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Recent empirical research has utilized the Technology Acceptance Model (TAM) to advance the under-
standing of doctors’ and nurses’ technology acceptance in the workplace. However, the majority of the
reported studies are either qualitative in nature or use small convenience samples of medical staff. Addi-
tionally, in very few studies moderators are either used or assessed despite their importance in TAM
based research. The present study focuses on the application of TAM in order to explain the intention
to use clinical information systems, in a random sample of 604 medical staff (534 physicians) working
in 14 hospitals in Greece. We introduce physicians’ specialty as a moderator in TAM and test medical
staff’s information and communication technology (ICT) knowledge and ICT feature demands, as external
variables. The results show that TAM predicts a substantial proportion of the intention to use clinical
information systems. Findings make a contribution to the literature by replicating, explaining and
advancing the TAM, whereas theory is benefited by the addition of external variables and medical spe-
cialty as a moderator. Recommendations for further research are discussed.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

During the last 20 years, several theoretical models have been
proposed to assess and explain end – users’ acceptance behavior
towards information and communication technology (ICT for
short). The Technology Acceptance Model (TAM) [1] which is ap-
plied and empirically tested over a wide spectrum of applications
of ICT, is one of the most well recognized theoretical modes among
them [2,3]. Recent studies provide evidence that TAM is a good
predictor of behavioral intent to accept technology in the health
sector [4–6].

In TAM, technology acceptance and use is determined by behav-
ioral intention (BI). BI in turn, is affected by attitude towards use
(ATT), as well as the direct and indirect effects of perceived ease
of use (PEoU) and perceived usefulness (PU). Both PEoU and PU
jointly affect ATT, whilst PEoU has a direct impact on PU [4,6,7]
(see also Fig. 1 for a graphical sketch of direct and indirect relation-
ships of the TAM). The TAM model is an analytical simplification of
how functionality and interface characteristics relate to adoption
ll rights reserved.
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decisions; understanding why clinicians hold certain beliefs about
CIS is valuable because beliefs influence subsequent behavior and
they are amenable to manipulations through appropriate interven-
tions [8].

Although TAM is considered as a well-recognized model in the
field of information systems, little systematic research has been
conducted in the health care context indicating a significant gap
in knowledge. Therefore, there is a strong current need to develop
and gain empirical support for the TAM within health organiza-
tions; more replication studies are needed so that confidence is
gained in whether TAM is a good fitting theory in health care. This
may be achieved by using larger size samples, by investigating and
exploring new theoretically motivated variables and relationships,
by testing external variables, as well as by applying TAM on differ-
ent profession-specific groups of personnel (e.g. different physician
specialties) etc.

Yarbrough and Smith [4] and Holden and Karsh [6], in their
meta-analytic reviews concerning the application of TAM in health
care, reported significant heterogeneity among the studies in terms
of sample characteristics and technologies studied. Furthermore,
several inconsistencies were found concerning the relationships
among TAM variables. Specifically, both reviews have demon-
strated that the majority of existing TAM studies in health care:
(1) have used small convenience samples of medical staff, (2) have
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Fig. 1. Representation of the TAM model and the proposed extended TAM model. Bold lines represent the classical TAM Model. Normal lines represent paths tested in
previous studies. Dot lines, represent constructs and paths tested for first time in Technology Acceptance Models. ‘‘Physician Specialty’’ represents profession-specific
differences that moderate the relationships between TAM variables.
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not used moderator variables, (i.e., variables that alter the direction
or strength of the relation between a predictor and an outcome),
(3) have not used external variables (i.e., variables outside TAM
that reveal how perceptions of PU and PEoU are formed), (4) have
not tested a uniform and specific model of relationships between
TAM variables and (5) have used generic non-contextualized mea-
sures (i.e. the items measuring the TAM variables were generic and
not health care specific).

The primary aim of this research is:

1. To test the applicability and effectiveness of TAM in health care
sector using a large sample of health-care personnel including
mostly medical doctors, drawn from different specialty catego-
ries and nursing staff.

2. To examine the way ICT knowledge and ICT feature demands as
well specialty differences affect the intention of medical staff to
use clinical information systems (CIS for short) in every day
practice.

In order to achieve both goals an extended TAM is developed
and tested, using the structural equation modeling (SEM for short)
approach as well as data obtained from a random sample of 604
clinicians (534 physicians) working in 14 hospitals in Greece.

In the present study, we consider a general approach towards
CIS’s which are defined as the application of both computer hard-
ware and software for information processing dealing with the
storage, retrieval, sharing, and use of health care information, data,
and knowledge for both communication and decision-making [6].
Consecutively we do not test a specific CIS but instead we are inter-
ested in studying the factors which influence and shape clinicians’
intentions to use CIS.

Such an approach helps to better understand what makes clini-
cians ignore these systems and explains medical professionals’
attitude towards ICT adoption and use. By extension, it raises
implications for the hospital administrators, as they should apply
appropriate policies in order to encourage the frequent and effi-
cient use of ICT.

In the same vein we used self-reported (ICT) knowledge and ICT
feature demands as external variables in TAM [9]. ICT knowledge is
defined as ‘‘how much’’ clinicians perceived to know about ICT, and
ICT feature demands refers to ‘‘how sophisticated’’ CIS must be be-
fore clinicians would be willing to use them.
Over the sections which follow we briefly overview TAM clinical
context applications, present the salient aspects of the methodol-
ogy, show and discuss results and summarize key findings.
2. Literature review: TAM in clinical context

A recent review concerning TAM in the health sector [6] identi-
fied 16 distinct datasets analyzed in 21 studies of clinicians using
CIS for patient care. However, the researchers did not perform a
quantitative analysis, due to the significant heterogeneity with re-
spect to sample characteristics, specific technologies studied, and
technology function.

Of the 16 data sets analyzed, 11 used TAM whereas 5 used TAM
related models, such as TAM2 [10] or the Unified Theory of Accep-
tance and Use of Technology (UTAUT) [11]. TAM2 is an update of
TAM, in which the component ATT (which originally mediated
some of the influence of PU and PEoU) is removed from the model
while a new variable subject norm (SN) is added, in order to cap-
ture the social influence (i.e. from colleagues or bosses) that com-
pels the users to use ICT. UTAUT incorporates PU into a
performance expectancy construct, PEoU into effort expectancy,
and SN into social influence. UTAUT aims to explain user behav-
ioral intentions to use an IS and subsequent usage behavior.

Of the 11 data sets analyzed using TAM, 7 contained data from
physician samples. The specialties covered were related to endos-
copy, disability care, general practice, nursing, and medical techni-
cians (Table 1).

The 11 data sets mentioned in Table 1 suggest that TAM consis-
tently predicts a good portion of variation in clinician intention to
accept new technology, with the reported percentage of variance
explained in the dependent variable (e.g., R2) being reasonably
high, ranging from 40% to 70%. Although these data sets provide
evidence that the TAM constructs generally hold in a clinical con-
text, great variability was found in the operational implementation
of the constructs used within and between studies, despite the fact
that TAM constructs were similarly defined and the questionnaires
used were well established and validated [6].

As an example, TAM was tested among a sample of acute care
physicians in a Hong Kong hospital to determine physicians’ accep-
tance of telemedicine [12]. Results provide support for the ade-
quate fit of the TAM. Moreover, the relationship between PU and



Table 1
Summary of reviewed data sets of TAM in health care [5].

Population studied Sample
(N)

Country
setting

Endoscopy involved staff 10 UK
Disability care providers 141 USA
General practitioners and specialists 91 Australia
General practitioners and specialists 242 Finland
General practitioners and specialists 408 Hong

Kong
Nurses 61 Australia
Physio-therapists 49 UK
Nurses 252 Taiwan
Pharmacists, physicians, nurses, managers, and others 173 USA
Senior health care trainees, physician assistants, and

other technology staff at hospitals and clinics
77 USA

Physicians, nurses and medical technicians 123 Taiwan
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both ATT and BI seemed to be significant. However, no support was
found as far as the relationship between PEoU and either PU or ATT
is concerned. The researchers raised the argument that the PEoU
component of the TAM may not be applicable for individuals with
above-average intelligence. However, Paré et al. [8] reported a sta-
tistical significant result for the relationship between PEoU and
ATT. It is plausible that when respondents have hands-on experi-
ence with using a CIS system, then the relationship between PEoU
and ATT and BI may be statistically significant. Therefore evidence
is probably not strong enough to justify the exclusion of the PEoU
construct from TAM.

