
Discrete Mathematics 222 (2000) 61–72
www.elsevier.com/locate/disc

Feasible edge colorings of trees with cardinality constraints

D. de Werraa, A. Hertza ; ∗, D. Koblera, N.V.R. Mahadevb
aDept de Math�ematiques, Ecole Polytechnique F�ed�erale de Lausanne, MA (Ecublens),

CH-1015 Lausanne, Switzerland
bNortheastern University, Boston, MA, USA

Received 13 March 1998; revised 26 October 1999; accepted 8 November 1999

Abstract

A variation of preemptive open shop scheduling corresponds to �nding a feasible edge coloring
in a bipartite multigraph with some requirements on the size of the di�erent color classes. We
show that for trees with �xed maximum degree, one can �nd in polynomial time an edge
k-coloring where for i = 1; : : : ; k the number of edges of color i is exactly a given number hi,
and each edge e gets its color from a set ’(e) of feasible colors, if such a coloring exists. This
problem is NP-complete for general bipartite multigraphs. Applications to open shop problems
with costs for using colors are described. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Edge coloring; Open shop; Cost; Timetabling; Feasible colors; Cardinality constraints

1. Introduction

In this paper, we consider an extension of the well-known edge coloring problem,
which consists in determining if a color can be assigned to each edge of a graph, so
that no two adjacent edges have the same color. We �rst impose cardinality constraints
by �xing the number of times each color can be used. We then restrict the set of
possible colors that each edge can receive. Determining whether a given graph has
an edge-coloring satisfying the above constraints is an NP-complete problem, even if
restricted to bipartite multigraphs [4]. We prove in this paper that both extensions are
polynomially solvable for trees with maximum degree bounded by a constant.
The motivation for studying edge coloring problems in bipartite multigraphs stems

from the classical model of preemptive open shop scheduling: we are given a collection
P of processors P1; : : : ; Pm, a collection J of jobs J1; : : : ; Jn to be processed within
a period of k time units. Each job Jj consists of tasks T1j; : : : ; Tmj; task Tij of job Jj

∗ Corresponding author.
E-mail address: hertz@dma.ep.ch (A. Hertz).

0012-365X/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0012 -365X(00)00006 -6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82722798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

62 D. de Werra et al. / Discrete Mathematics 222 (2000) 61–72

has to be processed on processor Pi. Its processing time pij is given and we assume
that it is integral. If pij = 0, then Tij does not exist. No processor can work on
two tasks simultaneously and no two tasks of the same job can be processed at the
same time. The tasks of the same job can be processed in any order. Furthermore
we assume that preemptions are allowed (after any integral number of time units)
during the processing of a task on a processor. The preemptive open shop scheduling
problem (OSSP) consists in scheduling all jobs within k time units while satisfying all
requirements described above.
A well-known application of this model is the simple class–teacher timetabling prob-

lem: each Pi is a teacher and each Jj a class, i.e., a group of students following exactly
the same program. Then Tij is the collection of pij lectures (of one time unit) that
teacher Pi has to give to class Jj. We associate with this problem a bipartite multigraph
G= (P;J; E) constructed as follows: each Pi corresponds to a node in the left set P
of nodes and each Jj to a node in the right set J of nodes. Pi and Jj are linked by
pij parallel edges.
An edge k-coloring is an assignment F of one color F(e) in {1; 2; : : : ; k} to each

edge e of G = (P;J; E) such that F(e) 6= F(g) whenever edges e and g are adjacent
(i.e., share at least one node). Edge k-colorings and feasible schedules for OSSP are in
correspondence: F([Pi; Jj])=l means that task Tij is in process during the lth time unit
and that Pi gives a lecture to class Jj at that time. If �(G) is the maximum degree of
G (the maximum number of edges adjacent to the same node), then it is known that
an edge k-coloring of G exists if and only if k¿�(G) (see [1]). All graph–theoretical
terms not de�ned here can be found in [1].
Many variations and extensions of the OSSP have been studied (see [2,8,16–18]) for

