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Abstract Polymeric Schiff base containing aniline, formaldehyde and piperazine (AFPP) was syn-

thesized and investigated as corrosion inhibitor for mild steel in 1 M HCl by weight loss measure-

ments, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization

techniques. Experimental results showed that AFPP is an effective inhibitor for mild steel in 1 M

HCl and exhibited 98% inhibition efficiency. Potentiodynamic polarization studies showed that

AFPP is a mixed-type inhibitor predominantly cathodic type. The adsorption of inhibitor on the

mild steel surface followed Langmuir adsorption isotherm. Activation energy (Ea), standard energy

of adsorption (DG�ads), enthalpy of activation (DH*), and entropy of activation (DS*) of corrosion

process were calculated and discussed.
ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
1. Introduction

The corrosion inhibition of mild steel has tremendous techno-
logical importance due to its increased industrial applications

(Ali et al., 2003). Corrosion is the serious problem that man-
kind is facing (Ahmad and MacDiarmd, 1996).

Acid has wide applications in industry such as in pickling,

cleaning, decaling etc. To prevent the corrosion of the metal,
inhibitors are extensively used. The selection of an inhibitor
mainly depends upon its efficiency, economic feasibility and

side effects on the environment.
The use of polymers as corrosion inhibitors has drawn con-
siderable attention due to their inherent stability, cost effective-
ness and better inhibition efficiency at a very low concentration

(Umoren et al., 2008). Both natural and synthetic polymers
have been used as corrosion inhibitors (Shukla and Quraishi,
2012). These polymers have high molecular weight and bulky

structure due to this they can cover more area on the metal sur-
face, which leads to high inhibition efficiency.

In continuation of our work on corrosion inhibition by
polymers (El-Etre, 1998; Shukla et al., 2008; Quraishi and

Shukla, 2009), we have reported the corrosion inhibition effect
of polymer derived from aniline, formaldehyde and piperazine
(AFPP) (Parveen et al., 2008) which increases the corrosion

inhibition property at low concentration (100 mg L�1) with
inhibition efficiency of 98%.

In the present work we have studied the inhibitive effect of

polymer derived from aniline, formaldehyde and piperazine
(AFPP) on mild steel in 1 M hydrochloric acid (HCl) by using
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weight loss, electrochemical impedance spectroscopy (EIS),
and potentiodynamic polarization techniques. According to
literature survey, no work has been done on this compound

as corrosion inhibitor.

2. Experimental

2.1. Materials and chemicals

The inhibitor under investigation has been synthesized else-

where (Parveen et al., 2008). Its scheme of synthesis is shown

in Fig. 1.
The corrosion test was performed on the mild steel strips

containing (in wt.%) C: 0.076, P: 0.012, Si: 0.026, Mn: 0.192,
Cr: 0.050, Cu: 0.135, Al: 0.023, Ni: 0.050 and remaining Fe.

Mild steel strips used for weight loss measurement have dimen-
sion 2.5 cm · 2.0 cm · 0.025 cm. For electrochemical measure-
ments, 7.5 cm long stem of mild steel strips with exposed

surface area of 1.0 cm2 (rest being coated with commercially
available lacquer) was used. The test solution, 1 M HCl was
prepared by dilution of analytical grade HCl with double dis-

tilled water. The inhibitor concentration ranges from 25 to
100 mg L�1.
2.2. Methods

2.2.1. Weight loss measurements

The weight loss measurements of mild steel strips of size

2.5 cm · 2.0 cm · 0.025 cm were used in 1 M HCl without

and with addition of different concentrations of inhibitor for
3 h at 308 K temperature without stirring. Following equa-
tions were used for the determination of inhibition efficiency

g% and surface coverage (h):

g% ¼ CR � CRðiÞ

CR

� 100 ð1Þ
h ¼ CR � CRðiÞ

CR

ð2Þ

where CR and CR(i) are the values of the corrosion rates
(mg cm�2 h�1) of mild steel in the absence and presence of
inhibitor, respectively.
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H H
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Figure 1 Scheme of ligand (AFPP) synthesis.
2.2.2. Electrochemical measurements

