
Article
The Histone Variant Macro
H2A1.2 Is Necessary for
the Activation of Muscle Enhancers and Recruitment
of the Transcription Factor Pbx1
Graphical Abstract
Highlights
d MacroH2A1.2 is enriched at prospective muscle-specific

enhancers

d Activation of muscle-specific enhancers requires

macroH2A1.2

d MacroH2A1.2 is required for the activation of the myogenic

regulatory network

d Recruitment of Pbx1 at muscle regulatory regions is

contingent on macroH2A1.2
Dell’Orso et al., 2016, Cell Reports 14, 1156–1168
February 9, 2016 ª2016 The Authors
http://dx.doi.org/10.1016/j.celrep.2015.12.103
Authors

Stefania Dell’Orso, A. Hongjun Wang,

Han-Yu Shih, ..., John J. O’Shea,

Vittorio Sartorelli, Hossein Zare

Correspondence
sartorev@mail.nih.gov

In Brief

Dell’Orso et al. report that the histone

variant macroH2A1.2 is required for

activation of muscle-gene expression

and cell differentiation. Genome-wide

analyses indicate that macroH2A1.2 is

enriched at prospective muscle-specific

enhancers where it is required for H3K27

acetylation and recruitment of the

transcription factor Pbx1.
Accession Numbers
GSE76010

mailto:sartorev@mail.nih.gov
http://dx.doi.org/10.1016/j.celrep.2015.12.103
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2015.12.103&domain=pdf


Cell Reports

Article
The Histone Variant MacroH2A1.2 Is Necessary
for the Activation of Muscle Enhancers
and Recruitment of the Transcription Factor Pbx1
Stefania Dell’Orso,1 A. Hongjun Wang,1 Han-Yu Shih,2 Kayoko Saso,1 Libera Berghella,3 Gustavo Gutierrez-Cruz,1

Andreas G. Ladurner,4 John J. O’Shea,2 Vittorio Sartorelli,1,* and Hossein Zare1
1Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH,

Bethesda, MD 20892, USA
2Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, NIAMS, NIH, Bethesda, MD 20892, USA
3Epigenetics and Regenerative Medicine, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
4Butenandt Institute, LMU Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University of Munich,

81377 Munich, Germany

*Correspondence: sartorev@mail.nih.gov
http://dx.doi.org/10.1016/j.celrep.2015.12.103

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
SUMMARY

Histone variants complement and integrate histone
post-translational modifications in regulating tran-
scription. The histone variant macroH2A1 (mH2A1)
is almost three times the size of its canonical H2A
counterpart, due to the presence of an �25 kDa
evolutionarily conserved non-histonemacro domain.
Strikingly, mH2A1 can mediate both gene repression
and activation. However, the molecular determinants
conferring these alternative functions remain elusive.
Here, we report that mH2A1.2 is required for the
activation of the myogenic gene regulatory network
and muscle cell differentiation. H3K27 acetylation
at prospective enhancers is exquisitely sensitive to
mH2A1.2, indicating a role of mH2A1.2 in imparting
enhancer activation. Both H3K27 acetylation and
recruitment of the transcription factor Pbx1 at pro-
spective enhancers are regulated bymH2A1.2. Over-
all, our findings indicate a role of mH2A1.2 in marking
regulatory regions for activation.
INTRODUCTION

Histone post-translational modifications shape the epigenome

and regulate transcription (Jenuwein and Allis, 2001; Kundaje

et al., 2015). The nucleosome incorporation of histone variants

provides an additional regulatory layer that influences the forma-

tion of chromatin states associated with either transcriptional

repression or activation (Jin and Felsenfeld, 2007; Jin et al.,

2009; Barski et al., 2007; Maze et al., 2014). Localized replace-

ment of canonical histones by histone variants modifies the

chromatin structure to attract or repel transcription factors,

chromatin writers, readers, and erasers (Skene and Henikoff,

2013). Among the different histone variants, the two isoforms

macroH2A1.1 and -1.2 are characterized by the presence of an
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evolutionarily conserved, �25-kDa carboxyl-terminal globular

region called the macro domain (Pehrson and Fried, 1992),

serving as surface for interaction with metabolites and histone

modifiers (Ladurner, 2003; Kustatscher et al., 2005; Chakravar-

thy et al., 2005; Gamble and Kraus, 2010; Hussey et al., 2014).