dealing with special types of scheduling or timetabling problems. One such situation
arises when in a timetabling problem each lecture associated to an edge e must be
scheduled to one time unit in a set ’(e) of feasible time units. We have then a problem
of restricted edge coloring (G;�): given a bipartite multigraph G and a family � of
sets ’(e) of feasible colors for each edge e, �nd an edge coloring of G such that each
edge gets a feasible color. This problem is generally NP-complete [4] but solutions
can be found in polynomial time if G is a forest [17].
Another variation motivated by applications in timetabling consists in introducing a

cost c(i; e) incurred when edge e gets color i. Such a cost may translate the degree
of preference given to the assignment of lecture e to a time unit i. Finding an edge
k-coloring with minimum cost may give a timetable in which one tries to avoid as much
as possible the undesired assignment of lectures (for instance, by setting c(i; e)=∞, we
simply express that i 6∈ ’(e)). Other applications to VLSI and to machine scheduling
are described in [12].
An edge k-coloring S of G will be denoted by S = (M1; M2; : : : ; Mk): Mi is the

matching consisting of all edges with color i. The cost f(S) of S is then given by

f(S) =
k∑
i=1

∑
e∈Mi

c(i; e): (1.1)

D. de Werra et al. / Discrete Mathematics 222 (2000) 61–72 63

Finding an edge k-coloring with minimum cost in a bipartite multigraph is generally
NP-complete (see [10,11]); when G is a forest, a polynomial algorithm based on dy-
namic programming gives a coloring with minimum cost (when the maximum degree
k of G is �xed) [14].
In some cases, we may assume that the costs c(i; e) do not depend upon the edges,

so that we have c(i; e) = ci for each edge and each color i. Eq. (1.1) then becomes

f(S) =
k∑
i=1

ci|Mi|; (1.2)

where |Mi| denotes the cardinality of the set Mi of edges. So the cost of a coloring
will depend only upon the sequence (|M1|; |M2|; : : : ; |Mk |) of cardinalities of the di�erent
color classes.
It is therefore appropriate to recall a few properties of the sequences (h1; h2; : : : ; hk)

representing the cardinalities of the color classes in an edge k-coloring of a graph G.
This will be done in the next section. We characterize the sequences (h1; h2; : : : ; hk) for
which there exists an edge k-coloring S=(M1; M2; : : : ; Mk) with |Mi|=hi (i=1; : : : ; k);
and such that S minimizes function f in Eq. (1.2). In Section 3, we show how to
generate all such sequences in a tree with �xed maximum degree. In Section 4, we
extend this algorithm to the case where the set of possible colors of each edge is
restricted. A conclusion follows in Section 5.

2. Some properties of edge colorings

Given a multigraph G=(V; E) without loops, a sequence H =(h1; : : : ; hk) of integers
with h1¿ · · ·¿hk and

∑k
i=1 hi= |E| will be called color-feasible (for G) if there exists

an edge k-coloring S = (M1; : : : ; Mk) of G with |Mi|= hi for i = 1; : : : ; k.
For two sequences H = (h1; : : : ; hk) with h1¿ · · ·¿hk and H ′ = (h′1; : : : ; h

′
k) with

h′1¿ · · ·¿h′k we shall write H¿H ′ if

r∑
i=1

(hi − h′i)¿0 (r = 1; : : : ; k) with equality holding for r = k: (2.1)

Observe that we allow hi to be zero. Moreover, relation ‘¿’ induces a partial order
on the set of sequences of given length k. Let C(G) be the set of all color-feasible
sequences (note that we may take k = |E| in order to have a �nite set C(G)).

Property 2.1 (Folkman and Fulkerson [5]). If H ∈C(G) and H¿H ′; then H ′ ∈C(G).
A sequence H ∈C(G) is called maximal if there is no H ′ ∈ C(G) with H ′ 6=H and

H ′¿H . Maximal color-feasible sequences of bipartite multigraphs have the following
interesting property.

64 D. de Werra et al. / Discrete Mathematics 222 (2000) 61–72

Fig. 1. A tree G with maximal sequences H1 = (14; 8; 8); H2 = (12; 12; 6) and H3 = (13; 10; 7)= 1
2 (H1 +H2).

