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NF-kB as a potential therapeutic target in osteoarthritis
and rheumatoid arthritis
J. A. Roman-Blas M.D.* and S. A. Jimenez M.D.
Thomas Jefferson University, Department of Medicine, Division of Rheumatology, Philadelphia, PA, USA

Summary

The family of nuclear factor-kappaB (NF-kB) transcription factors is intimately involved in the regulation of expression of numerous genes in
the setting of the inflammatory response. Since inflammatory processes play a fundamental role in the damage of articular tissues, many
in vitro and in vivo studies have examined the contribution of components of the NF-kB signaling pathways to the pathogenesis of various
rheumatic diseases, in particular, of osteoarthritis (OA) and rheumatoid arthritis (RA). Inflammation, cartilage degradation, cell proliferation,
angiogenesis and pannus formation are processes in which the role of NF-kB is prominent. Consequently, large efforts have been devoted
to the study of the pharmacologic modulation of the NF-kB pathways. These studies have employed currently available therapeutic agents
including non-steroidal anti-inflammatory drugs, corticosteroids, nutraceuticals and disease-modifying anti-rheumatic drugs, as well as novel
small molecule inhibitors targeted to specific proteins of the NF-kB pathways. In addition, promising strategies such as improved antisense
DNA therapy and RNA interference have been examined with encouraging results. However, since NF-kB also plays a crucial beneficial role in
normal physiology and technical problems for effective gene therapy still remain, further research will be needed before NF-kB-aimed strat-
egies become an effective therapy for joint diseases, such as OA and RA.
ª 2006 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

A multitude of complex autocrine and paracrine anabolic
and catabolic signals act upon diverse cells from articular
tissues and the precise interplay of these signaling path-
ways is essential for the activation of their gene expres-
sion machinery. In the last few years, novel molecular
approaches have provided invaluable insights into these
important processes, many of which play a key role on the
pathogenesis of inflammation and tissue destruction, crucial
components of numerous articular diseases1e5.

The signaling pathways transduce extracellular signals
from the cell surface to the nucleus. A signaling molecule
or ligand outside the cell interacts with a specific receptor
on the extracellular surface of the cell membrane. The
ligand binding is followed by the interaction of the intracellu-
lar domains of the receptor with intracellular pathway
components. This interaction initiates a cascade of proteine
protein interactions that expands the signal inside the cell
and transfers it to the nucleus, where binding or modifica-
tion of the activity of transcription factors (TFs) plays a cru-
cial role in the process of activation or repression of gene
expression6,7.

Once a signal has been transduced from the cell surface to
the nucleus, TFs respond, interacting with specific DNA-
binding elements present in the promoters and often in the
first introns of genes to induce their expression or repression
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at the level of mRNA synthesis. A number of TF families,
including those for activator protein 1 (AP-1), nuclear factor-
kappaB (NF-kB), signal transducer and activator of transcrip-
tion (STATs), Smads, p53 tumor suppressor, Sps, and others
have been implicated as critical regulators of gene ex-
pression in the setting of the inflammatory process8e10.
This review focuses on the NF-kB signaling pathways,
emphasizing their role in inflammation and damage to articu-
lar tissues and their modulation with therapeutic agents cur-
rently in use, and potential future strategies.

NF-kB

The NF-kB proteins are a family of ubiquitously expressed
TFs that play an essential role in most immune and inflam-
matory responses. These TFs also have an important role
in the protection of cells from apoptosis and in the process
of intercellular signaling during normal vertebrate develop-
ment. However, the extracellular signals that activate
NF-kB in development have not been fully elucidated.

In mammals, the NF-kB family consists of five members:
RelA (p65), RelB, c-Rel, NF-kB1 (p50 and its precursor
p105), and NF-kB2 (p52 and its precursor p100). They
form a variety of homodimers and heterodimers, each of
which activates its own characteristic set of genes, and
share a 300-amino acid domain that is designated the Rel
homology domain which mediates their DNA binding,
dimerization and nuclear translocation11e15. Although, the
most prevalent activated form is the heterodimer RelA
(p65) and p50, different dimers can bind to the same or
distinct sites in NF-kB-dependent promoters regulating the
transcription of response genes in a cell-type and stimu-
lus-type manner16,17.
9

https://core.ac.uk/display/82722908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jorge.roman-blas@jefferson.edu