A role for mH2A1 in mediating gene repression was initially

suggested by observations linking it to female X chromosome

inactivation (Costanzi and Pehrson, 1998; Csankovszki et al.,

2001). More recently, mH2A1 has been shown to contrast re-

programmed pluripotency (Gaspar-Maia et al., 2013; Barrero

et al., 2013; Pasque et al., 2011), to repress expression of the

HoxA cluster (Buschbeck et al., 2009) and of the a-globin locus

in erythroleukemic cells (Ratnakumar et al., 2012), and to sup-

press melanoma progression through regulation of cyclin-

dependent protein kinase (CDK)8 (Kapoor et al., 2010). However,

there is evidence to suggest that mH2A1 has a multifaceted

function in controlling gene transcription (Gamble et al., 2010).

Reducing mH2A1 levels not only does not result in generalized

de-repression of mH2A1-bound genes but is, in fact, associated

with failure to activate up to 75% of its targets (Gamble et al.,

2010). Moreover, while inhibiting p300-dependent histone acet-

ylation in vitro (Doyen et al., 2006), mH2A1 has been recently re-

ported to cooperate with PARP-1 to regulate transcription by

promoting CBP (CREB-binding protein)-mediated acetylation

of histone H2B at lysines 12 and 120, with opposing effects on

transcription (Chen et al., 2014). These and other observations

(Creppe et al., 2012; Podrini et al., 2014) indicate that mH2A1

may exert a dual function in regulating gene expression.

Here,we report thatmH2A1.2 is involved in imparting enhancer

competency in skeletal muscle cells. In agreement with previous

findings, mH2A1.2 was localized to the H3K27me3 promoter

regions of repressed genes. However, mH2A1.2-occupied and

-repressed targets were not reactivated upon mH2A1.2 knock-

down. Instead, activation of muscle enhancers was dependent

on mH2A1.2, as its reduction brought about decreased H3K27

acetylation. Reducing mH2A1.2 impaired expression of the

master developmental regulator Myogenin, resulting in defec-

tive activation of the myogenic gene regulatory network and
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muscle cell differentiation. Notably, mH2A1.2 mediated chro-

matin engagement of Pbx1, a homeodomain transcription fac-

tor priming MyoD gene targets for activation (Berkes et al.,

2004; Maves et al., 2007). In aggregate, these findings assign a

role to mH2A1.2 in conferring enhancer marking and activation

via regulation of transcription factors’ recruitment and H3K27

acetylation.

RESULTS

Genome-wide Distribution of the Histone Variant
MacroH2A1.2 Reveals Preferential Association with
Regions of Active Transcription
To investigate the role of the histone variant mH2A1 in tran-

scriptional regulation of cell differentiation, we used the mouse

skeletal muscle C2C12 cell line, as a model system. C2C12 cells

recapitulate muscle differentiation in culture, as they can be kept

in an undifferentiated state as myoblasts (MBs) and induced to

differentiate to form multinucleated myotubes (MTs) (Yaffe and

Saxel, 1977). Both alternatively spliced mH2A1.1 and 1.2 iso-

forms (Rasmussen et al., 1999; Costanzi and Pehrson, 2001)

were expressed in C2C12 cells (Figure S1A). Since RNA

sequencing (RNA-seq) analysis indicated that the mH2A1.2 iso-

form was the most represented in MBs and expressed at levels

similar to those of mH2A1.1 in MTs (Figure S1B), we chose to

focus our study on the mH2A1.2 isoform. Analysis of chromatin

immunoprecipitation sequencing (ChIP-seq) data generated

from two experiments with two different mH2A1.2 antibodies

(see Experimental Procedures) identified �77,000 overlapping

enriched genomic regions in MBs and �36,600 in MTs, respec-

tively (Figures S1C and S1D; Table S1). Peak calling with either

the MACS2 (Feng et al., 2012) or the SICER (Zang et al., 2009)

algorithm identified largely overlapping mH2A1.2-enriched re-

gions (Figure S1E). Examples of mH2A1.2-occupied regions,

as called by the MACS2 algorithm, are illustrated in Figure S1F.

A global reduction of the mH2A1.2 signal was observed after

mH2A1.2 knockdown, indicating that the majority of peaks

correspond to the mH2A1.2 isoform (Figures S1G and S1H).