Moreover, less attention has been given to the inclusion of
external variables that are unique to clinician population and ex-
plain formation of beliefs in TAM [4]. It was proposed in the liter-
ature [1] that external variables of a TAM can affect beliefs of PEoU
and PU. In the application of TAM in health care several external
variables were added such as, perceived system characteristics
(i.e. how well the system performs [13,14] and how relevant the
system is to one’s job [15]), as well as personal characteristics of
users [15,16] and psychological variables, such as ownership [8]
and trust [17].
3. Overview of research aims and hypotheses

The objective of this study is twofold: (1) No replicate the TAM
model and (2) to extend the TAM model in the health sector. In or-
der to replicate the TAM, the basic items of the TAM constructs (i.e.
PU, PEoU, ATT and BI) are measured using the largest sample size
ever tested with TAM in the health sector, (604 clinicians) includ-
ing physicians (534) from specialties that have never been tested
before (e.g. surgeons, pathologists), using structural equation mod-
eling (SEM). In order to extend the TAM model, we use two exter-
nal variables that are unique to the clinician population, namely
clinicians’ ICT knowledge and ICT feature demands in clinical set-
tings (see Fig. 1). Specifically, drawing from other research in ICT
and medical care [9], we will test the influence of clinicians’ com-
puter knowledge (i.e. how much medical staff know about comput-
ers) on PEoU and clinicians computer feature demand (i.e. medical
staffs’ preferences of the capabilities of medical computing sys-
tems) on PU.

Although in the literature concerning TAM in the health sector
there were studies that utilized data from a mix of physicians,
nurses, pharmacists, and medical technicians [15,18], none of these
studies examined profession-specific differences (e.g. among dif-
ferent physician specialties), possibly due to small sample sizes.
It is plausible that physicians’ specialty may act as moderator influ-
encing the strength of the relationship between criterion and pre-
dictor variables in the TAM model. Prior research suggests that
subject type may influence the strength of relationships of the vari-
ables in the TAM model [3].
4. Research method

The study aimed first to determine whether, and to what extent,
BI is associated with ATT, PU and PEoU in clinical settings. Towards
these aims we followed specific steps:

First, TAM constructs (i.e., PU, PEoU, ATT and BI) are measured.
Based on recent research [4,6], we expect positive correlations be-
tween the aforementioned constructs.

Second, we aimed to test whether, and to what extent, ATT
mediate PU and PEoU effects on BI using SEM (see Fig. 1). We ex-
pected that ATT would at least partially mediate PU and PEoU ef-
fects on BI.

Third, using SEM we tested whether clinicians’ ICT knowledge
influence PEoU and whether clinicians’ and ICT feature demands
influence PU (Fig. 1). We expect knowledge to positively influence
PEoU and feature demands to negatively influence PU [3].

Fourth, we used multi-group analysis of structural invariance
(MASI for short) to test for differences in structural weights of
PU, PEoU and ATT in BI across different physician specialties (sur-
gery and pathology) [19,20].

For our analyses we used modern quantitative methods: confir-
matory factor analysis (CFA for short), SEM and MASI. These meth-
ods are based on latent variable modeling, where the measurement
error is minimized through the use of multiple indicators of latent
variables prior to testing model fit. The estimation method em-
ployed was maximum likelihood (ML) for normal data and the var-
iance adjusted weighted least squares estimator (WLSMV), for
categorical data. Specifically, CFA was used to test our measure-
ment model’s (i.e. the relationships between latent factors and
measurement variables) convergent and discriminant validity
and the presence of common method bias in our data (Section
4.3). SEM was used to test the causal-effect relations among latent
constructs. The bootstrapping procedure was used in order to cor-
rect for standard errors (Section 4.3). Finally MASI was used to test
specific differences between different physician specialties. Based
on the methodology literature a critical issue in moderation analy-
sis is the sample size of the groups compared; unequal sample
sizes across groups decrease power [21]. In our case our data per-
mit us to test differences between pathologists (n = 233) and sur-
geons (n = 215) due to adequate sample sizes we obtained for
these specialties.

When latent (invisible) variables are involved, MASI provides
more rigorous test of differences in structural weights across
groups than analysis of covariance. The test can answer the ques-
tion: do PU, PEoU and ATT have equivalent structural weights pre-
dicting BI across ICT use for surgeons and pathologists? Such
comparisons, in order to be meaningful, would necessitate evi-
dence of measurement invariance between responses obtained
from the different groups. Invariance reveals the extent to which
responses maintain their meaning across groups [22,23]. Five mod-
els explained in Section 4.4 and suggested in relevant theory are
tested in hierarchical sequence. Due to a lack of literature examin-
ing the role of physicians’ medical specialty involving the TAM, we
had no a priori reasons to suspect that variations in medical spe-
cialty may influence the clinicians’ frame of reference and, thereby,
the meaning or scaling of the TAM constructs.
4.1. Sampling method and participants

A preliminary questionnaire was designed and sent out for re-
view to five experts who had practical and academic experience
with computer systems in health care. This phase was used to
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clarify the wording, content, and general layout of the survey
instrument.

The main survey was carried out via personal interviews, involv-
ing 1015 individuals (doctors and nurses) who where ICT users, from
13 main state hospitals and one private hospital located across dif-
ferent regions of Greece. Individuals were identified by the human
resources department of each hospital. Specifically, complete lists
of all individuals who use medical informatics were given to the
researchers. Data collection process took place from July to Decem-
ber 2008. The questionnaire was given to all individuals and
appointments for interviews were arranged. This research focuses
on the actual users, including (in the sample) members of the med-
ical and nursing personnel who use and interact with computers on
a daily basis. No monetary incentive was provided to respondents.

Out of a total population of 1015 contacted users, 604 answered
the questionnaire (response rate of 59.5%). Doctors and nurses
were given the following explanation for the purposes of the study:
‘‘This is an effort to combine research into factors affecting CIS use, in
clinical settings. A CIS is defined as the application of both computer
hardware and software for information processing dealing with the
storage, retrieval, sharing, and use of health care information, data,
and knowledge for both communication and decision-making. Your
participation is not obligatory; you will answer a questionnaire with-
out filling in anything that will identify you, or your department. The
results will be used so that the factors that influence CIS use in health-
care are better understood’’. In an effort to assess the possible im-
pact of response bias, we contacted 40 randomly selected non-
respondents directly on the telephone and requested input.
Twenty of them complied with the request. Comparison of respon-
dents and non-respondents indicated that they did not differ with
respect to any of the variables of interest in the present study.

The sample consisted of 60.3% males with mean age 36.45 years
(SD = 7.9 years). Average tenure in years was five (SD = 6.2 years).
The percentage of medical personnel was 88.4%. The distribution
of the main physician specialties was 35.6% surgery, 38.6% pathol-
ogy, 7.5% laboratory specialties and 6.8% general medicine. Physi-
cians reported a mean of 12.52 (SD = 10.8) hours of hands-on use
of a computer per week. Nursing personnel reported a mean of
Table 2
Technology Acceptance Model (TAM) variables: results of confirmatory factor analysis for

Items

PEoU1 – Learning to operate CIS would be easy for me
PEoU2 – I would find it easy to get CIS to do what I want it to do
PEoU3 – My interaction with CIS would be clear and understandable
PEoU4 – I would find CIS to be flexible to interact
PEoU5 – It would be easy for me to become skillful at using CIS
PEoU6 – I would find CIS easy to use

PU1 – Using CIS in my job would enable me to accomplish tasks more quickly
PU2 – Using CIS would improve my job performance
PU3 – Using CIS in my job would increase my productivity
PU4 – Using CIS would enhance my effectiveness on the job
PU5 – Using CIS would make it easier to do my job
PU6 – I would find CIS useful in my job

ATT1 – Using CIS is advisable in clinical practice
ATT2 – Using CIS is a pleasant idea
ATT3 – I will enjoy using CIS
ATT4 – I will be satisfied in using CIS

BI1 – I predict that I will use CIS on a regular basis in the future
BI2 – CIS will be one of my favorite technologies for my work
BI3 – I intent to use CIS in my work

Note: 1–5 scale: 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly a
average variance extracted.
7.04 (SD = 9.9) hours of hands-on use of a computer per week.
Average hours of hand-on use of computer per week was 11.9
(SD = 10.8) for the total sample.