840 J. A. Roman-Blas and S. A. Jimenez: NF-kB as a potential therapeutic target in OA and RA
NF-kB function and regulation

NF-kB is present in the cytoplasm of almost all mamma-
lians cells in an inactive form associated with the inhibitory
kB proteins (IkB), which include IkBa, IkBb, IkB3 and
IkBg11e13. The IkB proteins typically contain C-terminal
ankyrin repeats that are crucial for their interaction with
the NF-kB proteins, and an N-terminal leucin-rich nuclear
export sequence, that is important for the shuttling of IkB
between the cytoplasm and nucleus. The shuttling of IkBa
is an important mechanism to retain the IkBaep50ep65
complex in the cytoplasm. IkBa is also involved in the
removal of NF-kB proteins from the nucleus. Thus, IkB
has both cytoplasmic and nuclear roles in regulating the
NF-kB pathway11e13,18.

A broad range of stimuli including the cytokines, tumor ne-
crosis factor-alpha (TNF-a) or interleukin (IL-1b) chemo-
kines, bacterial and viral products, UV radiation and free
radicals activate the NF-kB dimers by triggering a signaling
pathway that leads to the phosphorylation of IkB, its ubiquiti-
nation by E3IkB ubiquitin ligase complex, and its consequent
degradation by 26S proteasome. The phosphorylation of IkB
is performed by the specific serine/threonine kinase IkB
kinase (IKK). The IKK complex consists of at least three sub-
units, including the kinases IKKa and IKKb (also called IKK-1
and IKK-2, respectively) and the associated regulatory sub-
unit IKK-g/NF-kB essential modulator (NEMO). Despite the
structural similarity between IKKa and IKKb, IKKb is the dom-
inant kinase involved in the activation of NF-kB proteins,
whereas IKKa plays a partially redundant role in NF-kB acti-
vation. IKK-g/NEMO has no known kinase activity, however,
is crucial for the IKK complex activation14,18,19.

The mechanism through which cytokines activate the IKK
complex is not fully known. At least two hypotheses have
been postulated: one proposes that mitogen activated pro-
tein kinase kinase kinase (MAPKKK) activation enhances
IKK activity, whereas the second suggests that the linkage
of IKK to the receptors localized in the cell membrane ori-
ginates its autophosphorylation and further activation. Al-
though phosphorylation of IKK is a key event in the NF-kB
pathway, the ubiquitination and subsequent degradation of
the multiple factors involved on its regulation are also crucial
mechanisms required for NF-kB activation18,20e23.

While IKKb activates the NF-kB canonical pathway
through phosphorylation of IkB, IKKa activates the NF-kB
non-canonical pathway by phosphorylating p100, leading
to further p52 activation. NF-kB-inducing kinase (NIK-1)
also plays an essential role in the non-canonical pathway,
inducing the p100 processing. Furthermore, a new IKKa
function has been recently described; the regulation of
histone function which in turn causes the activation of the
NF-kB canonical pathway. The histone proteins assembled
with the DNA form the nucleosomes, fundamental packing
units of chromatin. The chromatin limits the DNA-binding
protein access to the immediate early-response gene pro-
moters, such as NF-kB response genes. Histone modifica-
tion occurs as a result of diverse stimuli, causing changes in
the structure of chromatin and allowing further interaction
between certain sequences of gene promoters and TFs,
such as NF-kB, coactivators and other components of the
transcription machinery23e26.

The degradation of IkB exposes a nuclear localization
signal on the NF-kB proteins, which then are able to trans-
locate into the nucleus and stimulate the transcription of
specific genes. It has been described that NF-kB regulates
more of than 150 genes, including those involved in immu-
nity and inflammation, anti-apoptosis, cell proliferation and
the negative feedback of the NF-kB signal14. NF-kB posi-
tively regulates genes encoding cytokines (e.g., TNF-a,
IL-1b, IL-6, IL-2, IL-12, interferon (IFN)-g, granulocyte mac-
rophage colony stimulating factor (GM-CSF)), cell adhesion
molecules (e.g., E-selectin, vascular cell adhesion molecule
(VCAM)-1, intercellular adhesion molecule (ICAM)-1), che-
mokines (e.g., IL-8, macrophage inflammatory protein
(MIP)-1a, methyl-accepting chemotaxis protein (MCP)-1,
RANTES (regulated upon activation, normal T-cell ex-
pressed and secreted), eotaxin), receptors (e.g., major his-
tocompatibility complex (MHC)) and inducible enzymes
(e.g., cyclooxygenase (COX)-2, inducible nitric oxide syn-
thase (iNOS)). NF-kB also increases the expression of
molecules important in regulation of cellular proliferation,
apoptosis and cell-cycle progression, such as cellular inhib-
itor of apoptosis protein 1 (c-IAP1), c-IAP2, TNF-receptor-
associated factor 1 (TRAF1), TRAF2, B-cell lymphocyte/
leukemia-2 and its homologs (AF-1/BF-1 activation function
1/brain factor 1, IEX-1L immediate early gene X1L), Fas,
c-myc and cyclin D118. A partial list of genes relevant to
the inflammatory response whose expression is stimulated
by NF-kB activation is shown in Table I.

