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Decoding methods for error-correcting codes which are based on syndrome look-up tables 

are of limited use due to the rapidly increasing amount of storage that they require as the 

number of check digits of the code increases. A method is described which uses shortened 

syndrome look-up tables in an efficient way, thus providing an improvement with respect to 

classical syndrome decoding methods. The algorithm can be characterised in general as a type 

of permutation decoding which uses transform domain information, with the interesting 

variation that permutations not preserving the code are also allowed. 

1. Introduction 

Fourier transforms defined over finite fields and finite rings have been investi- 

gated by many researchers [6]. Primarily, these transforms have been used in the 

field of digital signal processing to implement faster finite digital convolutions [7, 

11. More recently, they have been applied in the area of error control codes to 

produce faster encoding and decoding methods for Reed-Solomon (RS) codes [8]; 

also, they have been used to provide a description in the frequency (transform) 

domain of various types of error control code [2]. In this paper, by exploring the 

relations between the Galois Field Transform (GFT) and some finite groups, a 

simple kind of syndrome look-up table decoding algorithm for cyclic codes is 

presented. Such algorithms, though they can be applied to any (n, k, d) linear 

code, resulting in minimum decoding delay and minimum error probability, 

become impractical to implement for large (n-k), in the sense that a large 

storage medium is needed. However, by proper partitioning of the set of all 

syndromes into equivalence classes, it is possible to reduce the required storage, 

therefore permitting the decoding of longer codes. This paper describes a study of 

such reduced storage methods. 

2. The GaIois field transform 

The vectors (a,) = (ac, . . . , a,_,), ai E GF(q), and (Ai) = (A,, . . . , An-l), Ai E 
GF(q”), form a GFI pair (denoted by (ai) * (Ai)) if and only if 

n-1 n-1 

Aj = c aiaii, ai = (n mod p)-’ c Aid’, 
i=O i=O 
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where p is the characteristic of GF(q), (Y is an element of order n of GF(q”) and 

nlq”- 1. Here we consider the case q = 2 and n = 2m - 1. The definition of the 
GFT pair (1) is entirely analogous to the definition of a Discrete Fourier 
Transform (DFI) pair in which the kernel of the transformation e-i2Q’n is 
substituted by (Y, an nth root of unity in GF(q”). The DFI has many properties 
which carry over into the finite field case. Among these, two are of special 
significance: If 

(ai) tf (A,), i,j=o, 1 ,...,n-1, 

then 
(i) For i0 a constant (0 G i,=~ n - l), 

(ai+) cf (aiinAj) (time-shift). (2) 

(ii) For 1 a constant (O<Isn-l,(E,n)=l), 

(ali) * (&I) (scaling). (3) 

The proof of these properties follow similar lines to those for the DFT and are not 
presented here [3]. 

Also, it can be shown [2] that the components of (ai) belong to GF(q) if and 
only if 

(iii) AT = Aj4, (4) 

where indexes are considered modulo n. 

3. Symmetry groups 

If F is a geometrical figure in a plane or space, a symmetry of F is a bijection 
f : F-+ F, which preserves distances; i.e., for all points a, b E F the distance from 
f(a) to f(b) is the same as the distance from a to b. The set of all symmetries of a 
geometric figure forms a group under composition because the composition and 
the inverse of two distance preserving compositions is also distance preserving. 
One example of such a group is C,,, the group of proper rotations of a regular 
polygon with n sides; C,, is a cyclic group of order n generated by a rotation of 
2Tln radians [4]. 

One way of partitioning the set of n-tuples of weight t is to put them into cyclic 
equivalence classes, i.e., in every class the elements are cyclic shifts of one 
another. To find the number of orbits in such a partition, N,, we apply Burnside’s 
theorem [4] with the group C,,: 

(5) 
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where Fix g = {x E X ( g(x) = x}. For G = C,, (5) becomes 

N, = i E IFix g”ld] Q(d), (6) 

where gnld is an element of order d of C,, and Q(d) is the number of such 

elements. The expression for the total number of elements stored for a t 

error-correcting code of length n is then 

N= i ~i=~,~~~IFixgn’dlO(d), 
i=l 1 II 

where a(.) is the Euler totient function. 

By allowing improper rotations (reflections) to be applied to the elements of C,, 

we obtain a group of order 2n which is known as the dihedral group D, [7]. In 

doing so, the positions in a vector of length n change from i to it - 1 or i(n - 1) 

since n - i = i(n - 1) (mod n). The above mapping is then a particular case of the 

mapping 

10, 1, . . . , n - 1) -+ (0, 1, . . . ) II - 1) 

i + li (mod n), 

where we assume (1, n) = 1 guarantee weight preservation. As an example we 

show the partition of the 21 7-tuples of weight two, using the above permutation 

with 1= 2; the numbers denote the positions of the non-zero components in each 

7-tuple: 

{01,02,03}, {03,06, OS}, {12,24,41},{13,26,45}, {15,23,46}, 

{16,25,43}, {35,63,56}. 