4.2. Measurement of constructs

All constructs included in the analysis were based on multi-
item scales the psychometric properties of which are well estab-
lished. As participants were Greek-speaking, all the scales used
were first translated into Greek by two translators, who compared
their versions until agreeing on the most correct translation, and
then back-translated into English by a bilingual, native English
speaking translator, following the procedure recommended in the
literature [24]. No significant discrepancies between the original
English version and the back-translated version were found. The
specific measures used in the analysis, along with sample items
of the relevant constructs, are outlined.

4.3. TAM variables

In this study, responses to the items of TAM constructs (i.e., PU,
PEoU, ATT and BI) were measured on a 5-point Likert scale from
1 = strongly disagree, to 5 = strongly agree (see Table 2).

4.4. Perceived usefulness of clinical information systems (PU)

We used 6 items from the work of Davis [1] original TAM. Cron-
bach’s reliability coefficient for PU was 0.92. The overall PU score
for each respondent was obtained by averaging the scores across
the six items.

4.5. Perceived ease of use of clinical information systems (PEoU)

We used 6 items from the work of Davis [4] original. Cronbach’s
reliability coefficient for PEoU was 0.93. The overall PEoU score for
each respondent was obtained by averaging the scores across the
six items.
the total sample (N = 604) of clinicians.

Standardized factor loadings

PEoU PU ATT BI SMC AVE

0.85 – – – 0.72
0.87 – – – 0.75
0.87 – – – 0.75
0.67 – – – 0.45
0.85 – – – 0.72
0.84 – – – 0.71

0.56
– 0.80 – – 0.64
– 0.91 – – 0.83
– 0.93 – – 0.86
– 0.85 – – 0.73
– 0.78 – – 0.61
– 0.63 – – 0.40

0.60
– – 0.69 – 0.48
– – 0.93 – 0.86
– – 0.86 – 0.75
– – 0.91 – 0.83

0.56
– – 0.60 0.36
– – – 0.78 0.61

0.80 0.64
– – – 0.55

gree). CIS: clinical information systems; SMC: squared multiple correlations; AVE:
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4.6. Attitudes towards use (ATT)

We used six items from the work of Davis et al. [7]. Cronbach’s
reliability coefficient PU was 0.91. The overall ATT score for each
respondent was obtained by averaging the scores across the six
items.

4.7. Behavioral intention (BI)

We used three items from the work of Davis [1] original TAM.
Cronbach’s reliability coefficient for PEoU was 0.77. The overall
BI score for each respondent was obtained by averaging the scores
across the three items.

4.8. ICT knowledge

We adopted 15 items of the computer knowledge scale devel-
oped by Cork et al. [9] to assess the computer knowledge attribute
(see Appendix A). For each item, using a three-point response scale,
(1-I don’t understand the distinction at all, 2-I have a general appre-
ciation of the distinction but could not define it, 3-I can define the dis-
tinction precisely) respondents indicated the extent of their
understanding of the distinction between a pair of computing con-
cepts. Exploratory factor analysis of the 15 items using the Mplus
(version 5.21) software [25] and the WLSMV estimator [26] re-
sulted in the extraction of one factor. Cronbach’s reliability coeffi-
cient for all 15 items was 0.93. The overall ICT knowledge factor
score for each respondent was obtained by averaging the scores
across the specific items.

4.9. ICT feature demands

We used 15 items of the computer feature demands scale devel-
oped by Cork et al. [9] to assess the computer feature demand attri-
bute (see Appendix B). Each item represents a feature or capability
of a CIS. In the sequel each item is assessed over a discrete ordered
four points scale in which a ‘‘1’’ valuation corresponds to ‘‘vital’’
requirement and ‘‘4’’ maps a ‘‘not necessary’’ assessment. Explor-
atory factor analysis of the 15 items comprising the Computer fea-
ture demands scale, using the Mplus (version 5.21) software [28]
and the WLSMV estimator [26], resulted in the extraction of two
meaningful factors. The first factor refers to demand for sophisti-
cated computer features. The second factor refers to demand for
computer usability (DCU). Cronbach’s reliability coefficient for
sophisticated computer features (SCF) was 0.80 and for the de-
mand for computer usability was 0.82. For all 15 items Cronbach
reliability was 0.88. The overall computer feature demands factor
Table 3
Descriptive statistics and inter-correlations for the total sample (N = 604).

M SD 1 2 3 4

1. Gendera 1.40 0.49 –
2. Age 36.4 7.88 �0.18** –
3. Tenure 5.04 6.19 0.00 0.76** –
4. Specialty b 1.62 1.01 �0.07 �0.10** �0.24** –
5. Hours using PC/week 11.9 10.8 �0.17** �0.05 �0.09* 0
6. ICT knowledge 2.26 0.55 �0.20** �0.14** �0.24** 0
7. ICT feature demands 1.98 0.33 0.06 �0.12** �0.11** 0
8. PEoU of CIS 3.49 0.65 �0.12** �0.05 �0.14** 0
9. PU of CIS 4.09 0.60 �0.09* 0.05 0.02 0
10. ATT towards use CIS 3.90 0.63 �0.09* 0.07 0.05 0
11. BI 3.72 0.55 �0.11** 0.04 �0.07 0

Reliabilities are in parentheses.
a Gender is coded: 1 = male 2 = female;
b Specialty: 0 = nurse; 1 = surgeons; 2 = pathologists; 4 = laboratory specialties; 5 = ge

* p < 0.05 (two tailed).
** p < 0.01 (two tailed).
score for each respondent was obtained by averaging the scores
across the 15 items.

4.10. Statistical method considerations-analytical strategy

Prior analysis data screening was performed and data were
tested for deviation from normality [27]. Analysis of Moment
Structures (AMOS software, version 7.0) [28] was used for the MASI
equivalence.

Following recommendations set forth by Anderson and Gerbing
[29], we tested the TAM model using a two-stage analytic proce-
dure. Specifically, a structural equation model is composed of a
measurement model and a structural model. In the first step of
analyses step, we fitted a measurement model to the data and in
the second step we tested the underlying structural model. During
the first step, a measurement model was assessed, which allowed
the underlying latent constructs to correlate freely and constrained
each item to load only to the factor for which it was a proposed
indicator. To further assess discriminant validity of the TAM con-
structs, we compared the measurement model with a model that
constrained the correlations among the constructs to be equal
and examined the change in chi-square (v2). A non-significant v2

value indicates acceptance of the more parsimonious of the nested
models. Evidence that common method variance does not account
for the observed relationships would be provided if a four factor
model, representing each variable as a separate construct, is supe-
rior to a one-factor model.

We followed procedures used in literature [30] to evaluate con-
vergent validity. Convergent validity is established if the average
variance extracted (AVE) for each factor accounts for 0.50 or more
of the total variance and is demonstrated by statistically signifi-
cant path coefficients. Calculated values of AVE for each one of
the four PEoU, PU, ATT and BI items was found greater than
0.50, thus convergent validity was established for our model (see
Table 2).

Because the v2 statistic is highly sensitive to sample size, we
employed several statistics to assess model fitness [31]: (a) Root
Mean Square Error Approximation (RMSEA): 0 = an exact
fit,<0.05 = a close fit, 0.05–0.08 = a fair fit, 0.08–0.10 = a mediocre
fit, and > 0.10 = a poor fit (AMOS also computes a 90% confidence
interval around RMSEA); (b) Comparative Fit Index (CFI): best if
above 0.9; (c) Tucker – Lewis Index (TLI): best if above 0.9; (d)
Akaike Information Criterion (AIC); (e) Root Mean Square Residual
(RMR) best fits for values less than 0.10. For model comparisons,
smaller values in AIC represent a better fit of the model.

In order to select among the TAM competing structural models
specifying total effects (direct and indirect), complete mediation
and partial mediation, we applied model selection for structural
5 6 7 8 9 10 11

.14** –

.03 0.29** (0.93)

.06 0.02 �0.02 (0.88)

.17** 0.31** 0.47** �0.03 (0.93)

.05 0.15** 0.22** �0.48** 0.51** (0.92)

.05 0.20** 0.24** �0.36** 0.56** 0.79** (0.91)

.11** 0.24** 0.30** �0.19** 0.63** 0.68** 0.74** (0.77)

neral practitioners.
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equation models [28,32]. Specifically, AMOS 7.0 permits specifica-
tion searches for the best theoretical model given an initial model
using Akaike Information Criterion (FIC). AIC, represents an infor-
mation theoretic approach to model selection; smaller AIC values
indicate better fit. AIC is assessed from the data for each fitted
model and it is possible to be used for the computation of model
weights in order to quantify the uncertainty that each model is
the best model [33]. Specifically, one can search through the vast
set of possible models for the best ones and compare individual
nested models through the employment of heuristic specification
research strategies. In the present research, we employed a step-
wise strategy in model selection, which included both forward
selection and backward elimination features. Furthermore, under
this framework, it is meaningful to speak of the probability of a
model. Raw AIC values can be easily transformed to the so-called
Akaike weights, which can be directly interpreted as conditional
probabilities for each model [34].