Gene knockout studies show different functions for mem-
bers of the NF-kB family. Mice lacking p65 (Rel A) die at 15
or 16 days of gestation, due to hepatic apoptosis. Embry-
onic fibroblasts from these animals fail to increase IKK
and macrophage colony stimulating factor (M-CSF) mRNA
levels following TNF-a stimulation, although their basal
levels are similar to those in controls27. Gene knockout of
p50 results in a phenotype close to normal, without any al-
teration in the hepatic inflammatory response to ischemia/
reperfusion; but displays a variety of specific immune
defects of lymphocyte B function and of the unspecific
response to infections. The animals also show deficits in
specific cognitive tasks, such as a remarkably low level of
anxiety-like behavior28,29.

Role of the NF-kB in arthritis

Although NF-kB plays an essential beneficial role in nor-
mal physiology, inappropriate regulation of NF-kB activity
has been implicated in the pathogenesis of several dis-
eases including inflammatory and rheumatic diseases
(rheumatoid arthritis (RA), osteoarthritis (OA), atherosclero-
sis, asthma, multiple sclerosis, chronic inflammatory demy-
elinating polyradiculoneuritis, inflammatory bowel disease,

Table I
Partial list of NF-kB-induced genes

Genes that encode molecules involved in inflammation and
immunity:

Cytokines TNF-a, IL-1b, IL-2, IL-6, IL-8, IL-12, IFN-g,
GM-CSF

Adhesion molecules e-selectin, ICAM-1, VCAM-1
Chemokines eotaxin, IL-8, MIP-1a, MCP-1, RANTES
Receptors CD-3G, CD-40, CD-48, MHC-I, TLR-2
Inducible enzymes COX-2, iNOS

Genes that encode molecules involved in cell proliferation,
apoptosis and cell cycle:

Anti-apoptosis AF-1/BF-1, c-IAP-1, c-IAP-2, c-FLIP, Bcl-2,
TRAF-1, TRAF-2

Apoptosis Bax, caspase 11, Fas, FasL
Proliferation c-myc, cyclin D1, ephrin A1, E2F3a

Genes that encode molecules involved in negative feedback of
NF-kB:

IkBa, IkBb, A20
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Helicobacter pylori-associated gastritis, systemic inflammatory
response syndrome), diabetes type 2, cancer, acquired
immuno-deficiency syndrome, central nervous system-
related disease conditions, euthyroid sick syndrome and
cachexia (Tables II and III). The beneficial and harmful roles
of NF-kB are diagrammatically shown in Fig. 130e33.

The p50 and p65 NF-kB are abundant in rheumatoid and
osteoarthritic synovitis. However, NF-kB activation is higher
in RA than in OA34. Synovial tissues from patients with RA
and spondyloarthropathies (SpA) show that the numbers of
cells expressing NF-kB1 at the cartilageepannus junction is
significantly higher than in other areas; a similar finding was
observed in the number of cells expressing RelA in RA
synovium, but not in SpA synovium. Furthermore, the num-
bers of NF-kB1þ and RelAþ cells in OA synovium were
similar to those observed at the non-cartilageepannus junc-
tion sites in all inflammatory tissues studied35. In patients
with RA and OA, immunoreactive IKK is abundant in
primary fibroblast-like synoviocytes and IKKa and IKKb
are constitutively expressed at the mRNA level. Following
TNF-a and IL-1b stimulation of these cells, IKKb activation
is a key event for NF-kB mediated induction of IL-6, IL-8,
ICAM-1 and collagenase gene expression36.