All electrochemical experiments were performed in Gamry

electrochemical cell with three electrode cell, consisting of a
mild steel rod of 1 cm2 as working electrode, a platinum foil
as counter electrode and standard calomel electrode (SCE) as

a reference electrode, connected to Gamry Instrument Poten-
tiostat/Galvanostat with a Gamry framework system based
on ESA 400. Gamry applications include EIS 300 for EIS mea-

surements, DC 105 software for corrosion and Echem Analyst
(version 5.50) software package for data fitting. All potentials
were measured versus SCE. The electrolyte used was 1 M HCl
maintained at 308 K.

2.2.2.1. Electrochemical impedance spectroscopy (EIS). EIS
measurements were carried out with Gamry Instrument Poten-

tiostat/Galvanostat, which consists of a unit with a potentio-
stat and an acquisition system. The principle of this
analytical technique consists of superposing a slight sinusoidal

voltage DE sin xt (10 mV peak to peak) from high to low fre-
quency (105–10�2Hz) to the potential applied to the sample.

2.2.2.2. Potentiodynamic polarization. Potentiodynamic polari-
zation curves were obtained by changing the electrode potential
automatically from�250 to+250 mV versus EOC at a scan rate
of 1 mV s�1. All experiments weremeasured after immersion for

30 min in 1 M HCl in the absence and presence of inhibitor.

3. Experimental results and discussion

3.1. Weight loss measurements

3.1.1. Effect of inhibitor concentration

Effect of inhibitor (AFPP) concentration on the corrosion of

mild steel in 1 M HCl was studied by weight loss measurement
at 308 K and the results are given in Table 1.

The data in Table 1 reveal that as the concentration of AFPP

increases inhibition efficiency increases (Karthikaiselvi and
Subhashini, 2014) and corrosion rate decreases. This behavior
can be attributed to the increase in surface area covered by
the adsorbed molecules on the mild steel surface with an

increase in the concentration of AFPP. Themaximum efficiency
of 98% was achieved at the concentration of 100 mg L�1.

3.1.2. Effect of temperature

The inhibition efficiency in 1 M HCl at optimum concentra-
tion (100 mg L�1) of AFPP at temperature ranging from 308
to 338 K was done and result obtained is given in Table 2.
Table 1 Parameters obtained from weight loss measurement

for mild steel in 1 M HCl containing different concentrations of

AFPP at 308 K.

Inhibitor Concentration

(mg L�1)

Corrosion

rate

(mg cm�2 h�1)

Surface

coverage (h)
g (%)

Blank 0.0 7.00 – –

AFPP 25 1.60 0.771 77.1

50 0.66 0.904 90.4

75 0.30 0.957 95.7

100 0.13 0.980 98.0



Table 2 Parameters obtained from weight loss measurement

of mild steel in 1 M HCl containing optimum concentration of

AFPP at different temperatures.

Inhibitor Temperature

(K)

Corrosion

rate (mg cm�2 h�1)

g (%)

Blank 308 7.00 –

318 9.66 –

328 14.6 –

338 18.7 –

AFPP 308 0.13 98.0

318 0.43 95.5

328 1.20 91.7

338 3.06 83.62

Table 3 Activation parameter for mild steel in 1 M HCl in the

absence and presence of optimum concentration of AFPP.

Inhibitor Ea (kJ mol�1) DH* (kJ mol�1) DS* (J K�1 mol�1)

Blank 27.9 25.4 �147.4
AFPP 90.3 87.7 43.0
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From Table 2, it was found that the inhibition efficiencies
decrease and corrosion rate increases with increasing tempera-

ture. This phenomenon can be explained with the desorption
of adsorbed inhibitor molecules from the mild steel surface.
Due to this greater surface area of mild steel comes in contact

with corrosive environment which results in an increase in the
corrosion rate (Fouda and Ellithy, 2009). The activation
parameters were calculated by using Arrhenius equation

(Tao et al., 2009).