Genome-wide distribution of mH2A1.2 was similar in MBs and

MTs (Figure 1A). Genome-wide maps of mH2A1.2, intersected

with those of active and repressive epigenetic marks in MBs,

revealed that the majority of mH2A1.2 peaks was localized

at active regions (Figure 1B). Specifically, 32% of mH2A1.2

peaks occurred at H3K4me1+/H3K27ac+ regions (active en-

hancers), 21% occurred at H3K4me1+ regions, 19% overlapped

with H3K4me3+/H3K27ac+ (active promoters), and 25% of

mH2A1.2 peaks were located at regions not occupied by any

of the aforementioned epigenetic marks considered (mH2A1.2

only). In contrast, only 3% of mH2A1.2 peaks co-localized with

the repressivemark H3K27me3 (Figure 1B). Furthermore, among

mH2A1.2-bound promoters, only 8% were H3K27me3+, while

67% of these promoters were occupied by both H3K4me3 and

H3K27ac (Figure S2A). In MTs, the percentage of mH2A1.2+/

H3K27me3+ regions increased to 18% (Figure 1B), and a Gene

Ontology (GO) analysis of the newly acquired mH2A1.2+/

H3K27me3+ TSS (transcription start site) identified terms related

to, among others, ‘‘neuron differentiation,’’ ‘‘ pattern specifica-

tion process,’’ and ‘‘embryonic morphogenesis’’ (Table S1).
Cell R
Reduction of mH2A1.2 peaks at active enhancers (32% in MB

versus 7% in MT; Figure 1B) occurred at MT-specific enhancers

(i.e., enhancers active in MT; discussed later) (Figure S2B) and

coincided with increased mH2A1.2 occupancy at H3K4me1+

and otherwise non-epigenetically defined genomic regions

(64%; Figure 1B). mH2A1.2 occupancy was also reduced, but

more modestly, at constitutive enhancers (i.e., enhancers active

in both MB and MT; discussed later) in MTs (Figure S2C).

Examples of expressed genes occupied by mH2A1.2 are

shown in Figure 1C. Developmental regulators of other cell

lineages, such as Neurog2 andWnt1, which are transcriptionally

silent in C2C12 cells (Mousavi et al., 2012), are amongmH2A1.2-

bound genes with H3K27me3 (Figure 1D).

We assigned MB-mH2A1.2+ active enhancers or MB-

mH2A1.2+ regions acquiring either H3K4me1+ or H3K4me1+/

H3K27ac+ in MTs to genes by proximity (Whyte et al., 2013;

Mousavi et al., 2013) and queried gene expression changes

occurring during the transition from MB to MT. Enhancers

residing within 100 kb, 50 kb, or 20 kb from the closest promoter

were considered. While the number of enhancer-assigned genes

increased with increasing genomic intervals (Figure S2D), GO

analyses for 100-kb and 50-kb intervals captured essentially all

the terms returned by the analysis conducted for the 20-kb inter-

val, including ‘‘muscle cell differentiation’’ and ‘‘muscle and

muscle system process’’ (Figure S2E; Table S1). Therefore, for

further analysis, we considered a proximity measure of 20 kb

to assign genes to identified enhancers. Genomic regions that

became active enhancers in MT displayed a clear association

with upregulated genes (Figure 1E). Similarly, a smaller set

comprising genes assigned to mH2A1.2+ regions and occupied

by H3K4me1 and H3K27me3 marks in MBs was also enriched

for upregulated genes in MTs (Table S2). Overall, these results

indicate that mH2A1.2 preferentially occupies transcriptionally

active genomic regions in MB or regions programmed to be acti-

vated in MT.

MacroH2A1.2 Is Required for the Activation of the
Myogenic Gene Regulatory Network and Differentiation
of Skeletal Muscle Cells
We addressed the function of mH2A1.2 during muscle cell

differentiation by transfecting C2C12 cells with either control

or two different mH2A1.2 small interfering RNAs (siRNAs;

mH2A1.2 interference, mH2A1.2i) (Figure 2A; Figure S3A) and

inducing them to differentiate to form MTs. For further analysis,

we chose to use mH2A1.2i_2 siRNAs, as they were the most

effective (Figure S3A). mH2A1.2 siRNA specifically reduced

mH2A1.2 but not the closely related mH2A1.1 isoform (Fig-

ure S3B). MB growth was not affected by mH2A1.2i (Fig-

ure S3C). However, Myogenin, a myogenic transcription factor

required for muscle differentiation (Tapscott, 2005), was

reduced (Figures 2A–2C; Figures S3A and S3D), and formation

of muscle-specific myosin-heavy-chain (MHC)-positive, multi-

nucleated MTs was compromised by mH2A1.2i (Figure 2D).