Animal models of inflammatory arthritis also support the
concept that NF-kB plays a very active role in the develop-
ment and progression of arthritis in vivo37,38. NF-kB activa-
tion prior to the onset of clinical manifestations of arthritis
has been found in both, murine type II collagen-induced
arthritis and rat adjuvant-induced arthritis. In the first
model, NF-kB expression correlated with collagenase-3
(metalloproteinase (MMP)-13) and stromelysin 1 (MMP-3)
levels better than AP-1 expression level, however, both
TFs were activated before onset of clinical arthritis and
MMP gene expression39. Also, a shift to nuclear NF-kB lo-
calization was shown in chondrocytes during cartilage de-
struction in the early stage of arthritis in DBA/1 mice
immunized with type II collagen40. In the second model,
expression of activated NF-kB p65 was found in the syno-
vial lining layer and surrounding the blood vessels in the
inflamed synovium, being stronger in the injected hindpaw

Table II
Partial list of diseases associated with NF-kB activation

(1) Diseases with associated inflammation:
RA, OA, and other rheumatic diseases
Atherosclerosis
Asthma
Multiple sclerosis
Chronic inflammatory demyelinating polyradiculoneuritis
Inflammatory bowel disease
Systemic inflammatory response syndrome

(2) Infectious diseases:
AIDS
Helicobacter pylori-associated gastritis

(3) Endocrine diseases:
Type 2 diabetes mellitus
Euthyroid sick syndrome

(4) Cancer:
Solid: breast, colon, kidney, liver, lung, prostate, ovary
Hematologic: acute lymphocytic leukemia, acute myeloid
leukemia, Hodgkin’s lymphoma, multiple myeloma

(5) Other:
Chronic heart failure
Alzheimer disease
Cachexia
Neuropathic pain
than that in the noninjected one41. In addition, intra-articu-
lar gene transfer of IKKb caused arthritis in normal rats,
characterized by severe paw swelling, inflammatory
histologic changes, increased IKK activity and enhanced
NF-kB DNA-binding activity. Thus, these experiments
confirm that IKK activation is a crucial event in the initia-
tion of synovitis31,42.

Role of NF-kB in articular cartilage destruction

NF-kB signaling pathways mediate critical events in the
inflammatory response by chondrocytes, leading to pro-
gressive extracellular matrix damage and cartilage destruc-
tion. Indeed, our own observations (shown in Fig. 2) have
evidenced the potent activation of NF-kB in articular chon-
drocytes following stimulation with two proinflammatory
cytokines, IL-1b and TNF-a, which play a prominent role
in the catabolism of the articular cartilage. Furthermore,
our studies also showed that costimulation with both IL-1b
and TNF-a causes a synergistic potentiation of NF-kB acti-
vation in articular chondrocytes. Numerous other studies
have examined the effects of NF-kB on chondrocyte func-
tions. In rat prechondrocytes as well as in articular chondro-
cytes, the NF-kB and the MAP kinase ERK 1/2 kinase
pathways were found to mediate inhibition of type II collagen
and link protein gene expression by TNF-a43,44. Studies per-
formed in human OA chondrocytes and chondrosarcoma
cells have shown that NF-kB, as well as MAP kinases, me-
diates MMP-1, MMP-3 and MMP-13 RNA/protein expres-
sion induced by TNF-a or IL-1b. These results were
achieved employing various specific inhibitors of the

Table III
Rheumatic disorders associated with NF-kB activation

� RA
� OA
� SpA
� Psoriatic arthritis
� Crystal induced arthropathies
� Septic arthritis
� Juvenile RA
� Systemic lupus erythematosus
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Fig. 1. Beneficial and harmful effects of NF-kB.
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NF-kB and MAPK pathways suggesting that inhibition of
TNF-a and IL-1b signal transduction employing these agents
could be a potential therapeutic strategy aimed to reduce
articular cartilage degradation by MMPs in arthritis45,46. Per-
sistent activation of NF-kB in cytokine-stimulated bovine
chondrocytes requires nitric oxide (NO) presence to sustain
p65 nuclear translocation, while NF-kB immediate activation
does not47.