CR ¼ A exp
�Ea

RT

� �
ð3Þ

where Ea is the activation energy, R is the gas constant, A is the

pre-exponential factor.
Arrhenius plot for the corrosion rate of mild steel is given in

Fig. 2a. Linear regression between log (CR) and 1/T is used to

calculate the value of activation energy Ea) for mild steel in
1 M HCl in the absence and presence of inhibitor, results are
listed in Table 3.

From Table 3, it was found that the value of Ea is higher for
inhibited solution than that for uninhibited. This higher value
of Ea is obtained due to adsorbed inhibitor molecules which
create physical barrier for charge and mass transfer

(Martinez and Stern, 2002).
Enthalpy and entropy of activation can be calculated by

using Arrhenius equation (Tao et al., 2009):
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Figure 2a Arrhenius plot of mild steel in 1 M HCl in the absence

and presence of optimum concentration of AFPP.
CR ¼
RT

Nh
exp

DS�

R

� �
exp �DH�

RT

� �
ð4Þ

where h is Plank’s constant, N is Avogadro’s number, DS* is
the entropy of activation and DH*is the enthalpy of activation.

A plot of log CR/T against 1/T gives straight lines with

slope values of (DH*/2.303R)) and an intercept of [log (R/
Nh)) + (DS*/2.303R)] as in Fig. 2a, from which the values of
DH* and DS* were calculated and given in Table 3. The posi-

tive value of DH*gives an evidence of endothermic nature of
dissolution of mild steel, which suggests the slower dissolution
of mild steel in the presence of inhibitor (Tao et al., 2009). As

from Table 3, the sign of DS* is negative in blank and positive
in the presence of inhibitor. The adsorption of organic
inhibitor molecules on the mild steel surface can be regarded
as a quasi-substitution process between the organic compound

in the aqueous phase [Org(sol)] and water molecule on electrode
(mild steel) surface [H2O(ads)] (Sahin et al., 2002) (Fig. 2b).

OrgðsolÞ þ xH2OðadsÞ $ OrgðadsÞ þ xH2OðsolÞ

where x is the size ratio, that is, the number of water molecules
replaced by one organic inhibitor. In this situation, the adsorp-

tion of inhibitor is accompanied by desorption of water mole-
cules from the surface. Therefore, the gain in entropy is
attributed to the increase in solvent entropy and to more posi-
tive water desorption enthalpy (Branzoi et al., 2000; Ateya

et al., 1984). The positive value of DS* also means that disor-
dering increases on going from reactants to the metal/solution
interface (Banerjee and Malhotra, 1992), which is the driving

force for the adsorption of inhibitor onto the mild steel surface
(Li et al., 2008).

3.1.3. Adsorption considerations

In order to gain more information about the type of interac-
tion between the inhibitor molecules and the mild steel surface,
lo
g 

C
R

 /T
 (m

g 
cm

-2
 h-1

)

[(1/T). 103]K-1

Figure 2b Transition-state plot of mild steel in 1 M HCl in the

absence and presence of optimum concentration of AFPP.
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Figure 3a Nyquist plots for mild steel in 1 M HCl in the absence

and presence of different concentrations of AFPP at 308 K.

Figure 3b Equivalent circuit used to fit the EIS data.
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different adsorption isotherms were tested. The Langmuir iso-
therm, Eq. (5), was found to fit well with the experimental data
obtained from the investigated compound (Xometi et al.,

2008).

KadsCinh ¼
h

1� h
ð5Þ

where h is the surface coverage, Cinh is the inhibitor concentra-
tion (mg L�1), Kads is the equilibrium constant of adsorption

process. The plot of Cinh/h vs inhibitor concentration (Cinh)
was evaluated and given in Fig. 2c.