In addition, we used bootstrapping procedures to test signifi-
cance of mediation [35]. Bootstrapping is a nonparametric ap-
proach to hypothesis testing whereby one estimates the standard
errors empirically using the available data. Operationally, in boot-
strapping, multiple samples are drawn, with replacement, from the
original data set, and the model is re-estimated on each sample,
which results in a number of path estimates that is equal to the
number of samples drawn from the original data set. Following
current recommendations, we re-sampled 1000 times and used
the percentile method to create 95% confidence intervals [35].

In order to avoid problems associated with common method
variance often found in cross sectional survey research, several
steps described in the literature [36] were taken. First, all partici-
pants were informed that their participation was completely vol-
untary and confidential. Second, items referring to the same
construct were positioned in different locations throughout the
questionnaire and several items were reverse phrased. Third, we
adopted Harman’s one-factor test (see Table 4).

4.11. Invariance analysis method

To examine whether medical specialty has an effect on the
model with the best fit to the data, we followed the sequence of
MASI [19,20]. Tests of factorial invariance across multiple groups
involve a hierarchical ordering of nested models. Any two models
are nested, as long as the set of parameters estimated in the more
restrictive model is a subset of the parameters in the less restric-
tive model. When a model is a subset of a larger model, the differ-
ence between them can be tested by subtracting the two chi-
square values and testing this value against the critical value asso-
ciated with the difference in degrees of freedom. According to rel-
ative theory, chi-square test is very powerful and, where the
hypothesis of equal factor loadings or structural weights is not re-
jected, it provides strong support that observed differences across
subgroups in parameters may be expressed by chance [19]. Factor
loadings and model-data fit were assessed for each group (pathol-
ogists and surgeons). Low item-factor loadings indicate that the
factors did not have the same meaning in the subgroup, thus com-
parison is meaningless and subgroup should be rejected, whereas
Table 4
TAM measurement model fit statistics for the total sample of the study (N = 604).

Model v2 df D

Hypothesized four factor measurement model 909.79** 146

One factor measurement model 1041.46** 151 1

Note: v2:chi-square statistic.
** p < 0.001.
factor loadings grater than 0.60 are acceptable. The following five
models were tested in a hierarchical sequence:

Model 1 (configural invariance model) represents the totally
non-invariant model with no between-group equality constraints
on any of the model parameters. This is the least restrictive model,
but it has great importance as, if the model cannot fit the data,
none of the more restrictive models will do so.

In Model 2 (the metric invariance model), equality constraints
were imposed on the factor loadings across the groups. This mod-
el reveals whether the constructs are manifested differently be-
tween groups and it is a prerequisite for meaningful cross-
group comparisons [19]. Group comparisons can still be per-
formed even in the case of few non-invariant items because few
items will not heavily influence such comparisons (partial metric
invariance, [22]).

Model 3 (the measurement error invariance model), constrains
uniqueness of the items with invariant factor loadings assessed
equal across groups from Model 2.

Model 4 (scalar invariance model) imposes an equality con-
straint on the intercepts of the items found to have invariant factor
loadings in Model 2.

Finally, in Model 5 (the structural weights invariance model)
equality constraints were imposed on the structural weights
among the latent variables across the groups [19].

To assess adequacy of nested models, the difference between
them can be tested by subtracting the two chi-square values and
testing this value against the critical value associated with the dif-
ference in degrees of freedom. Furthermore, for MASI model com-
parison the CFI index can also be used, because it is not influenced
by sample size and model complexity and does not correlate with
overall measures of fit [37]. A change in the CFI value less than or
equal to �0.01 indicates that the null hypothesis of invariance
should not be rejected [37].

5. Results

5.1. Data screening and descriptive summary for the total sample

Table 3 presents mean, standard deviation and correlation
across selected variables. According to rules proposed in the liter-
ature [27], moderately non-normal data (univariate kurtosis < 7
and univariate skewness < 2) are acceptable. That is to say, robust
standard errors provide generally accurate estimates. In our data,
univariate skewness of each indicator variable was less than
1.406 in absolute value. Univariate kurtosis of each variable was
less than 6.19 in absolute value. Therefore, non-normality was
not a major issue for our data. Furthermore, we found no evidence
of severe multicollinearity, as the mean variance inflation factor
(VIF) was 3.43, a value below the suggested cut-off of 4.0 [38]. Thus
the maximum likelihood estimator was used.

As indicated in Table 3, PEoU relates positively to PU (r = 0.51,
p < 0.01), ATT (r = 0.56, p < 0.01) and BI (r = 0.63, p < 0.01). That is,
when user’s perception that ICT technology is easy to use, it affects
positively to his or her perception that ICT technology will be
useful, he or she is positive to adopting ICT technology, and has a
positive actual intention to utilize that technology.
v2 RMSEA TLI CFI AIC

0.093 0.909 0.923 1035.79
(90% CI: 0.087–0.099)

31.67** 0.106 0.896 0.910 1157.46
(90% CI: 0.101–0.121)
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Furthermore, PU was positively related to ATT (r = 0.79, p < 0.01)
and BI (r = 0.68, p < 0.01), indicating that when users perception
that ICT technology will be useful, the user tends strongly to adopt
IT technology, and has a positive intention to utilize that
technology.

Finally ATT was positively related to BI (r = 0.74, p < 0.01) indi-
cating that the user’s positive attitude towards ICT technology
encourages actually the user to utilize that technology.

Results provide support for the positive relationships found in
previous research [8,18,14,10]. Furthermore, positive correlations
were found between ICT knowledge and the TAM variables with
the correlation being higher for PEoU (r = 0.47, p < 0.01). Finally,
negative correlations were found between ICT feature demands
and the TAM variables with the correlation being higher for PU
of CIS (r = �0.48, p < 0.01).

5.2. Confirmatory factor analysis for the whole sample

Table 2 displays the results of the confirmatory factor analysis
of the TAM variables for the total sample of clinicians (N = 604).
All factor loadings for the items in the measurement model were
greater than 0.6. The entire squared multiple correlations (SMCs)
were greater than 0.60, except 3 (items PEoU4, PU6, BI1). The aver-
age variance extracted for all measures exceeded the recom-
mended 0.5 level (0.62 for PU; 0.60 for PEoU; 0.56 for ATT and
0.55 for BI) [19].

Table 4 displays the fit statistics for the TAM measurement
model. Overall, the hypothesized measurement model fits the data
quite well when evaluated in terms of the recommended cut offs or
the combination cut off approach [31]. In addition, the hypothe-
sized measurement model fits the data better than a single factor
model, both in terms of the fit statistics and when directly con-
trasted with a change in chi-square test and AIC (smaller AIC value
indicate better fit of the model).

5.3. Assessment of common method bias

The basic assumption of Harman’s one-factor test is that if a
substantial amount of common method variance exists in the data,
either a single factor will emerge or one general factor will account
for the majority of the covariance among the variables. Specifically,
we entered all the self-reported variables in an exploratory factor
analysis with principal axis factoring and varimax rotation. Ten
factors emerged with eigenvalues greater than 1 and 64.58% of
the variance explained. No single factor was dominant with the
first factor accounting for 12.13% of the variance. Thus, it seems
that method variance is not problem for the present study.

In summary, the results suggest that the proposed factor struc-
ture presents a statistically adequate and sufficient fit to the data,
all constructs in the model exhibited adequate reliability and con-
vergent validity and no indications of severe common method var-
iance were found.
Table 5
Standardized direct and indirect effects and associated 95% confidence intervals in pa
parentheses) were based on the findings from a bootstrapping analysis using the percenti

Predictor Perceived usefulness (PU) Attitude (A

Direct effect Indirect effect Direct effec

Outcome
PEoU 0.53* – 0.23*

(0.45–0.62) (0.14–0.32)
PU – – 0.69*

(0.60–0.78)
ATT – – –

* p < 0.01.
5.4. Assessment of the structural model for the whole sample

The next step in our analysis was to consider comparative mod-
els specifying total effects (direct and indirect), complete media-
tion and partial mediation. The results of the specification
procedure indicated that there was 84.8% probability (in terms of
Akaike weights) that the best model is the one with both direct
and indirect effects among TAM variables. This model revealed a
good fit to the data: v2 (146, N = 604) = 909.80, p = 0.000;
RMSEA = 0.093 (90% CI: 0.087–0.099); CFI = 0.923; TLI = 0.909;
AIC = 1035.80. The second best model with probability 15.6% is
the one without the path from PU to BI.