NF-kB has also been shown to mediate fibronectin frag-
ment induced-chondrocyte activation and increased ex-
pression of proinflammatory cytokines, chemokines as
well as MMPs such as IL-6, IL-8, MCP-1, growth-related
oncogene a (GRO-a), GRO-b, GRO-g and MMP-13 by
human articular chondrocytes48,49. Furthermore, NF-kB
participates in the receptor for advanced glycation end
(RAGE) signaling-induced increase in MMP-13 expression
in monkey and human articular chondrocytes50. In addition,
NF-kB production was increased with donor age in IL-1b-
stimulated human articular chondrocytes49. Finally, a study
performed in bovine chondrocytes under hypoxic and nor-
moxic conditions showed that DNA binding of NF-kB and
AP-1 was significantly higher in hypoxic and reoxygenated
chondrocytes treated with IL-1b than in normoxic
chondrocytes51.

It is also known that NF-kB signal pathways are em-
ployed by mechanical signals for transcriptional regulation
of proinflammatory genes that are involved in catabolic
events in chondrocytes. Mechanical strains of low magni-
tude prevent nuclear translocation of NF-kB, resulting in

Fig. 2. NF-kB activation in articular chondrocytes. Nuclear extracts
from bovine articular chondrocytes were subjected to an electromo-
bility shift assay with a probe containing a consensus site for
NF-kB. A dramatic increase in the NF-kB DNA-binding activity in
the cells treated with either IL-1b (lane I) or TNF-a (lane T) com-
pared with control cells (lane C) is observed. Furthermore, treat-
ment with both proinflammatory cytokines, IL-1b and TNF-a
together (lane I þ T) resulted in greater increase in the NF-kB
DNA-binding activity compared with either IL-1b (lane I) or

TNF-a alone (lane T).
inhibition of proinflammatory gene expression. In contrast,
mechanical strains of high magnitude induce this transloca-
tion, and thus cause proinflammatory gene induction. Fur-
thermore, mechanical overload induces similar intracellular
events to those generated by proinflammatory cytokines in
arthritis52,53. In fact, experiments performed in chondrocytes
isolated from rabbit articular cartilage grown on flexible
membranes have shown that cyclic tensile strain (CTS) of
low magnitude (4e8% equibiaxial strain) inhibited IL-1b-
dependent NF-kB nuclear translocation, whereas CTS of
high magnitude (15e18% equibiaxial strain) induced rapid
nuclear translocation of NF-kB subunits p65 and p50, and
reproduced the actions of IL-1b54.

Besides its anti-inflammatory effects, it has been sug-
gested that NF-kB may also play a role in chondrocyte
apoptosis. Under certain conditions NF-kB exerts prosur-
vival effects in articular cartilage. Thus, in human chondro-
cytes NF-kB activation partially mediates the anti-apoptotic
effects of IL-1b against death receptor CD-95 (FAS/APO-
1)55. Further experiments demonstrated that NF-kB-depen-
dent mechanisms oppose CD95-induced apoptosis. These
NF-kB-dependent mechanisms include interference with
caspase 3 activation, likely through regulation of cytosolic
concentrations of XIAP-156. The inhibition of proteasome
and RNA synthesis of NF-kB sensitizes human articular
chondrocytes to NO-induced apoptosis, as well57,58. In con-
trast, other studies have described NF-kB involvement in
apoptotic events in articular chondrocytes. For example, it
has been shown that NF-kB activation mediates the apopto-
tic effect of NO in articular chondrocytes. The signaling
pathway involved in this process is quite complex and has
been partially elucidated. This pathway involves the activa-
tion of p38 kinase by NO. Activated p38 in turn causes in-
hibition of the kinase activities of protein kinase Cz
(PKCz). The inhibition of PKCz results in activation of NF-
kB which subsequently activates caspase 3-induced apo-
ptosis, through activation of p5359,60.

Inhibition of NF-kB by pharmacologic agents

An increasing number of NF-kB inhibitors, including sev-
eral clinically important anti-inflammatory drugs, have been
reported (illustrated in Fig. 2). Glucocorticoids are potent
inhibitors of the NF-kB pathway through several proposed
mechanisms61e64. Glucocorticoids induce expression of
IkB, causing an increased cytosolic retention of NF-kB65,66.
Glucocorticoids may also inhibit the NF-kB DNA-binding ac-
tivity through direct interaction between the glucocorticoid
receptor and components of the NF-kB binding sites in var-
ious gene promoters67. The activated glucocorticoid recep-
tor can also interact with NF-kB by direct proteineprotein
binding, preventing the activation of the NF-kB pathway in
certain types of cells68. Lastly, competition can occur
between the glucocorticoid receptor and NF-kB, limiting
amounts of the coactivators CREB-binding protein (CBP),
CBP-associated factor (p/CAF) and steroid receptor coacti-
vator-169. Non-steroidal anti-inflammatory drugs (NSAIDs),
such as aspirin, salycilate, ibuprofen and sulindac inhibit
IKK activity significantly, preventing IkB phosphorylation,
consequently blocking the activation of the NF-kB path-
way70. It has also been shown that sulfasalazine suppresses
IkB phosphorylation, probably owing to the effects of its anti-
inflammatory metabolite, 5-aminosalicylic acid71.