3.2. Electrochemical measurements

3.2.1. AC technique: Electrochemical impedance spectroscopy

Nyquist plots of the inhibitor in 1 M HCl solution in the
absence and presence of different concentrations of AFPP

are given in Fig. 3a. The impedance spectra show a single semi-
circle and the diameter of semicircle increases with increasing
inhibitor concentration. The impedance spectra consist of
one capacitive loop from high frequency to low frequency,

the high frequency capacitive loop was attributed to charge
transfer of the corrosion process (Paskossy, 1994). From the
figure it is noticed that the impedance spectra have a

‘‘depressed’’ semicircle at the center under the real axis, this
phenomenon often refers to the frequency dispersion of inter-
facial impedance which has been attributed to the roughness;

inhomogeneities of the solid surfaces and adsorption of inhib-
itor (Growcock and Jasinski, 1989; Bustamante et al., 2009).

The equivalent circuit model used to fit the experimental
results is shown in Fig. 3b.

It consists of solution resistance (Rs), charge transfer resis-
tance (Rct) and constant phase element (CPE). The admittance,
YCPE, and impedance, ZCPE, are expressed as (Khaled, 2010).

YCPE ¼ Y0ðjxÞn ð6Þ

ZCPE ¼
1

Y0

� �
½ðjxÞn��1 ð7Þ

where Y0 is the amplitude comparable to a capacitance, j is the
square root of �1, x is angular frequency (x = 2p fmax), n is
the phase shift, which can be used as a gauge of the heteroge-
neity or roughness of the mild steel surface. The CPE can be
C
in

h
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θ
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Figure 2c Langmuir’s isotherm for adsorption of AFPP on the

mild steel surface in 1 M HCl.
expressed by the values of n if resistance (n= 0, Y0 = R),
capacitance (n= 1, Y0 = C), inductance (n= �1, Y0 = L)

and Warburg impedance (n = 0.5, Y0 = W) (Khaled and
Amin, 2009).

The double layer capacitance (Cdl) values can be calculated
from CPE parameter values Y and n using the following equa-

tion (Zhang et al., 2009).

Cdl ¼
Yxn�1

sinðnðp=2ÞÞ ð8Þ

The inhibition efficiency (g%) using Rct values was calculated

from the equation (Quraishi et al., 2012).

g% ¼ 1� Rct

RctðiÞ

� �
� 100 ð9Þ

where Rct(i) and Rct are the charge transfer resistance in the
presence and absence of optimum concentration of AFPP.

According to the expression of the double layer capacitance

presented in the Helmholtz model:

Cdl ¼
ee0
d
S ð10Þ

where e0 is the permittivity of free space (8.854 · 10�12 F m�1)
and e is the local dielectric constant of medium, S is the surface
area of the electrode. Eq. (10) suggests that Cdl is inversely pro-

portional to d.
It can be seen from Table 4 that the value of Rct increases as

the inhibitor concentration increases. The value of Rct ranges

from 59.7 to 618.5 X cm2 and Cdl from 29.4 to 15.3 lF cm�2.
The large Rct is associated with a slower corroding system,
due to a decrease in the active surface necessary for the corro-



Table 4 Electrochemical impedance parameters for mild steel in 1 M HCl solution in the absence and presence of different

concentrations of AFPP at 308 K.

Inhibitor (mg L�1) Rs (X) Rctn (X cm2) n Y0 (lF cm�2) Cdl (lF cm�2) h g (%)

Blank 1.02 7.44 0.798 481.2 137.9 – –

25 1.45 59.7 0.874 56.1 29.4 0.795 79.5

50 0.857 139.1 0.828 72.5 25.8 0.912 91.2

75 0.688 319.4 0.780 66.8 24.5 0.961 96.1

100 0.992 618.5 0.808 35.4 15.3 0.980 98.0

Table 5 The slopes of the Bode impedance magnitude plots at

intermediate frequencies (S) and the maximum phase angles (a)
for mild steel in 1 M HCl solution at different concentrations of

AFPP at 308 K.