Property 2.2 (Folkman and Fulkerson [5]; de Werra [13]). If G is a bipartite multi-
graph; then all maximal sequences in C(G) have exactly �(G) positive members.

When costs ci are introduced, we may assume c16c26 · · ·6ck , without loss of
generality. For minimizing the cost f(S) of a schedule (or of an edge k-coloring)
S = (M1; : : : ; Mk) we only have to �nd in C(G) a sequence H = (h1; : : : ; hk) for which∑k

i=1 cihi is minimum.

Property 2.3 (de Werra et al. [16]). The minimum value of
∑k

i=1 cihi where
H = (h1; : : : ; hk) ∈ C(G) is obtained for a maximal sequence H.

In order to solve this problem one may think of generating all maximal sequences
in C(G); this is a di�cult problem when G is a bipartite multigraph [6]. Some special
cases where the minimization of f(S) can be solved in polynomial time are described
in [16].
As a consequence of Property 2.1, we notice that if we know all maximal sequences

in C(G), then we can easily generate the remaining sequences in C(G). So the knowl-
edge of all maximal sequences may also be needed for the situation where the cost
function is not linear and Property 2.3 does not necessarily hold.
Let us now restrict our attention to trees (or forests); is it possible to generate all

maximal sequences of C(G) in polynomial time? A natural idea would be to use the
dynamic programming algorithm of de Werra [14] in order to �nd an edge k-coloring S
which minimizes the cost f(S) given by (1.2). By varying the costs, one could hope to
generate all maximal sequences. However this approach would fail to give all maximal
sequences of C(G) (if the algorithm provides just one optimal solution for each set of
costs c1; : : : ; ck). Indeed, one may construct a tree G with �(G) = 3 and for which the
maximal sequences in C(G) are H1 = (14; 8; 8), H2 = (12; 12; 6); H3 = (13; 10; 7) (see
Fig. 1). Clearly since H3 = 1

2 (H1 + H2), it will never be the unique optimal solution
of a minimum cost problem with f(S) given by (1.2). So we may not be certain to
generate it. It is therefore appropriate to develop another type of algorithm generating
all maximal sequences in C(G) when G is a tree. This will be described in the next
section.

D. de Werra et al. / Discrete Mathematics 222 (2000) 61–72 65

3. Dynamic programming procedure

Given a graph G, determining whether a given sequence is color-feasible for G is an
NP-complete problem, even when restricted to the class of bipartite multigraphs with
maximum degree at most three [4]. We show below that the problem is polynomially
solvable for trees with bounded degrees using a dynamic programming method similar
to the one used in [9] for a special type of node coloring of trees.
While the bipartite multigraphs used to model preemptive open shop scheduling

problems are rarely trees, the above result is interesting for at least two reasons. There
is �rst a theoretical interest since we answer an open question. Moreover, we hope
that this polynomial algorithm will help in the design of e�cient heuristic algorithms
for general bipartite multigraphs.

The MAXIMAL COLOR-FEASIBLE SEQUENCES problem is de�ned as follows:

Input: Tree T = (V; E) with �(T)6K (�xed)
Problem: Compute all the maximal color-feasible sequences of T .

To solve this problem, we �rst orient the edges of T towards a leaf chosen as root.
For each arc (oriented edge) (x; y); x is called the tail and y the head. An arc (u; x)
is called a child of (x; y) and an arc (y; v) is called a parent of (x; y). An arc whose
tail is a leaf is called a stock and the arc whose head is the root is called the root-arc.
Clearly every arc other than the root-arc has a single parent, and the root-arc has none.
Label the arcs of T as e1; : : : ; e|E| so that if ei is a child of ej then i¡ j. Let Te be

the maximal subtree of T with e as the root-arc.
We need to consider the particular color assigned to each edge, so let 1; 2; : : : ; k be

the colors used in any edge k-coloring of T . According to Property 2.2 we can assume
that k = �(T).
Let d1; d2; : : : ; dk−2 be a sequence of non-negative integers with

∑k−2
j=1 dj6|E|.