Examining the findings for direct and indirect relationships (Ta-
ble 5) the model postulated that the effect of PU on BI was partially
mediated by ATT. Moreover, the effects of PEoU on BI were par-
tially mediated by both PU and ATT. Standardized direct effect of
PEoU on PU was 0.53 (p < 0.01, two tailed). Furthermore, PEoU re-
vealed positive direct effects on ATT (0.23, p < 0.01, two tailed) and
BI (0.38, p < 0.01, two tailed) along with indirect effects on ATT
(0.29, p < 0.01, two tailed) and BI (0.31, p < 0.01, two tailed). The
standardized total effect (direct and indirect) of PEoU on ATT and
BI was 0.60 (95% percentile confidence interval: 0.51–0.69,
p < 0.01, two tailed) and 0.76 (95% percentile confidence interval:
0.69–0.82, p < 0.01, two tailed), respectively.

PU had statistically significant direct effects on ATT (0.69,
p < 0.01) and BI (0.13, p < 0.01, two tailed). The standardized total
effect of PU on BI was 0.49 (95% percentile confidence interval:
0.39–0.60, p < 0.01, two tailed). Finally, the direct effect of ATT on
BI was 0.53, (95% percentile confidence interval: 0.36–0.67,
p < 0.01, two tailed).

In summary, the proportion of variance (squared multiple cor-
relations) in PU, ATT and BI that was explained by the collective
set of predictors was 29% (95% CI: 0.20–0.39), 70% (95% CI: 0.63–
0.78), 83% (95% CI: 0.76–0.91) respectively.
5.5. Inclusion of external variables in the model

The model that included the external variables revealed a good fit
to the data: v2 (183, N = 604) = 987.468, p = 0.000; RMSEA = 0.085
(90% CI: 0.081–0.091); CFI = 0.921; TLI = 0.910; AIC = 1125.47.

Medical professionals’ ICT feature demands has a direct nega-
tive effect on PU [�0.43, p < 0.001, two tailed; 95% CI: (�0.49) to
(�0.36)] (see Fig. 2). The standardized total (direct and indirect) ef-
fect of ICT feature demands on ATT and BI were �0.30 [95% CI:
(�0.36) to (�0.24)] and �0.21 [95% CI: (�0.27) to (�0.15)],
respectively.

On the other hand medical professionals’ ICT knowledge had a di-
rect positive effect on PEoU (0.49, p < 0.001) (see Fig. 2). The total
standardized effect of ICT knowledge on PU, ATT and BI were 0.25
(95% CI: 0.21–0.30), 0.29 (95% CI: 0.24–0.34), and 0.37 (95% CI:
0.31–0.42) respectively. In other words, due to both direct (unmedi-
ated) and indirect (mediated) effects of ICT knowledge on BI when
renthesis. The upper and lower bounds of the 95% confidence interval (shown in
le method.

TT) Behavioral intention (BI)

t Indirect effect Direct effect Indirect effect

0.29* 0.38* 0.31*

(0.28–0.45) (0.27–0.46) (0.29–0.46)
– 0.13* 0.25*

(0.05–0.29) (0.24–0.48)
– 0.53* –

(0.36–0.67)
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Fig. 2. Structural model (standardized results). Circles represent latent factors; boxes represent indicators. Casual effects are given by arrows connecting circles. Bold
numbers over circles represent variance explained. Disturbance and measurement error effects are omitted for clarity.
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ICT knowledge goes up by 1 standard deviation, BI goes up by 0.37
standard deviations. Medical professionals’ ICT feature demands ex-
plain an additional 16% of the PU variance, while ICT knowledge ex-
plains 24% of the variance in PEoU. Furthermore all paths among the
TAM variables remained statistically significant at the 0.001 level.

5.6. Multi-group analysis of structural invariance (MASI)

When performing multi-group analysis, the sample size of the
groups being compared should be roughly equal [21]. In our sample
we could test for specialty group differences only between surgeons
(n = 215) and pathologists (n = 233), as these groups provide ade-
quate sample size. The mean age in years was 37.6 for surgeons and
36.2 for pathologists. No statistical significant differences between
surgeons and pathologists were found in terms of age [t(419) = 1.75,
p = 0.81], ICT knowledge[t(446) =�0.335, p = 0.738], ICT feature de-
mands [t(446) =�1.389, p = 0.165] and hours using a PC per week
[t(446) =�1.07, p = 0.292]. However, surgeons reported more
tenure (M = 5.27 years, SD = 6.5 years) compared to pathologists
(M = 3.99 years, SD = 4.92 years) [t(446) = 1.99, p = 0.047]. Finally,
the chi-square test showed that there are differences between the 2
groups in terms of gender (v2 = 17.327, p = 0.000). In the surgeons
group there were 162 male and 53 female participants while in the
pathologist group there were 132 males and 101 females.

Before conducting MASI, we examined model-data fit and
parameter estimates for the entire sample (n = 448). The hypothe-
sized structural model revealed a good fit to the data: v2 (146,
N = 448) = 705.03, p = 0.000; RMSEA = 0.093 (90% CI: 0.086–
0.099); CFI = 0.923; TLI = 0.910; AIC = 831.03. These results suggest
that the structural model was appropriately specified, a proper
solution was obtained and the solution fit the entire sample ade-
quately. The completely standardized item-factor loadings for PU,
PEoU, and BI measurements were high (from 0.57 to 0.92) and sta-
tistically significant. All items had reliability scores (R2) ranging
from 0.51 to 0.87, indicating good item reliability. Thus, all mea-
surement items for the structural model were valid and reliable
measures of their theoretical construct.

To test the structural invariance across medical specialty, we
conducted a multi-group analysis of structural invariance. First
we tested Model 1 (the configural invariance model) with no
equality constrains for both groups. This model revealed an ade-
quate fit to the data: v2 (292, N = 448) = 1088.23, p = 0.000;
RMSEA = 0.078 (90% CI: 0.073–0.083); CFI = 0.901; TLI = 0.903;
AIC = 1340.23 (Table 6), thus supporting the configural invariance.

Model 2 (the metric invariance model) also displayed an adequate
fit to the data (Table 6). Examination of the probability level associ-
ated with the chi-square test for each item loading constraint sepa-
rately, showed that the three item loadings associated with the
items PU2, PU3, PU4, were not invariant across surgeons and pathol-
ogists, indicating the condition of partial metric invariance.

In Model 3 (measurement error invariance) equality constraints
were added on the 16 item loadings that were found invariant in
Model 2 and on their respective error terms. Model 3 displayed
an adequate fit to the data (Table 6). The chi-square difference test
results showed that 2 out of the 16 equality constraints imposed
on the error terms were non-invariant. The non-invariant error



Table 6
Goodness of fit for the physician specialty (surgeons vs. pathologists) invariance models (N = 448). Numbers in parentheses indicated the models compared.

Structural model v2 df Dv2 RMSEA TLI CFI AIC

1. Configural invariance model 1088.23, ns 292 – 0.078 (90% CI: 0.073–0.083) 0.903 0.901 1340.23
2. Metric invariance model 1098.01, ns 304 9.781* (1–2) 0.077 (90% CI: 0.072–0.081) 0.888 0.901 1326.01
3. Measurement error invariance model 1117,37, ns 318 29.136* (1–3) 19.355* (2–3) 0.075 (90% CI: 0.070–0.080) 0.902 0.900 1317.37
4. Scalar invariance model 1138.03, ns 331 49.799* (1–4) 40.017* (2–4) 20.663* (3–4) 0.074 (90% CI: 0.069–0.079) 0.896 0.899 1312.03
5. Structural weights invariance model 1146.22, ns 337 8.39* (4–5) 0.073 (90% CI: 0.069–0.078) 0.897 0.899 1308.42

* p > 0.1.
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terms were associated with items PU1 and PEoU1. Thus, partial
measurement error invariance was demonstrated.

Model 4 (scalar invariance model) also displayed an adequate fit
to the data (Table 6). The chi-square test revealed the tenability of
all of the item intercept constraints imposed on the model, except
for the constraints associated with items PEoU1 PEoU2 and PEoU3.
Hence, partial scalar invariance was supported.