Inhibitor (mg L�1) �S �a�

Blank 0.502 40.90

25 0.788 63.02

50 0.750 66.78

75 0.707 65.66

100 0.790 70.67
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sion reaction and the decrease in Cdl is due to the gradual
replacement of water molecules by the adsorption of the AFPP
at metal/solution interface, leading to the formation of protec-

tive film on the mild steel surface (Bentiss et al., 2000).
Fig. 3c shows the Bode impedance magnitude and the phase

angle plots recorded for the mild steel in the absence and pres-

ence of different concentrations of AFPP at its open circuit
potential in 1 M HCl. The impedance at high frequency limit
(f = 10 kHz) corresponds to the ohmic resistances of the cor-

rosion product film and the solution enclosed between the
working electrode and the reference electrode (Rs). This resis-
tive behavior is confirmed by 0� phase angle between current
band potential at high frequency. However, at the low fre-

quency limit the phase angle goes to negative value which cor-
responds to the inductive behavior (Hassan et al., 2007). This
inductive behavior may occur due to the relaxation process

obtained by adsorbed species like Cl�ads and H+
ads on the elec-

trode surface (Amin et al., 2007; Lenderrink et al., 1993;
Kedam et al., 1981; Veloz and González, 2002; Sherif and

Park, 2006). It may also occur due to the re-dissolution of
the passivated surface at low frequencies (Yadav et al.,
2012). As from Fig. 3c it is observed that at intermediate fre-

quencies, a linear relationship between log |Z| vs log f with a
slope near �1 and the phase angle approaching �80� can be
observed. This response is a characteristic of capacitive behav-
ior. An ideal capacitive behavior would result in a slope of �1
and a phase angle of �90� at intermediate frequencies (Hassan
et al., 2007). This accounts for the deviation from ideal capac-
itive behavior at intermediate frequencies (Macdonald et al.,

2005) and occurs due to the increase of the standard rate
constant of the barrier layer dissolution.
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Figure 3c Bode impendence plots for mild steel in 1 M HCl in

the absence and presence of different concentrations of AFPP at

308 K.
In the beginning of the immersion the gradual approach of
�S and �a� to the ideal capacitive values may be related to
slowing down the rate of dissolution with time. For the same

reason, in the presence of inhibitor (Table 5) there is the faster
attaining of steady state of �S and �a� and their higher values
correspond to the catalytic action of the inhibitor in the mild

steel dissolution process (Maranhao et al., 2006). The Bode
phase angle plots show single maximum (one time constant)
at intermediate frequencies, which is slightly broadened in

the presence of inhibitor which may be due to the formation
of a protective layer (Solmaz et al., 2008).

3.2.2. DC techniques: Tafel and linear polarizations

Polarization curves for mild steel/inhibitor interface in 1 M
HCl at 308 K in the absence and presence of different concen-
trations of AFPP are shown in Fig. 4.

The corrosion inhibition efficiency was calculated by using
the following equation (McCafferty and Hackerman, 1972):
E
 (V

 v
s. 

SC
E

)

log i (A/cm2)

Figure 4 Potentiodynamic polarization curves for mild steel in

1 M HCl in the absence and presence of different concentrations

of AFPP at 308 K.



Table 6 Electrochemical polarization parameters for mild steel in 1 M HCl solution in the absence and presence of different

concentrations of AFPP at 308 K.