The immunosuppressive agents cyclosporin A and tacroli-
mus (FK-506) also inhibit the NF-kB pathway. Cyclosporin A
inhibits the protease activity of the 20S proteasome complex
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preventing IkBa degradation in murine macrophages, Jurkat
lymphoma cells, and mouse and human T lymphocytes72,73.
FK506 blocks translocation of c-Rel from the cytoplasm to the
nucleus in both B and T cells, and Jurkat cells, leading a
decreased expression of IL-2 and its receptor74,75. Several
other agents have also been described to inhibit NF-kB
including vitamin C76, vitamin E77, curcumin78, flavonoids78,
lactacystin79, thalidomide80, leflunomide81, pyrrolidine dithio-
carbamate82, glucosamine83 and diacehrein84.

Novel therapeutic strategies (Fig. 3) aimed at the specific
inhibition of key elements in the NF-kB pathway activation
have been developing in the last few years, causing
great expectation regarding their effects as arthritis treat-
ments85e89. Proteasome function inhibitors, decoy oligonu-
cleotides, and peptides that inhibit nuclear localization of
NF-kB have also been utilized to inhibit NF-kB signaling
in animal models90,91. Daily oral treatment with PS-341
(bortezomib), a proteasome inhibitor newly approved by
the FDA for multiple myeloma, decreases significantly
NF-kB activity in rats with streptococcal cell wall-induced
polyarthritis. This decrease is associated with lower serum
levels of IL-1, IL-6 and NO metabolites92. Decoy oligodeox-
ynucleotides (ODN), short double stranded DNA containing
the consensus binding sequence of NF-kB which competes
for binding with native NF-kB and its consensus sequences
in the promoter of target genes, were introduced by intra-ar-
ticular injection into the hind joints of rats with type II colla-
gen-induced arthritis. In these experiments, NF-kB decoy
ODN decreased the severity of hind-paw swelling, sup-
pressed IL-1b and TNF-a in the arthritic synovium, and ab-
rogated joint destruction as evidenced by histologic and
radiographic studies93. In a similar approach, the same in-
vestigators injected NF-kB decoy ODN into the knee joints
of anterior cruciate ligament transection OA model rats.
Fluorescein isothiocyanate (FITC)-labeled NF-kB decoy
ODN was located mostly in the nuclei of superficial synovial
lining cells at 2 days after the injection. Histopathological
findings from knee joints injected with the naked NF-kB de-
coy ODN showed a statistically significant amelioration as
assessed by the Mankin 95 criteria, compared with either
a scrambled decoy ODN or phosphate buffered saline
administration. Also, naked NF-kB decoy ODN significantly
inhibited the levels of IL-1b or TNF-a in the synovium and
the cartilage, compared with the scrambled decoy ODN94.
BMS-205820 is another novel, potent, and selective NF-kB
inhibitor. It contains a cell-permeable peptide carrying two
nuclear localization sequences capable of blocking NF-kB
nuclear localization. This inhibition resulted in a decrease
of cell surface protein expression, cytokine production and
T cell proliferation, and showed efficacy in a mouse septic
shock model as well as in a mouse model of inflammatory
bowel disease95.