Consider any arc e and its corresponding subtree Te. Let N (e; j;d1; : : : ; dk−2) be the
maximum number of arcs in Te that can have color k − 1 in a k-coloring of Te,
provided that

• exactly di arcs have color i (16i6k − 2)
• arc e has a given color j (16j6k).

Note that it may not be de�ned if no such k-coloring exists.
We compute the list of all such numbers at each arc by processing in the order

e1; : : : ; e|E|. Note that at the start of processing arc ei, the list at each of its children
has been computed.
Let ei be any parent arc with children ei1 ; : : : ; eid . In order to compute the list of num-

bers N (ei; j;d1; : : : ; dk−2) for Tei , we consider the subtrees Tei1 ; Tei1 ∪Tei2 ; : : : ;
⋃d
s=1 Teis .

So let T rei =
⋃r
s=1 Teis (16r6d) and consider any Boolean vector = (1; : : : ; k) in

Bk with exactly r non-zero components. Let N ′(ei; r; 1; : : : ; k ;d1; : : : ; dk−2) be the
maximum number of arcs in T rei which can receive color k − 1, provided that

66 D. de Werra et al. / Discrete Mathematics 222 (2000) 61–72

• color j (16j6k) appears on one of the arcs ei1 ; : : : ; eir if and only if j = 1,
• exactly dj arcs (16j6k − 2) in T rei have color j.

The following procedure, called LIST, generates the list Cmax(T) of all maximal
color-feasible sequences of a tree T .

Algorithm LIST (T)
(a) Orient the edges of T towards a leaf chosen as root. Label the arcs of T as

e1; : : : ; e|E| so that if ei is a child of ej then i¡ j.
(b) Computation of the numbers N

For i = 1 to |E| do
(b1) If ei is a stock then

set N (ei; j;d1; d2; : : : ; dk−2) =

0 if j¡k − 1; dj = 1 and
dr = 0 for r 6= j

1 if j = k − 1 and
d1 = · · ·= dk−2 = 0

0 if j = k; and
d1 = · · ·= dk−2 = 0

unde�ned otherwise

(b2) Otherwise ei is a parent. Let ei1 ; : : : ; eid be all the children of ei.
(b2.1) For each sequence (j;d1; : : : ; dk−2) such that N (ei1 ; j;d1; : : : ; dk−2) is

de�ned do
set N ′(ei; 1; 1; : : : ; k ;d1; : : : ; dk−2) = N (ei1 ; j;d1; : : : ; dk−2) with
j = 1 and t = 0 ∀t 6= j

(b2.2) For r = 2 to d do
For each sequence (1; : : : ; k ;d1; : : : ; dk−2) such that N ′(ei; r − 1;

1; : : : ; k ;d1; : : : ; dk−2) is de�ned do
For each sequence (j;d′1; : : : ; d

′
k−2) with j = 0, such that

N (eir ; j;d
′
1; : : : ; d

′
k−2) is de�ned do

set N ′(ei; r; 1; : : : ; j−1; 1; j+1; : : : ; k ;d1+d′1; : : : ; dk−2+d
′
k−2)

=N ′(ei; r−1; 1; : : : ; k ;d1; : : : ; dk−2)+N (eir ; j;d′1; : : : ; d′k−2)
unless the left-hand-side value is already larger than the
right-hand-side.

(b2.3) For each sequence (1; : : : ; k ;d1; : : : ; dk−2) such that N ′(ei; d;
1; : : : ; k ;d1; : : : ; dk−2) is de�ned do
For each j such that j = 0 do

set x =
{
N ′(ei; d; 1; : : : ; k ;d1; : : : ; dk−2) + 1 if j = k − 1
N ′(ei; d; 1; : : : ; k ;d1; : : : ; dk−2) otherwise

set (d′1; : : : ; d
′
k−2)=

{
(d1; : : : ; dk−2) if j¿k − 1
d′j = dj + 1; d

′
t = dt ∀t 6= j otherwise

set N (ei; j;d′1; : : : ; d
′
k−2) = x unless the left-hand-side value

is already larger than the right-hand-side.
End otherwise

D. de Werra et al. / Discrete Mathematics 222 (2000) 61–72 67

(c) Construction of the list Cmax(T) of maximal color-feasible sequences
Set Cmax(T) = {(d1; : : : ; dk)|

∑k
t=1 dt = |E| and ∃j; 16j6k, with dk−1 =

N (e|E|; j;d1; : : : ; dk−2)}. Remove from Cmax(T) any sequence whose members are
not in non-increasing order.
Remove from Cmax(T) all sequences H ′ such that ∃H ∈ Cmax(T) with H 6= H ′

and H¿H ′.
End of LIST

Property 3.1. Given a tree T with maximum degree bounded by a constant; the
LIST algorithm generates all maximal color-feasible sequences in polynomial
time.