With respect to model differences, the chi-square difference
tests showed that Model 2 was significantly better than Model 1
and that Models 3 and 4 were significantly better than Model 2.
Furthermore, Model 4 was significantly better than Model 3 (Table
6). Since Model 4 (the scalar invariance model) had the best fit, it
was used for testing the structural weights.

Model 5 (the structural weights invariance model) also dis-
played an adequate fit to the data (Table 6). Examination of the
probability level associated with the chi-square test for each struc-
tural weight among the latent variables constraint separately,
showed that the structural weight between PEoU and PU was not
invariant across surgeons and pathologists, indicating the condi-
tion of partial structural invariance. In Table 7 we present the stan-
dardized structural weight for both groups.

For surgeons, the proportion of variance (squared multiple cor-
relations) in PU, ATT and BI that was explained by the collective set
of predictors was 51% (95% CI: 0.34–0.66), 71% (95% CI: 0.52–0.86),
and 93% (95% CI: 0.82–0.98), respectively. For pathologists, the
proportion of variance in PU, ATT and BI that was explained by
the collective set of predictors was 21% (95% CI: 0.10–0.37), 72%
(95% CI: 0.61–0.81), and 81% (95% CI: 0.68–0.94), respectively.

Including the ICT feature demands variable to Model 5 (the
structural weights invariance model) explained an additional 11%
and 29% of the variance in PU for surgeons and pathologists respec-
tively. The percentage of variance explained for PEoU when ICT
knowledge was included in Model 5, was 21% and 19% for surgeons
and pathologists respectively. While the regression weight from ICT
knowledge to PEoU was invariant across specialties, the regression
weight from ICT feature demands to PU was not invariant (Table 7).

6. Discussion

In the present study the largest sample size ever tested was
used in order to explore empirically the application of the TAM
in the health sector. Structural equation modeling (SEM) and
Table 7
Structural paths for physician specialty (standardized estimates). The upper and lower bou
from a bootstrapping analysis using the percentile method.

Structural path Specialty

Surgeons (n = 215)

PEoU ? PU 0.72* (0.59–0.81)
PEoU ? ATT 0.28* (0.15–0.41)
PEoU ? BI 0.33* (0.21–0.47)
PU ? ATT 0.62* (0.45–0.78)
PU ? BI 0.23* (0.10–0.43)
ATT ? BI 0.48* (0.26–0.69)
ICT feature demands ? PU �0.45* [(�0.56)–(�0.33)]
ICT knowledge ? PU 0.46* (0.36–0.56)

* p < 0.001.
multi-group analysis of structural invariance (MASI) analyses were
conducted with a sample of 604 clinicians, including 534 physi-
cians from 13 main state hospitals and one private hospital in
Greece. Both SEM and MASI were used in parallel for the first time
in order to test TAM in the health sector. Measurement error is
minimized in these methods, through the use of multiple indica-
tors of latent variables prior to testing model fit. Furthermore,
the use of SEM in this study allowed both the direct and indirect
effects to be analyzed, hence allowing the possibility of achieving
a more accurate model.

In our analyses we initially tested the standard TAM, in order to
facilitate the comparison for future studies and then we tested an
extended TAM model. We need to stress however, that we assessed
attitudes and beliefs regarding the use of clinical information sys-
tems (CIS) rather than attitudes and beliefs directed towards CIS it-
self, since clinicians might hold a positive view about CIS, without
being favorably disposed towards its use. Our results support pre-
vious studies in TAM, which suggest that clinicians’ attitudes to-
wards the use of CIS are related to their intention to use such
systems. In addition, attitudes towards CIS are influenced by: (a)
clinicians’ belief that using CIS will increase their job performance
(perceived usefulness-PU) and (b) clinicians’ belief that a CIS is free
of effort (Perceived Ease of Use-PEoU). Furthermore, PU of CIS is
influenced by PEoU (see Fig. 2).

We successfully extended the TAM (in terms of model fit)
by including two external factors relevant to clinicians, namely
self-reported information and communication technology (ICT)
knowledge and self-reported ICT feature demands as antecedents
of PEoU and PU respectively. Finally, we found evidence for the
moderating effect of physicians’ specialty.

Although recent empirical research suggests that TAM is a good
predictor of clinician behavioral intent to accept technology
[6,12,20], more research is needed to establish confidence in the
relationships among TAM variables, when the theory is imple-
mented in the health care. For example, Holden and Karsh [6], in
their recent meta-analytic review concerning the application of
TAM in health care, found that in studies with physician samples
the PEoU-BI relationship was non-significant. However, the major-
ity of these studies had sample sizes less than 90 individuals rais-
ing concerns about the statistical power of the model’s parameter
estimates. Our results clearly point to a direct effect of PEoU on BI.
The standardized direct effect of PEoU on BI was b = 0.37.
nds of the 95% confidence interval (shown in parentheses) were based on the findings

Pathologists (n = 233) Dv2

0.46* (0.28–0.61) 4.10, (p = 0.03)
0.27* (0.16–0.40) 4.098, (p = 0.535)
0.32* (0.19–0.43) 3.091, (p = 0.543)
0.69* (0.57–0.79) 0.153, (p = 0.696)
0.25* (0.08–0.45) 7.975, (p = 0.241)
0.46* (0.27–0.64) 3.046, (p = 0.385)
�0.49* [(�0.62)–(�0.34)] 13.17, (p = 0.04)
0.44* (0.35–0.52) 8.86, (p = 0.354)
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We found that the standardized total effect (direct and indirect)
of PEoU on BI was b = 0.76, which is higher than the standardized
total effect of PU on BI (b = 0.49). Clearly, clinicians place more
importance to the intrinsic aspects of CIS (captured by PEoU) com-
pared to its extrinsic aspects (captured by PU). In other words, PEoU
will affect the use of CIS when the intrinsic character of the technol-
ogy contributes to the actual outcome of its application. This is in
line with studies proposing that the effect of PEoU on intentions
is stronger in the early stages of learning and behavior [1]. ‘‘Easy
to use’’ attributes of a clinical information system are developed
by IT technicians and among other attributes are related to inter-
face characteristics such as user friendliness, operational simplicity,
effective data retrieval, manipulation and presentation etc. as well
as operational characteristics such as data organization and shar-
ing, fast access, data combination and querying etc. An ‘‘easy to
use’’ system is considered to be less time-consuming and this is
one of the factors influencing clinician’s intention to use ICT [4].
On the other hand attributes related to the ‘‘usefulness’’ are worked
on mostly by clinicians and refer to the medical knowledge which is
embedded in the system and being continuously updated. Hence
‘‘usefulness’’ is related to data sufficiency and availability in terms
of quantity and quality, clarity, accuracy etc. Clinical data may be
supplied in the system by clinicians for global use.

Hospital and IT managers could turn this into advantage, in or-
der to encourage the frequent use of a new ICT system. Not only
during the first stages of systems installation and implementation
but also during training, emphasizing tactfully more in the systems
‘‘easy of use’’ rather than its ‘‘usefulness’’ could be the key, in order
to achieve better personnel involvement. In addition, an ‘‘easy to
use’’ system is considered as less time-consuming and this is one
of the factors influencing clinician’s intention to use ICT [4].

Furthermore, our research was conducted in settings where CIS
are not individually financed by clinicians. This finding implies that
although PU is an important determinant of the acceptance of a
CIS, when clinicians are not paying for the cost of the technology,
or if the decision to pay for the technology has already been made,
PEoU may be a strong catalyst fostering the acceptance of CIS.

Results showed that extending the TAM by including medical
professionals’ perceived ICT knowledge and perceived ICT feature
demands as antecedents of PEoU and PU respectively, revealed a
good fit to the data. Both factors are relevant to clinicians and per-
tain to user personal characteristics. We found that medical profes-
sionals’ ICT knowledge, that is, how much knowledge clinicians
perceive to have about ICT, had a direct positive effect on PEoU
(b = 0.49). Medical professionals’ ICT feature demands that is,
how sophisticated ICT must be before clinicians would be willing
to use them, had a direct negative effect on PU (b = �0.43).

We found no significant direct effects of the two external factors
on BI; stated differently, the TAM constructs fully mediate the ef-
fects of the external factors on BI. The implication of these findings
is that our research contributes to a better understanding of the
antecedents of PU and PEoU in health care contexts, thus providing
useful information to practitioners in terms of which levers to pull
in order to affect these beliefs and through them the use of CIS.

