

hence, we deduce, as in (3.82), that

max−T � t�T

∥∥un(t)− uε(t)∥∥−1 + max−T � t�T

∥∥unt (t)− uεt (t)∥∥−3 → 0. (3.96)
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Thus,�n = un(0)→ uε(0) in H−1 and�n = unt (0)→ uεt (0) in H
−3. But, since�n →

�∗ in H 1 weakly, and�n → �∗ in H−1 weakly, we deduce thatuε(0) = �∗ ∈ H 1, and
uεt (0) = �∗ ∈ H−1. Since also, obviously,−�n �unt (0)→ 0 in H−1, we conclude that
(uε(0), uεt (0)) = (�∗,�∗). Thus, (uε(0), uεt (0)) ∈ X; moreover, since(uε(t), uεt (t))t∈R
is a bounded complete orbit through(�∗,�∗), we conclude that(�∗,�∗) ∈ A�0, as
claimed. Thus, we reach a contradiction with (3.90), and the proof of Theorem3.9 is
complete. �
As a final remark, we mention that, when� = 0, the upper-semicontinuity of the

family (A0�)0���1 as � → 0 is a consequence of that of the attractorsA0�, which
has been proven in[6]. Hence, we have the commutative diagram

A�� −→ A�0
↓ ↓

A0� −→ A00

, (3.97)

where the vertical arrows mean convergence, in the sense of (3.67), as � → 0, and the
horizontal arrows mean convergence as� → 0.

Appendix A

In this section, we give a self-contained proof of Theorems3.1 and 3.2, loosely
following [12, Chapters 2.2 and 3.2], with some important modifications.
1. We first recall some preliminary definitions, notations, and results. In the sequel

we denote byE a complete metric space with distanced.
GivenM ⊂ E, we denote byI (M) the set consisting of all those numbers� > 0

such thatM has a finite covering of sets, each having diameter not exceeding�.

Definition A.1. Let P(E) denote power set ofE (that is, the set of its subsets). A
measure of compactness onE is the map�:P(E)→ [0,+∞] defined by

E ⊇ A �→ �(A) :=
{ +∞ if A has no finite covering,

inf I (A) otherwise.
(A.1)

The following Proposition, of immediate proof, lists the main properties of measures
of compactness.

Proposition A.1. Let � be a measure of compactness on E. Then:
1. If A ⊂ E is bounded, �(A) < +∞;
2. If A ⊆ B, �(A)��(B) (monotonicity);
3. If �(A) = 0, then A is totally bounded;
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4. If A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . is a decreasing sequence of nonempty closed sets
such that�(An)→ 0 as n→ +∞, then the set

A :=
⋂
n�1

An

is compact.

In the sequel, we shall need the following technical result, which is a consequence
of Lemma 2.1.1 of[12, Chapter 2].

Proposition A.2. Let S be a semiflow on X, andB ⊆ X be such that
(B) is compact,
and attracts B. Then
(B) is invariant under S.

2. We now proceed to sketch the proof of Theorem3.1 of Section3.
2.1. Forn ∈ N , setAn := T n(B). Clearly,An ⊇ An+1 for eachn. We show that,

as a consequence,


(B) =
⋂
n�0

An =: A.

To see this, note first that, since obviously

T n(B) ⊆
⋃
m�n

T m(B),

we immediately deduce that

A ⊆ 
(B) =
⋂
n�0

⋃
m�n

T m(B).

Conversely, letz ∈ 
(B). Then, there are sequences(nj )j∈N and(zj )j∈N ⊆ B,
such thatnj → ∞ and T nj zj → z as j → ∞. Now, for eachn ∈ N there is
jn ∈ N such thatnj�n for all j�jn. Hence, forj�jn,

T nj zj ∈ T nj (B) ⊆ Anj ⊆ An.

Letting j → ∞, it follows that z ∈ An for all n ∈ N . Consequently,z ∈ A,
and
(B) = A.