Inhibitor (mg L�1) Icorr (lA cm�2) Ecorr (mV/SCE) ba (mV/dec) �bc (mV dec) h g (%)

Blank 892 �444 61.0 81.0 – –

25 301 �490 54.6 185.0 0.662 66.2

50 117 �498 57.8 151.0 0.868 86.8

75 92.3 �506 60.5 147.0 0.896 89.6

100 25.5 �505 69.1 138.2 0.971 97.1

Effect of three component polymer on mild steel corrosion 17
g% ¼ 1� IcorrðiÞ

Icorr

� �
� 100 ð11Þ

where Icorr and Icorr(i) are the uninhibited and inhibited corro-
sion current densities, respectively.

The complete electrochemical parameters Ecorr, Icorr, anodic
and cathodic Tafel slopes (ba, bc), inhibition efficiency were

calculated by polarization measurements and listed in Table 6.
The values of bc are more negative with respect to blank

and changed with increasing inhibitor concentration (Fig. 4

and Table 6), which indicates the influence of the inhibitor
on the kinetics of hydrogen evolution. If the deviation in Ecorr

is greater than 85 mV in inhibited system with respect to unin-

hibited, the inhibitor could be recognized as cathodic or anodic
type (Bammou et al., 2014) whereas if the deviation in Ecorr is
less than 85 mV, it could be recognized as mixed type of inhib-
itor. Since the deviation in Ecorr in our case is less than 85 mV,

the inhibitor is mixed type but predominantly cathodic.
(Xometi et al., 2008).

From Table 6 it is observed that the anodic Tafel slope

slightly changes upon addition of inhibitor which may have
occurred due to the chloride ions/or inhibitor molecules
adsorbed onto themild steel surface (Cao, 2004). Table 6 reveals

that the corrosion current (Icorr) decreases and g% increases
with the increase of inhibitor concentrations (Xometi et al.,
2008).

3.2.2.1. Explanation of inhibition. The nature of adsorption and
inhibition of a given inhibitor is a complex phenomenon and it
cannot be explained by a single adsorption mode as given in

Fig. 5. The adsorption and inhibition effect of inhibitor in
HCl solution can be explained as follows:
N

H

N

H3N

NH3
Fe +

+

HOH2

C
2

Fe +
+

Fe +
+

Cl-

Cl-

Cl-
Cl-

Cl-

Cl-

+

Chemisorption
Physisorption
Reterodonation

Figure 5 Mechanism of inhibition.
1. Inhibitor might be protonated in the acid solution as

follows:

AFPPþ xHþ $ ½AFPPHx�xþ

2. The protonated inhibitor may adsorb through electrostatic
interactions between the positively charged molecules and

the negatively charged metal surface, i.e. there may be a
synergism between Cl� and protonated inhibitor.

3. This physically adsorbed protonated inhibitor molecules
undergo competition with H+ ions for electrons on the

mild steel surface. Cationic form of inhibitor returns to
its neutral state after release of H2 gas and heteroatoms
with free lone pair electrons promote chemical adsorption.

4. Also the electron from d-orbital of Fe might be transferred
to vacant p* (antibonding) orbital of inhibitor molecules
(reterodonation) and which strengthen adsorption.

5. Protonated inhibitor molecules may combine with freshly
generated Fe2+ ions on the mild steel surface forming metal
inhibitor complexes which is as follows:

Fe! Fe2þ þ 2e�

AFPPþ Fe2þ ! ½AFPP� Fe�2þ

½AFPPx�xþ þ Fe2þ ! ½AFPPx � Fe�ð2þxÞþ

4. Conclusion

The studied inhibitor shows excellent inhibition properties for

corrosion of mild steel in 1 M HCl and its inhibition efficiency
increases with increasing the concentration. The results
obtained from weight loss measurements, polarization curves

and electrochemical impedance study (EIS) are in reasonable
agreement. The adsorption of the inhibitor obeys Langmuir
adsorption isotherm. The result of polarization measurement

demonstrated that the inhibitor under investigation is mixed-
type but predominantly cathodic. The positive sign of DH*

indicates that the adsorption process is endothermic.
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