Although the current generation of trainees and young clini-
cians has never lived in a world without pervasive technology,
ICT knowledge is different from simply using ICT. For example in
our sample clinicians have on average a rather general apprecia-
tion of the distinction between pairs of ICT concepts (mean of
ICT knowledge = 2.26) but could not define it. This implies a low
confidence in understanding basic ICT concepts, which in turn re-
flects insufficient training. Our results suggest that enchasing clini-
cians’ confidence on ICT knowledge through appropriate training,
will result in higher beliefs that using CIS will be rather free of
additional efforts. Stated differently, general ICT knowledge may
help clinicians’ transition into using more sophisticated CIS by
improving their ease of use or comfort with learning and using
CIS systems.

In the same vein, our results suggest that clinicians’ beliefs that
using CIS will increase their job performance (i.e. PU) are nega-
tively related to clinicians’ ICT features demand. This finding
confirms previous studies suggesting that medical health profes-
sionals are more likely to adopt CIS that are perceived as compat-
ible with clinicians’ current work processes [5,39]. What is more,
this finding is in line with growing interest in the ‘‘Fit between
Individuals, Task and Technology’’ (FITT) framework, as a critical
need for successful CIS design [6]. Under the FITT framework, IT
adoption in a clinical environment depends on the fit between
the attributes of the individual users, attributes of the technology,
and attributes of the clinical tasks and processes.

In addition, the FITT framework clearly implies potential differ-
ences in the strength of the relationships between criterion and pre-
dictor variables in the TAM model, when different medical
specialties are considered. Medical diagnosis and treatment is a
complex work process and existing evidence point to physicians’
specialty differences in the implementation of medical practice. In
the present research, we tested for differences between surgeons
(n = 215) and pathologists (n = 233) using MASI analysis. Our results
provide initial evidence for the moderating effect of physician’s spe-
cialty in PEoU–PU and ICT feature demands-PU relationships. Spe-
cifically, we have found that for surgeons it is more important the
CIS to be easy to use in order to be considered as useful compared
to pathologists (see Table 7, the PEoU ? PU path).

Furthermore, surgeons seem to be less demanding in ICT fea-
tures in order to perceive CIS as useful compared to pathologists
(see Table 7, the ICT feature demands ? PU path). These findings
indicate that design and training sessions should explicitly consider
medical specialty as an important factor in the adoption of CIS.

This study raises implications for the hospital administrators.
The predictive power of attitude towards usage indicates the need
to develop positive attitudes among health care professionals, to
ensure professionals’ acceptance and continued use of CIS applica-
tions. Finally, although PU and PEoU have been found to predict
behavioral intent, they do not remain static. Healthcare profession-
als who perceive CIS to be useful and easy to use may soon expe-
rience limitations if they do not participate in continuous
professional development to keep abreast with more advanced
skills and knowledge on the use of CIS. For example, in our study
we have found that older clinicians have lower levels of perceived
ICT knowledge (r = �0.14, see Table 2), and that the longer the ten-
ure of clinicians the lower the levels of perceived ICT knowledge
(r = �0.24, see Table 2). This suggests the importance of clinician’s
professional development towards increasing the perceived ICT
knowledge; ICT knowledge has an indirect effect on behavioral
intention to use CIS. In addition, it is plausible that the scheduled
rotation of clinicians among different hospitals could develop fur-
ther clinicians’ perceived ICT knowledge.

6.1. Study limitations

Although care has been taken to ensure that the methodology in
this study is sound, there are several limitations that warrant fur-
ther research. First, this is a survey, not an audit of actual practice,
and thus data are self-reported. Furthermore, our cross-sectional
design prevents us from studying causal relationships among our
variables. Future studies should use longitudinal data to rigorously
assess the stability of the identified relationships over time.

Second, our study concentrated on Greek hospitals, where the
decision to pay for the technology has already been made. Caution
should therefore be exercised in generalizing these findings to non-
comparable populations. Consequently, future studies might want
to consider the implications of our work for different populations.
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A third limitation arises from the analysis of healthcare profes-
sional’s technology acceptance decisions, regarding clinical infor-
mation systems in general, and not a specific health information
system. Thus, our readers should be cautious in extrapolating the
results to other groups of health information systems.

A forth limitation is the fact that the proportion of variance
(squared multiple correlations) in PU, ATT and BI that was explained
in this study by the collective set of predictors was 29%, 70% and 83%
respectively, leaving room for further improvement, especially for
the PU construct. In the pursuit of parsimony, it is possible that this
study has excluded other variables that may impact significantly on
technology acceptance in health care. Furthermore, the measure-
ment of the external variables (ICT knowledge and feature de-
mands) were based on Cork’s instrument [9], developed in 1998.
Considering the all the changes in IT over the past 12 years, future
research should consider using more up-dated scales.

A final limitation concerns the use of behavioral intention as a
measure for actual use, as this may have weakened and contrib-
uted to the loss of explanatory power of the model in this study.
Although intention to use technology as a construct has been re-
ported to be a suitable proxy for actual technology, still there is a
question as to whether the TAM can act as an accurate predictor
of actual usage rather than behavioral intention to use.

These limitations represent, in any case, opportunities to advance
in our efforts to better understand CIS adoption in the health care.

7. Conclusions

TAM is a well known theory of technology acceptance and exist-
ing evidence suggests that the theory generally holds in clinical
contexts. However, opportunities still exist for researchers to en-
hance TAM capabilities as a useful theoretical tool in the health
care. In this article TAM was replicated. The largest sample size
ever tested with TAM in the health sector (604 clinicians) was
used, including 534 physicians from 13 main state hospitals and
one private hospital in Greece. Results of structural equation mod-
eling analysis, confirm the predictive power of TAM, providing sup-
port for the positive relationships found in previous research
projects in health care. Specifically, in the present study, positive
relationships were found between ATT and BI and between PEoU
and PU. Both PEoU and PU were positively related to ATT. Further-
more, PU was positively related to BI. Finally, our results point to a
positive relationship between PEoU and BI, a relationship that has
been found to be inconsistent in some of the previous TAM studies
conducted in the health care [6]. Overall, the percentage of vari-
ance explained in BI accounted for by the predictors in the model
was 83% and it is among the largest ever found in health care [6].

In addition, medical staffs’ ICT knowledge and ICT feature de-
mands were tested as external variables and physicians’ specialty
specific differences in TAM were introduced (i.e. pathologists and
surgeons). We have found that both ICT knowledge and ICT feature
demands explain an additional variance in PEoU and PU respec-
tively. However, their effects on BI are fully mediated by the TAM
variables. Finally, we have found that physicians’ specialty moder-
ates the PEoU–PU and ICT feature demands-PU relationships.

In conclusion, our findings make a contribution to the literature
by replicating, explaining and advancing the TAM, whereas theory
is benefited by the addition of external variables.
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Appendix A

ICT knowledge: items and results of factor analysis with geomin
rotation (N = 604).
1

CW 1 – Client–server
 0.795

CW 2 – Field–record
 0.758

CW 3 – Electronic mail–electronic bulletin board
 0.750

CW 4 – Free text–coded data
 0.804

CW 5 – Database–knowledge base
 0.809

CW 6 – Data in memory – data on disk
 0.873

CW7 – Digital–analog
 0.845

CW8 – Relational database–flat-file database
 0.729

CW9 – Full-text database–bibliographic database
 0.841

CW10 – Mainframe computer–Personal computer
 0.810

CW11 – Images–graphics
 0.893

CW12 – CD-ROM – floppy disk–hard disk
 0.950

CW13 – Hardware–software
 0.959

CW14 – Forward chaining–backward chaining
 0.682

CW15 – Sensitivity–positive predictive value
 0.762
Note: 1–3 scale: 1 = I do not understand the distinction at all, 2 = I have a general
appreciation of the distinction but could not define it, 3 = I can define the distinction
precisely). The WLSMV estimator in Mplus v.5.21 was used to estimate factor
loadings.
Appendix B

ICT feature demand: results of factor analysis with geomin rota-
tion (N = 604).
1
 2
SCF1 – Explain rationale for patient care advice
 0.744
 –

SCF2 – Provide accurate treatment

recommendations

0.799
 –
SCF3 – Make accurate diagnoses
 0.413
 –

SCF4 – Quantify the uncertainty of

recommendations

0.456
 –
SCF5 – Provide multiple alternative patient
care recommendations
0.375
 0.329
SCF6 – Allow browsing of information as well
as providing specific advice
0.580
 0.386
DCU1 – Take patient preferences into account
when giving advice
–
 0.436
DCU2 – Display images in less than 30 s
 –
 0.765

DCU3 – Respond to queries in less than 5 s
 –
 0.822

DCU4 – Allow access at any place in clinical

setting

0.381
 0.544
DCU5 – Allow implementation without any
change in existing clinical routines
0.327
 0.606
DCU6 – Function without any down-time
 0.354
 0.593

DCU7 – Allow interaction without use of

keyboard

–
 0.617
DCU8 – Be learnable in less than 2 h
 –
 0.671

DCU9 – Allow data entry in user’s own words

without requiring special codes

–
 0.596
Note: 1–4 scale: 1-‘‘Vitally necessary’’ to 4-‘‘not necessary’’. Loadings below 0.30 are
not shown. The WLSMV estimator in Mplus v.5.2 was used to estimate factor
loadings. SCF = sophisticated computer features; DCU = demand for computer
usability.