2.2. SinceB is bounded, there isM > 0 such that�(B)�M. A repeated application
of (3.3) yields then

�(An) = �(T n(B))�qn�(B)�qnM;
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thus,�(An)→ 0. Since eachAn is closed, part (4) of PropositionA.1 implies
that 
(B) = A is compact.

2.3. To see that
(B) attractsB, we show that

lim
n→∞ d(T

nx,
(B)) = 0, (A.2)

uniformly in x ∈ B; that is, for anyε > 0 there existsN such that for all
integern�N and all x ∈ B,

d(T nx,
(B)) < ε.

Proceeding by contradiction, assume there isε0 > 0 such that for all integers
j it is possible to find another integernj�j , and a pointxj ∈ B, such that

d(T nj (xj ),
(B))�ε0. (A.3)

This process defines a bounded sequence�∗ := (T nj xj )j∈N ⊂ B. If we can
show that�∗ contains a convergent subsequence, we reach the desired contra-
diction, because by (A.3) the limit z of this subsequence would on the one
hand be in
(B), and on the other handz would satisfyd(z,
(B))�ε0.
To show that�∗ does contain a convergent subsequence, let� be the subset of
B consisting of all the sequences of the form� = (T mj xj )j∈N , with xj ∈ B,
mj ∈ N andmj → ∞ as j → ∞. Since�(�)��(B) for all � ∈ �,

0��0 := sup
�∈�

�(�) < +∞.

We claim that�0 = 0. Otherwise, we could first choose� > 0 such that
� < (1− q)�0, and then a sequence�0 ∈ � such that�0 − � < �(�0). Let
�0 = (T mj xj )j∈N . Sincemj → ∞, there is j0 ∈ N such thatmj�1 for
all j�j0. Consider then the sequence�1 := (T mj−1xj )j� j0. Since�1 can be
written as �1 = (T nkyk)k∈N , with nk = mj0+k − 1 → ∞ as k → ∞, and
yk = xj0+k ∈ B, it follows that �1 ∈ �; therefore,�(�1)��0. Next, setting

�̃0 := T �1 = (T mj xj )j� j0,

we see that the sequenceT �1 coincides with the sequence�0, deprived of its
first j0 terms. We now check that dropping this finite number of terms does not
affect the measure of�-compactness of�0. Indeed, from part (2) of Proposition
A.1 we first have that�(�̃0)��(�0). To show the opposite inequality, it is
sufficient to show thatI (�̃0) ⊆ I (�0). Now, if � ∈ I (�̃0) andC1, . . . , Cr is a
finite covering of �̃0, such that diam(Ci)��, the addition to this covering of
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the j0 balls B(T xi, 12�), 0� i�j0, produces a finite covering of�0 with sets
whose diameter does not exceed�. Thus,� ∈ I (�0), as claimed.
In conclusion, we have the chain of inequalities

�0 − � < �(�0) = �(�̃0) = �(T �1)�q�(�1)�q�0 < �0 − �,

which yields a contradiction. This means that�0 = 0 and, therefore,�(�) = 0
for all � ∈ �. In particular,�(�∗) = 0, which implies, by part (3) of Proposition
A.1, that�∗ is totally bounded. Hence,�∗ is compact, and contains a convergent
subsequence, as claimed. Finally, the invariance of
(B) follows Proposition
A.2. This concludes the proof of Theorem3.1. �

3. We now prove Theorem3.2 of Section3.
3.1. To show thatA is compact, note that the functionF : [0,+∞[×B → B defined

by F(t, x) := S(t)x is continuous on[0, t∗] × A∗. To see this, set

R := sup
0� t� t∗

L(t) (A.4)

and fix (t0, x0) ∈ [0, t∗]×A∗. Since the mapt �→ S(t)x is continuous for each
x ∈ X, for any given� > 0, there is�1 > 0 such that if|t − t0|��1,

d(S(t)x0, S(t0)x0)�
1

2
�; (A.5)

note that�1 depends on� and(x0, t0). Let then�2 := �
2R , and� := min{�1, �2}.