Proof.
(1) Every maximal feasible sequence is in Cmax(T). Since no maximal feasible

sequence is removed from Cmax(T) in Step (c), it is su�cient to prove
that for each maximal color-feasible sequence (d1; : : : ; dk), there exists a j;
16j6k; with dk−1 = N (e|E|; j;d1; : : : ; dk−2). Consider any feasible coloring of
T in which exactly dt arcs have color t (16t6k), and let j be the color of
the root-arc e|E|. It follows from the de�nition that N (e|E|; j;d1; : : : ; dk−2)¿dk−1.
If the inequality is strict, then (d1; : : : ; dk) is not a maximal sequence, a
contradiction.

(2) LIST is a polynomial time algorithm.
(a) Step (a) can easily be performed in O(|E|) time.
(b1) For a stock ei; N (ei; j;d1; d2; : : : ; dk−2) can be computed in O(k) time.

(b2.1) There are at most k|E|k−2 sequences (j;d1; : : : ; dk−2). Hence, this step can
be performed in O(k|E|k−2).

(b2.2) There are at most Ckr−1|E|k−2 sequences (1; : : : ; k ;d1; : : : ; dk−2) for which
N ′(ei; r − 1; 1; : : : ; k ;d1; : : : ; dk−2) is de�ned, and at most (k − r + 1)|E|k−2
sequences (j;d′1; : : : ; d

′
k−2) with j =0 and for which N (eir ; j;d

′
1; : : : ; d

′
k−2) is

de�ned. Hence, the list of numbers N ′(ei; d; 1; : : : ; k ;d1; : : : ; dk−2) for ei can
be computed in O(d(k + 1)!|E|2k−4) time.

(b2.3) There are at most Ckd|E|k−2 sequences (1; : : : ; k ;d1; : : : ; dk−2) for which
N ′(ei; d; 1; : : : ; k ;d1; : : : ; dk−2) is de�ned, and at most (k − d) colors j with
j = 0. Hence, the list of numbers N (ei; j;d1; d2; : : : ; dk−2) for ei can
be computed in O((k + 1)!|E|k−2) time.

(b) Since steps (b1) and (b2) are performed |E| times, and since each arc in T has
at most �(T)− 1 children, the computation of all numbers N (ei; j;d1; d2; : : : ;
dk−2) takes O(�(T)(k + 1)!|E|2k−3) time.
We know from Property 2:2. that all maximal color-feasible sequences have
exactly k = �(T) positive members. But �(T) is bounded by a given value
K . It follows that Step (b) can be performed in O(|E|2K−3) time.

68 D. de Werra et al. / Discrete Mathematics 222 (2000) 61–72

(c) For the root-arc e, there are at most k|E|k−2 sequences (j; d1; d2; : : : ; dk−2)
for which N (e; j;d1; d2; : : : ; dk−2) is de�ned. Hence, computing Cmax(T) takes
O(|E|k−2) time. Removing sequences whose members are not in
non-increasing order can also be done in O(|E|k−2) and the
number of comparisons to be made to eliminate dominated sequences is in
O((|E|k−2)2). Thus, the total complexity of (c) belongs to O(|E|2K−4).

It follows that the LIST algorithm computes all maximal color-feasible sequences
in O(|E|2K−3) time.

Corollary. Given a tree T with maximum degree bounded by a constant, it can be
decided in polynomial time whether a given sequence is color-feasible for T .