564 C.D. Melas et al. / Journal of Biomedical Informatics 44 (2011) 553–564
References
[1] Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Q 1989;3(3):319–40.

[2] Schepers J, Wetzels M. A meta-analysis of the technology acceptance model:
investigating subjective norm and moderation effects. Info Manage
2007;44:90–103.

[3] Yousafzai SY, Foxall GR, Pallister JG. Technology acceptance: a meta-analysis of
the TAM: part 1. J Model Manage 2007;2(3):251–80.

[4] Yarbrough AK, Smith TB. Technology acceptance among physicians: a new take
on TAM. Med Care Res Rev 2007;64(6):650–72.

[5] Bhattacherjee A, Hikmet N. Physicians’ resistance toward health care
information technology: a theoretical model and empirical test. Eur J Info
Syst 2007;16:725–37.

[6] Holden RJ, Karsh BT. The technology acceptance model: its past and its future
in health care. J Biomed Inform 2010;43(1):159–72.

[7] Davis FD, Bagozzi RP, Warshaw PR. Extrinsic and intrinsic motivation to use
computers in the workplace. J Appl Soc Psychol 1992;22(1):1111–32.

[8] Paré G, Sicotte C, Jacques H. The effects of creating psychological ownership on
physicians’ acceptance of clinical information systems. J Am Med Inform Assoc
2006;13:197–205.

[9] Cork RD, Detmer WM, Friedman CP. Development and initial validation of an
instrument to measure physicians’ use of, knowledge about, and attitudes
toward computers. J Am Med Inform Assoc 1998;5(2):164–76.

[10] Venkatesh V, Davis FD. A theoretical extension of the technology acceptance
model: four longitudinal field studies. Manage Sci 2000;46:186–204.

[11] Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information
technology: toward a unified view. MIS Q 2003;27:425–78.

[12] Hu P, Chau P, Sheng O, Tam K. Examining the technology acceptance model
using physician acceptance of telemedicine technology. J Manage Info Syst
1999;16(2):91–113.

[13] Barker DJ, van Schaik P, Simpson DS, Corbett WA. Evaluating a spoken dialogue
system for recording clinical observations during an endoscopic examination.
Med Inform Internet Med 2003;28:85–97.

[14] Liu L, Ma Q. Perceived system performance: a test of an extended technology
acceptance model. Database Adv Inform Syst 2006;37:51–9.

[15] Liang H, Xue Y, Byrd TA. PDA usage in health care professionals:
testing an extended technology acceptance model. Int J Mobile Commun
2003;1:372–89.

[16] Horan TA, Tulu B, Hilton B, Burton J. Use of online systems in clinical medical
assessments: an analysis of physician acceptance of online disability
evaluation systems. Paper presented at the Proceedings of the 37th Hawaii
international conference on system sciences; 2004.

[17] Tung FC, Chang SC, Chou CM. An extension of trust and TAM model with IDT in
the adoption of the electronic logistics information system in HIS in the
medical industry. Int J Med Inform 2008;77:324–35.

[18] Wu JH, Wang SC, Lin LM. Mobile computing acceptance factors in the health
care industry: a structural equation model. Int J Med Inform 2007;76:66–77.

[19] Deng X, Doll WJ, Hendrickson A, Scazzero JA. A multi-group analysis of
structural invariance: an illustration using the technology acceptance model.
Info Manage 2005;42:745–59.
[20] Doll WJ, Hendrickson A, Deng X. Using Davis’s perceived usefulness and ease-
of-use instruments for decision making: a confirmatory and multigroup
invariance analysis. Decis Sci 1998;29(4):839–69.

[21] Frazier PA, Tix AP, Barron KE. Testing moderator and mediator effects in
counselling psychology research. J Couns Psychol 2004;51(1):115–34.

[22] Byrne BM. Testing for multigroup invariance using AMOS graphics: a road less
traveled. Struct Equation Model: A Multidiscip J 2004;11(2):272–300.

[23] Little TD. Mean and covariance structures (MACS) analyses of cross-cultural
data: practical and theoretical issues. Multivar Behav Res 1997;32:53–76.

[24] Brislin RW. Translation and content analysis of oral and written material. In:
Triandis HC, Berry JW, editors. Handbook of cross cultural psycho-
logy. Boston: Allyn & Bacon; 1981. p. 398–444.

[25] Muthén LK, Muthén BO. Mplus user’s guide. 4th ed. Los Angeles (CA): Muthén
& Muthén; 2007.

[26] Flora DB, Curran PJ. An empirical evaluation of alternative methods of
estimation for confirmatory factor analysis with ordinal data. Psychol
Methods 2004;9(4):466–91.

[27] West SG, Finch JF, Curran PJ. Structural equation models with non normal data
variables: problems and remedies. In: Hoyle RH, editor. Structural equation
modeling: concepts, issues, and applications. London: Sage; 1995. p. 56–75.

[28] Arbuckle JL. AMOS 7.0. User guide. Chicago: SmallWaters Corporation; 2006.
[29] Anderson JC, Gerbing DW. Structural equation modeling in practice: a review

and recommended two-step approach. Psychol Bull 1988;103:411–23.
[30] Fornell C, Larcker DF. Evaluating structural equation models with

unobservable variables and measurement error. J Mark Res 1981;18(2):39–50.
[31] Shook CL, Ketchen DJ, Hult GTM, Kacmar KM. An assessment of the use of

structural equation models in strategic management research. Strateg Manage
J 2004;25:397–404.

[32] Raftery AE. Bayesian model selection in structural equation models. In: Bollen
KA, Long JS, editors. Testing structural equation models. Newbury Park
(CA): Sage Publications; 1993. p. 163–80.

[33] Zampetakis LA, Moustakis V. Quantifying uncertainty in ranking problems
with composite indicators: a Bayesian approach. J Model Manage 2010;5(1):
63–80.

[34] Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC
in model selection. Sociol Methods Res 2004;33(2):261–304.

[35] Shrout PE, Bolger N. Mediation in experimental and non-experimental studies:
new procedures and recommendations. Psychol Methods 2002;4:422–45.

[36] Podsakoff PM, MacKenzie SB, Lee JY, Podsakoff NP. Common method biases in
behavioral research: a critical review of the literature and recommended
remedies. J Appl Psychol 2003;88(5):879–903.

[37] Cheung GW, Rensvold RB. Evaluating goodness-of-fit indices for testing
measurement invariance. Struct Equation Model: A Multidiscip J 2002;9:
233–255.

[38] Grewal R, Cote JA, Baumgartner H. Multicollinearity and measurement error in
structural equation models: implications for theory testing. Mark Sci
2004;23(4):519–29.

[39] Chau PK, Hu PJ. Examining a model of information technology acceptance by
individual professionals: and exploratory study. J Manage Info Syst 2002;
18(4):191–229.


	Modeling the acceptance of clinical information systems among hospital  medical staff: An extended TAM model
	Introduction
	Literature review: TAM in clinical context
	Overview of research aims and hypotheses
	Research method
	Sampling method and participants
	Measurement of constructs
	TAM variables
	Perceived usefulness of clinical information systems (PU)
	Perceived ease of use of clinical information systems (PEoU)
	Attitudes towards use (ATT)
	Behavioral intention (BI)
	ICT knowledge
	ICT feature demands
	Statistical method considerations-analytical strategy
	Invariance analysis method

	Results
	Data screening and descriptive summary for the total sample
	Confirmatory factor analysis for the whole sample
	Assessment of common method bias
	Assessment of the structural model for the whole sample
	Inclusion of external variables in the model
	Multi-group analysis of structural invariance (MASI)

	Discussion
	Study limitations

	Conclusions
	Acknowledgments
	Appendix A
	Appendix B
	References