Then if (t, x) is such that

(d(x, x0))
2 + |t − t0|2��2,

by (A.4) and (A.5) we have that

d(S(t)x, S(t0)x0) � d(S(t)x, S(t)x0)+ d(S(t)x0, S(t0)x0)
� R d(x, x0)+ d(S(t)x0, S(t0)x0)

� R�2 + 1

2
���. (A.6)

This shows the continuity ofF. It is then immediate to verify that

A = A1 := F([0, t∗] × A∗);

thus,A is compact, becauseF is continuous and[0, t∗] × A∗ is compact.
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3.2. We now show thatA attracts all bounded subsets ofB. Let G ⊆ B be bounded,
and fix t� t∗. Given anyx ∈ S(t)G and a∗ ∈ A∗, let g ∈ G be such thatx =
S(t)g, and decomposet = nt∗ + �t , for suitablen ∈ N and �t ∈ [0, t∗]. Let
ā := S(�t )a∗. Then, ā ∈ A, and recalling (A.4), we can estimate

d(x, ā) = d(S(�t )S(t − �t )g, S(�t )a∗)�R d(S(t − �t )g, a∗)

� R d(S(nt∗)g, a∗) = R d(Sn∗g, a∗).

From this, it follows that

inf
a∈A d(x, a)�d(x, ā)�R d(S

n∗g, a∗)

and, sincea∗ is arbitrary inA∗,

inf
a∈A d(x, a)�R inf

a∗∈A∗
d(Sn∗g, a∗). (A.7)

Sinceg ∈ G ⊆ B, andB is positively invariant,Sn∗g ∈ B. Thus, recalling the
definition of semidistance, we can proceed from (A.7) with

inf
a∈A d(x, a)�R sup

b∈Sn∗B
inf
a∗∈A∗

d(b, a∗) = R dist(Sn∗B,A∗). (A.8)

Since (A.8) is true for arbitraryx ∈ S(t)G, it follows that

sup
x∈S(t)G

inf
a∈A d(x, a) = dist(S(t)G,A)�R dist(Sn∗B,A∗). (A.9)

Since A∗ attractsB under S∗, (A.9) implies thatA attractsG under S, as
claimed.

3.3. We next show thatA = 
(B). Let a ∈ A. There are then� ∈ [0, t∗] and
a∗ ∈ A∗, such thata = S(�)a∗. Since A∗ = 
∗(B), there are sequences
(mj )j∈N ⊆ N and (zj )j∈N ⊆ B, such thatmj → ∞ and S

mj∗ zj → a∗ as
j → ∞. Let tj := � +mj t∗. Then, tj → ∞, and

a = S(�)a∗ = lim
j→∞ S(� +mj t∗)zj = lim

j→∞ S(tj )zj .

Thus,a ∈ 
(B). This proves thatA ⊆ 
(B). Conversely, letz ∈ 
(B). Then,
there are sequences(tj )j∈N ⊆ [0,+∞[ and (zj )j∈N ⊆ B, such thattj → ∞
and S(tj )zj → z as j → ∞. For eachj ∈ N , we can writetj = mj t∗ + �j ,
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with mj ∈ N , �j ∈ [0, t∗], andmj → ∞ as j → ∞. SinceB is positively
invariant,S(�j )zj =: z̃j ∈ B for all j. Hence,

z = lim
j→∞ S(tj )zj = lim

j→∞ S(mj t∗)S(�j )zj = lim
j→∞ S

mj∗ z̃j .

This means thatz ∈ 
∗(B) = A∗. SinceA∗ ⊆ A, it follows that 
(B) ⊆ A.
Thus,A = 
(B).

3.4. SinceA is compact and attractsB, and 
(B) = A, PropositionA.2 implies
that A is invariant. This concludes the proof of Theorem3.2. �
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