Proof. If follows from Property 2:1 that a sequence H is color-feasible for T if and
only if there exists a maximal color-feasible sequence H ′ of T such that H ′¿H . Since,
the LIST algorithm computes all maximal color-feasible sequences of T in polynomial
time, this decision problem is polynomially solvable.

4. Additional constraints

In practically all timetabling problems several types of constraints are present. Con-
sider the restricted edge coloring problem described in Section 1, with cardinality
constraints on the edge coloring S = (M1; M2; : : : ; Mk): for each i the number |Mi| of
edges which have color i is hi. Let (G;�;H) be the restricted edge k-coloring problem
with cardinality constraints de�ned by a sequence H = (h1; : : : ; hk).

Property 4.1 (Dror et al. [3]). (G;�;H) is NP-complete even if G is restricted to a
chain and |’(e)|= 2 for each edge e.

Property 4.2 (de Warra [14]). If G is a collection of node-disjoint stars; then (G;�;H)
can be solved in polynomial time.

In fact the line-graph L(G) of G is in the latter case a collection of node-disjoint
cliques; the problem in L(G) becomes a node coloring problem and a model based on
network ows is given in [14]. It produces either a node-coloring of L(G) or a proof
of non existence. We recall the construction of the network N in [14]: introduce a
source s, a sink t, a node x for each node of L(G), nodes (Ki; j) for each clique Ki
of L(G) and for each color j in {1; : : : ; k} and a node j for each color j. The arcs are
constructed as in Table 1.
There exists a node k-coloring of L(G) satisfying all requirements if and only if

there exists an integral compatible ow from s to t in N with value equal to the

D. de Werra et al. / Discrete Mathematics 222 (2000) 61–72 69

Table 1

Arcs (u; v) Capacities Lower bounds
c(u; v) l(u; v)

(s; v) if v ∈ V l 0
(v; (Ki; j)) if v ∈ Ki and j ∈ ’(v) ∞ 0
((Ki; j); j) i = 1; : : : ; p 1 0
(j; t) j = 1; : : : ; k hj 0

number of edges in G. Necessary and su�cient conditions have been derived in [14]
for the existence of a node k-coloring of L(G).
Notice that we may introduce costs cj on the arcs (j; t) of N , so that by constructing

a maximum ow from s to t in N with minimum cost, we will get an edge k-coloring
S in G which minimizes the cost

f(S) =
k∑
i=1

ci|Mi|:

Since we are using a network formulation, we may as well try to obtain a restricted
coloring S = (M1; : : : ; Mk) which in addition to the minimum cost requirement may
satisfy the following requirements:

�16|M1|6�1 ≡ h1;

�26|M1|+ |M2|6�2;

�k−16|M1|+ |M2|+ · · ·+ |Mk−1|6�k−1:
This is obtained by a simple modi�cation of the network. Similarly restricted colorings
with nested constraints have been considered in [15].
Note that if there are no cardinality constraints, (G;�;H) is solvable in polynomial

time for trees (with the algorithm in [17]). Similarly when ’(e) = {1; : : : ; K} with a
�xed K for each edge e, then (G;�;H) is solvable in polynomial time for trees (with
the algorithm of Section 3).
More generally if ’(e)⊆{1; : : : ; K} with a �xed K , then (G;�;H) is solvable in

polynomial time for trees with an adaptation of the LIST algorithm in Section 3. More
precisely, consider the RESTRICTED COLOR-FEASIBLE SEQUENCES problem de-
�ned as follows.

Input: Tree T = (V; E) with a list ’(e)⊆{1; : : : ; K} (K �xed) of allowed colors for
each e ∈ E

Problem: Compute the set C(T) containing all sequences (h1; : : : ; hK) of T such that
there is a restricted edge coloring of T with exactly hi edges of color i.

Note that we may assume that �(T)6K , since otherwise C(T)=∅. As in Section 3,
we �rst orient the edges of T towards a leaf chosen as root, and then label the arcs
of T as e1; : : : ; e|E| so that if ei is a child of ej then i¡ j.