IKKb has become a particularly appealing target for ther-
apeutic intervention in RA and OA, because of its crucial role
in the NF-kB pathway activation. Administration of IKKb re-
sulted in a potent reduction of cytokine production in numer-
ous cell types including synoviocytes and chondrocytes.
Thus, in rats with adjuvant-induced arthritis, intra-articular
gene therapy delivering a dominant-negative IKKb adenovi-
rus construct inhibits NF-kB translocation; consequently, cy-
tokine-induced IL-6, IL-8 and ICAM-1 expressions are
suppressed36. Genetic constructs that overexpress IkB or
express an engineered protein without the sites for phos-
phorylation (IkB super repressor) have also been used.
However, there have been technical difficulties for their ap-
propriate intracellular delivery, therefore, viral or non-viral
vectors are necessary to carry them into the cell. Recently,
a new technical approach has been developed by delivering
a chimeric molecule, which contains the super-repressor
IkBa (srIkB) fused to the membrane-transducing domain of
the human immunodeficiency virus Tat protein (Tat-srIkBa)
in a rat model of pleurisy. This chimeric molecule showed
a good effect with reduced cellular infiltration, as well as,
increased apoptosis of leukocytes in the sites of inflamma-
tion and decreased levels of the proinflammatory cytokines
TNF-a and IL-1b in the exudates96. Also, new studies with
small molecule inhibitors have further strengthened the role
of IKKb. One of these small molecules, SC-514 inhibits IkB
phosphorylation/degradation and p65 NF-kB phosphoryla-
tion/transactivation induced by IL-1b in RA synovial fi-
broblasts in a dose-dependent manner97. Another IKKb
inhibitor, BMS-345541, was administered to treat murine
type II collagen-induced arthritis in both prophylactic and
therapeutic dosing regimens. Prophylactic BMS-345541
showed a dose-dependent efficacy reducing the incidence
of arthritis, clinical disease severity and IL-1b mRNA levels
and blocking inflammation and joint destruction evaluated
histologically. Therapeutic BMS-345541 reduced clinical
and histological end points in animals with preestablished
disease, showing a dose-dependent effect. Furthermore,
use of high doses resulted in clinical remission of the
disease98.

Other new promising therapeutic strategies to target
specific proteins of the NF-kB pathway include improved
antisense therapy and RNA interference. Locked nucleic
acid-antisense (LNA) is a class of nucleic acid analogs
which contain a gapmer LNA with a central DNA or a phos-
phorothioate-DNA segment flanked by LNA gaps. These
chemical modifications lead to improved binding affinity to
complementary DNA or RNA and improved biostability,
consequently, better pharmacological properties99. Morpho-
lino oligonucleotides are DNA analogs that block mRNA
translation in a sequence-specific manner. Their chemical
structures consist of an ODN which has been modified, con-
taining a six-membered morpholino ring instead of a deoxy-
ribose sugar. In addition, the charged phosphodiester
internucleotide linkage is replaced by an uncharged phos-
phorothioate. These changes have improved their stability
and pharmacological properties100,101. RNA interference,
a general post-transcriptional gene silencing mechanism,
is initiated by a double stranded RNA which after being
introduced into cells is cleaved into 21 or 22nt dsRNA frag-
ments. These fragments called small interfering RNA
(siRNA) induce the formation of a ribonucleoprotein com-
plex (RNAi silencing complex) that mediates sequence-
specific cleavage of the targeted transcript mRNA by the
antisense RNA strand, thus promoting mRNA degradation
of a specific mRNA102e104. Indeed, siRNA targeting of
NF-kB p65 subunit has shown promising results, decreas-
ing significantly the expression of COX-2, iNOS and
MMP-9 mRNA/protein levels in rat chondrocytes stimulated
with IL-1b and TNF-a105.

Conclusions

The NF-kB family of TFs plays a crucial role in the distinc-
tive inflammatory processes characteristic of certain rheu-
matic diseases, such as OA and RA, leading to cartilage
destruction and articular damage. NF-kB is abundant in
rheumatoid and OA synovium, however, its activation is
higher in RA than in OA. IKK, a key enzyme in the activation
of the canonical NF-kB signaling pathway, is also abun-
dantly expressed in RA and OA fibroblast-like synoviocytes.
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Fig. 3. NF-kB signaling pathway. Many current therapeutic agents and future strategies block the NF-kB pathway in different steps:

(1) I-kB phosphorylation: NSAIDs (aspirin, salycilate, ibuprofen, sulindac), 5-aminosalicylic acid, SC-514.
(2) Protease activity of the 26S proteasome complex: Bortezomib, Cyclosporin A, sc-514, lactacystin.
(3) Disminution of levels of NF-kB subunits p65, p50, c-Rel and others: siRNA.
(4) Nuclear translocation of NF-kB subunits p65, p50, c-Rel and others: FK-506, BMS-205820, I-kB super repressor, Tat-srIkBa.
(5) NF-kB DNA binding: Glucocorticoids, NF-kB ODN, NF-kB morpholinos.
Animal models of arthritis, including murine type II collagen-
induced arthritis and rat adjuvant arthritis, support the
essential role of NF-kB, and of IKK in particular, on MMP
gene expression and the development of inflammatory
and histological changes of arthritis.