The total number of orbits obtained is (m = 3, n = 7, t = 2) 

N&+7, 
m 

where m = 3 is the multiplicative order of 2 modulo 7. The size of each orbit 

depends, for a given n, on the value of m, i.e., the multiplicative order of I 

modulo n. For instance, in the case of n = 7 we can reduce the number of orbits to 

4 by choosing, instead of 1 = 2, the value of 1 = 3. 

4. Decoding of cyclic codes 

Let c(x) be a codeword of a cyclic code which is transmitted through a channel 

where random errors might occur. If e(x) denotes the error vector, then the 

received vector r(x) is 

r(x) = c(x)+ e(x). (8) 
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The syndrome of r(x) is 

S~=r(a’)=e(cy’), j=1,...,2t 

so that Si gives 2t 

decoder’s task is to 

generality, 

Si = a’; for 

components of the transformed error vector (Ej). The 

find the remaining n -2t components. Without loss of 

some r;E{O, 1,. . .,n-l}U{-w}, 

since n = q” - 1. Applying the cyclic partition defined by the group C,, to all 

n-typles of weight t, we use the GFT to relate the syndrome Si of the orbit leader 

(OL) and the syndrome Sj of the receiired vector, which we assume to be in the 

class defined by OL. By property (i) of the GFT 

S~=(yii~Sj, O<ii,<n-l, and r; = rj + jio, (9) 

where by (iii), we consider only those values of j E Cj, the cyclotomic coset modulo 

n over GF(2) [5]. Therefore the following set of equations can be generated: 

r;= rl+i 0 

r;= r,+3i 0 

r;= r,+5i, 

ri = rj + jio, j E Cj 

By direct manipulation on (10) above we can obtain the relations 

r;-3r’,= r,-3rl 

r;-5r;= r,-5r, 

(10) 

r{ - jr\ = rj -jr,, (11) 

which define the conditions for OL (defined by rj) and e(x) (defined by r;) to be in 

the same class. Once the class is identified, the class location is given, from 

(IO), by 

i. = r; - rl. (12) 

We can now apply property (iii) of the GFI to reduce the number of classes. 

The case 1 = l/2 leads to 

S; = S, = SF and rj’ = 2rj. (13) 

If this is applied to every element in each of the classes defined by (ll), we obtain 

the following decoding algorithm for cyclic codes: 

(1) Calculate the syndrome Si = (Y r; of the received codeword and check if (11) 

applies; if ‘yes’, find the error vector from the corresponding OL and equation 

(12). Otherwise: 
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(2) Apply (13) and check for (11) again; if a ‘yes’ is found, find the error vector 

from OL, (12) and applying the inverse of (iii) to the time domain vector; 

otherwise go to (2) again, etc. 

Using this decoding method the (15,7,5) binary BCH code can be decoded by 

storing only 4 different syndromes instead of the set of 120 syndromes required 

for a full look-up table decoding method. 

The permutation defined by (13) is a code preserving one. To allow non- 

preserving permutations we use the fact that if p(x) = Cy:J aixi is a polynomial 

over GF(q), and p,(x) is the polynomial obtained from p(x) by the permutation 

rW : xi + X’L’, (CL, n) = 1, 

then cyr is a root of p(x) iff (Y”~ is a root of p,(x). This result and property (iii) of 

the GFT provides a way to relate the syndromes of error vectors which are linked 

by a permutation that does not preserve the code. The only alteration needed in 

the decoding steps is to calculate the syndrome of the vector rli(x), which is 

obtained by applying the permutation xi + xii to r(x). In fact, this new syndrome 

is just a rearrangement of Sj, with the index i becoming (i/l) (mod n). Once this 

rearrangement is worked out for the given 1, sets of equations similar to (11) and 

(13) can be obtained and the decoding follows as before. A comparison involving 

the amount of storage required between the algorithm just described and similar 

methods is given in Table 1. 

Table 1 

Storage requirements for look-up table decoding methods 

Number of stored elements 

Type of n 7 11 15 23 31 

algorithm t 2 4 3 3 5 

standard 

synd. decoding 
Meggitt 

decoder 
GFT-based 

algorithm 

28 231 575 2047 174902 

4 21 39 89 5645 

2 4 14 9 1130 

5. Conclusions 

A modified syndrome look-up table decoding algorithm for cyclic block codes 

has been described, which greatly reduces the number of syndromes that need to 

be stored. The algorithm is based on permutation decoding, but makes use of 

permutations which are not code-preserving. The properties of the Galois Field 

Transform (GFI) are used to relate the syndrome of the permuted orbit leaders 

to the syndrome of the received, possibly eroneous, codeword. The additional 
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computation required to make these relations is less than comparable to the 
computation of the syndrome of the received word. Thus this modified syndrome 
look-up decoding algorithm is another useful and practical example of the 
application of finite field transform techniques to error-correcting codes. 
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