70 D. de Werra et al. / Discrete Mathematics 222 (2000) 61–72

Let e be any arc of T . The sequence of integers (j;d1; : : : ; dK) is said to be a feasible
color-mapping of Te if there exists a restricted edge coloring of Te where e has color j
and there are dt arcs of color t (16t6K) in Te. We denote by Fe the set of the
feasible color-mappings of Te. We will recursively compute the sets Fe1 ; Fe2 ; : : : ; Fe|E| .
Let ei be any parent arc with children ei1 ; : : : ; eid . In order to compute the sets Fei , we

again consider the subtrees T rei 16r6d and Boolean vectors (1; : : : ; K) with exactly
r non-zero components. A sequence (1; : : : ; K ;d1; : : : ; dk) is said to be a feasible
color-mapping of T rei if there exists a restricted edge coloring of T

r
ei such that

• color t (16t6K) appears on one of the arcs ei1 ; : : : ; eir if and only if t = 1,
• exactly dt arcs in T rei have color t (16t6K):

The set of feasible color-mappings of T rei will be denoted by F
r
ei . The algorithm that

generates the set C(T) can be described as follows:

Algorithm LIST-restricted (T)
(a) Orient the edges of T towards a leaf chosen as root. Label the arcs of T as

e1; : : : ; e|E| so that if ei is a child of ej then i¡ j.
(b) For i = 1 to |E| do

(b1) If ei is a stock then

Fei = {(j;d1; : : : ; dK) | j ∈ ’(ei); dj = 1; dt = 0 ∀t 6= j}
(b2) Otherwise ei is a parent. Let ei1 ; : : : ; eid be all the children of ei

(b2.1) F1ei = {(1; : : : ; k ; d1; : : : ; dK) | (j; d1; : : : ; dK)∈Fei1 ; j = 1;
t = 0 ∀t 6= j}

(b2.2) For r = 2 to d do

Frei = ∅
For each (1; : : : ; K ;d1; : : : ; dK) ∈ Fr−1ei do
For each (j;d′1; : : : ; d

′
K) ∈ Feir such that j = 0 do

Put(1; : : : ; j−1; 1; j+1; : : : ; k ;d1 + d′1; : : : ; dK + d
′
K)inF

r
ei .

(b2.3) Fei = ∅
For each (1; : : : ; K ;d1; : : : ; dK) ∈ Fdei do
For each j ∈ ’(ei) such that j = 0 do
put (j;d1; : : : ; dj−1; dj+l; dj+1; : : : ; dK) in Fei .

End otherwise
(c) C(T) = {(d1; : : : ; dK) | ∃j; 16j6K , with (j;d1; : : : ; dK) ∈ Fe|E|}

End of LIST-restricted

Property 4.1. The LIST-restricted algorithm is a polynomial time algorithm.

Proof.
(a) Step (a) can easily be performed in O(|E|) time.
(b1) For a stock ei; Fei can be generated in O(K) time.

D. de Werra et al. / Discrete Mathematics 222 (2000) 61–72 71

(b2.1) Notice that |Fe|6K(|E| + 1)K−1 for each edge e in E. Therefore, step (b2.1)
can be performed in O(K |E|K−1) time.

(b2.2) If (1; : : : ; K ;d1; : : : ; dK) ∈ Fr−1ei then = (1; : : : ; K) has exactly (r − 1) non-
zero components. Hence, |Fr−1ei |6CKr−1(|E| + 1)K−1 and it follows that step
(b2.2) can be performed in O(

∑d
r=2 (C

K
r−1|E|K−1)((K − r + 1)|E|K−1)): Since

K is a constant and since d¡�(T)6K , we conclude that step (b2.2) takes
O(|E|2K−2) time.

(b2.3) This step can be performed in O((K − d)CKd |E|K−1) = O(|E|K−1) (since K is
�xed).

(b) Since steps (b1) and (b2) are performed |E| times, the computation of all sets
Fei takes O(|E|2K−1) time.

(c) Computing C(T) takes O(K |E|K−1) time.

It follows that the LIST-restricted algorithm runs in O(|E|2K−1) time.