In articular chondrocytes, NF-kB activation mediates the
response to important proinflammatory cytokines, namely,
IL-1b and TNF-a, as well as to fibronectin fragments and
mechanical signals. NF-kB also participates in the RAGE
signaling. Important NF-kB-mediated outcomes of the
inflammatory response in human articular chondrocytes
are the decrease in the expression of chondrocyte specific
genes (collagen type II, link protein gene), and the in-
crease in the expression of MMPs (MMP-1, MMP-3,
MMP-13), cytokines (IL-6, IL-8) and chemokines. Interest-
ingly, NF-kB production is increased with donor aging
and under hypoxic conditions in IL-1b-stimulated articular
chondrocytes. NF-kB is also involved in the regulation of
apoptosis in articular chondrocytes, exerting primarily
anti-apoptotic effects.
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Therefore, NF-kB inhibition is a rational objective in the
treatment of rheumatic diseases such as RA and OA.
NSAIDs, glucocorticoids, nutraceuticals, natural products
and certain disease-modifying anti-rheumatic drugs have
been described to decrease NF-kB activation. Yet, novel
therapeutic strategies targeting key elements in the NF-kB
pathway including IKK, 26S proteasome, p65 and p50 sub-
units have been and continue being developed, and small
molecule inhibitors, chimeric molecules, improved anti-
sense therapy and RNA interference are part of the new
approaches to block the NF-kB pathways.

Thus, NF-kB appears as a very attractive target for treat-
ment of RA and OA; however, some concerns about the
systemic and indiscriminate blockade of its numerous ben-
eficial effects, as well as technical problems for local
delivery of a potential agent through gene therapy still re-
main. Further in vivo studies will increase our understanding
of the true significance of NF-kB and provide the founda-
tions for the development of effective therapy for various
joint diseases, including OA and RA.
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Glossary of abbreviations

NF-kB: nuclear factor-kappaB.

OA: osteoarthritis.

RA: rheumatoid arthritis.

NSAIDs: non-steroidal anti-inflammatory drugs.

DMARDs: disease-modifying anti-rheumatic drugs.

RNA: ribonucleic acid.

TF: transcription factors.

DNA: deoxyribonucleic acid.

AP-1: activator protein 1.

STAT-1: signal transducer and activator of transcription 1.

IkB: inhibitory kB.

IKK: IkB kinase.

NIK-1: NF-kB-inducing kinase 1.

MAPK: mitogen activated protein kinase.
TNF-a: tumor necrosis factor-alpha.

IL-1b: interleukin-1 beta.

IL-2: interleukin-2.

IL-6: interleukin 6.

IL-8: interleukin 8.

IL-12: interleukin-12.

IFN-g: interferon-gamma.

GM-CSF: granulocyte macrophage colony stimulating factor.

VCAM-1: vascular cell adhesion molecule 1.

ICAM-1: intercellular adhesion molecule 1.

MIP-1a: macrophage inflammatory protein 1 alpha.

MCP-1: methyl-accepting chemotaxis protein 1.

RANTES: Regulated upon activation, normal T-cell expressed and

secreted.

MHC-I: major histocompatibility complex 1.

TLR-2: toll-like receptor 2.

COX-2: cyclooxygenase 2.

iNOS: inducible nitric oxide synthase.

c-IAP: cellular inhibitor of apoptosis protein.

TRAF: TNF-receptor-associated factor.

c-FLIP: cellular flice inhibitory protein.

Bcl-2: B-cell lymphocyte/leukemia-2.

AF-1/BF-1: activation function 1/brain factor 1.

AIDS: acquired immuno-deficiency syndrome.

CNS: central nervous system.

SpA: spondyloarthropathies.

MMP: metalloproteinase.

MEK 1/2: MAP kinase ERK 1/2.

GRO: growth-related oncogene.

CTS: cyclic tensile strain.

NO: nitric oxide.

PKC: protein kinase C.

CBP: CREB-binding protein.

CAF: CBP-associated factor.

SRC-1: steroid receptor coactivator 1.

ODN: oligodeoxynucleotide.

ACLT: anterior cruciate ligament transaction.

PBS: phosphate buffered saline.

srIkB: super-repressor IkBa.

LNA: locked nucleic acid-antisense.
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