The above algorithm solves in fact a more general problem than the algorithm in
Section 3: we have here introduced sets ’(e) of feasible colors for each edge e. In such
a situation, C(T) no longer satis�es Property 2:1; so we need to generate all feasible
sequences separately. The algorithm in Section 3 eliminates at each step subsequences
which may not be extended to maximal sequences. This can be done when there is no
restriction on the colors to be used. Indeed, according to Property 2:3, only maximal
sequences have to be generated in that case. Property 2:3 is however not true in the
case when we have arbitrary sets of feasible colors for the edges. Note that the LIST
algorithm has a lower complexity when compared to the LIST-restricted algorithm.

5. Concluding remarks

We have given here a polynomially solvable case of edge coloring where feasible
sets of colors are given and cardinality constraints must be satis�ed.
Many related results on coloring with costs can be found in [10,11]. It is known

from [7] that the restricted node K-coloring problem with cardinality constraints on a
tree is polynomial when the number K of colors is given. However some questions
are still open. For example, our knowledge of the set C(G) of color-feasible sequences
of a bipartite multigraph G is extremely fragmentary; even for trees we know very
little; bounds on the number of maximal sequences would be useful for developing
enumerative schemes.

Acknowledgements

This paper was written while the fourth author was visiting the Department of Mathe-
matics of the Ecole Polytechnique F�ed�erale de Lausanne in September 1997; the support
of EPFL is gratefully acknowledged.

72 D. de Werra et al. / Discrete Mathematics 222 (2000) 61–72

References

[1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[2] J. Blazewicz, K. Ecker, G. Schmidt, J. Weglarz, Scheduling in Computer and Manufacturing Systems,

Springer, Berlin, 1993.
[3] M. Dror, G. Finke, S. Gravier, W. Kubiak, On the complexity of a restricted list-coloring problem,

Discrete Math. 195 (1999) 103–109.
[4] S. Even, A. Itai, A. Shamir, On the complexity of timetable and multicommodity ow problems, SIAM

J. Comput. 5 (1976) 691–703.
[5] J. Folkman, D.R. Fulkerson, Edge colorings in bipartite graphs, in: R.C. Bose and T.A. Dowling (Eds.),

Combinatorial Mathematics and its Applications, University of North Carolina Press, Chapel Hill, 1969,
pp. 561–577.

[6] H. Gabow, T. Nishizeki, O. Kariv, D. Leven, O. Terada, Algorithms for edge-coloring graphs,
unpublished manuscript, University of Colorado, Boulder, 1983.

[7] S. Gravier, D. Kobler, W. Kubiak, Complexity of list coloring problems with a �xed number of colors,
ORWP-EPFL 97=13, September 1997.

[8] P. Hansen, A. Hertz, J. Kuplinsky, Bounded vertex colorings of graphs, Discrete Math. 111 (1993)
305–312.

[9] P. Hansen, A. Hertz, N. Quinodoz, Splitting trees, Discrete Math. 165=166 (1997) 403–419.
[10] K. Jansen, Complexity results for the optimum cost chromatic partition problem, Report 96-41,

Universit�at Trier, 1996.
[11] K. Jansen, Approximation results for the optimum cost chromatic partition problem, Report 97-01,

Universit�at Trier, 1997.
[12] S. Nicoloso, M. Sarrafzadeh, X. Song, On the sum coloring problem on interval graphs, R. 390,

IASI-CNR, Roma, 1994.
[13] D. de Werra, Some remarks on good colorations, J. Combin. Theory 21 (1976) 57–64.
[14] D. de Werra, Restricted coloring models for timetabling, Discrete Math. 165=166 (1997) 161–170.
[15] D. de Werra, On a Multiconstrained Model for Chromatic Scheduling, Discrete Appl. Math. 94 (1999)

171–180.
[16] D. de Werra, F. Glover, E.A. Silver, A chromatic scheduling model with costs, IIE Trans. 27 (1995)

181–189.
[17] D. de Werra, A. Ho�man, N.V.R. Mahadev, U. Peled, Restrictions and Preassignments in Preemptive

Open Shop Scheduling, Discrete Appl. Math. 68 (1996) 169–188.
[18] D. de Werra, N.V.R. Mahadev, Preassignment requirements in chromatic scheduling, Discrete Appl.

Math. 76 (1997) 95–101.