The expression of the muscle-specific gene troponin T type 1

(Tnnt1) was also greatly reduced (Figure S3E). To complement

knockdown experiments, exogenous FLAG-tagged mH2A1.2

was expressed in C2C12 cells and found to increase Myogenin

expression (Figures 2E and 2F).
eports 14, 1156–1168, February 9, 2016 ª2016 The Authors 1157



Figure 1. Genome-wide Distribution of the Histone VariantMacroH2A1.2 and Associated EpigeneticMarks at Regulatory Regions of Skeletal

Muscle Cells

(A) Genome-wide distribution of mH2A1.2 in C2C12 MBs and MTs.

(B) Co-localization of mH2A1.2 and epigenetic marks H3K4me3, H3K4me1, H3K27ac, and H3K27me3 in C2C12 MBs and MTs.

(C) ChIP-seq profiles of mH2A1.2 and H3K27ac at Myod1 and Desmin loci.

(D) ChIP-seq profiles of mH2A1.2 and H3K27me3 at Neurogenin2 and Wnt1 loci. Both H3K27ac and mH2A1.2 signals were corrected for input DNA.

(E) GSEA of genes assigned toMT-active enhancers bound bymH2A1.2 inMBs. Genes are ranked from left to right according to their Signal2Noisemetric inMTs.

The ES profile indicates that the gene set is enriched for upregulated genes in MT (p < 2.0e-4, false discovery rate [FDR] �0).
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Figure 2. Reducing MacroH2A1.2 Impairs

Skeletal Muscle Cell Differentiation

(A and B) Myogenin protein and mRNA evaluated

after siRNA against mH2A1.2 in C2C12 cells.

GAPDH and histone H2A were used as loading

controls. CTRi, control.

(C and D) Myogenin (C) and MHC (D) immuno-

fluorescence staining of control and mH2A1.2i

C2C12 cells prompted to differentiate for 2 days.

DAPI identifies nuclei.

(E) mH2A1.2 and Myogenin mRNA expression in

C2C12 cells transfectedwith FLAG-empty (CTR) or

FLAG-mH2A1.2 (f-mH2A1.2) expression vector

(0.8 mg mH2A1.2 plasmid/1 3 105 cells).

(F) Immunoblot for FLAG, Myogenin, and GAPDH

in C2C12 cells transfected with FLAG-empty (CTR)

or FLAG-mH2A1.2 vector.

Data are represented as mean ± SD.
To define the global impact of reducing mH2A1.2 on the

transcriptome, RNA-seq experiments were performed in control

and mH2A1.2i C2C12 cells. When mH2A1.2i C2C12 MBs were

induced to differentiate, a profound effect on transcriptional

dynamics was observed. As indicated in the scatterplot repre-

senting changes in gene expression (Figure 3A), genes phys-

iologically upregulated during cell differentiation failed to be

properly activated inmH2A1.2i cells, while genes downregulated

during differentiation remained transcribed. In control cells,

expression of 2,392 genes was increased during the transition

from MBs to MTs (Figure 3B; Table S3). Compared to control

MTs, 1,786 gene transcripts were reduced by mH2A1.2i. Out

of these 1,786 transcripts, 1,440 (80.5%) corresponded to

transcripts increased during the differentiation of MBs to MTs

(Figure 3B). GO analysis of the transcripts that failed to be appro-

priately upregulated in mH2A1.2i cells returned terms related to

‘‘muscle cell development’’ and ‘‘muscle cell differentiation’’

(Figure 3C). GO terms for the transcripts that remained elevated

in mH2A1.2i cells were related to ‘‘cell cycle,’’ ‘‘and ‘‘DNA repli-

cation’’ (Figure 3D). Myogenin and its downstream targets mus-

cle creatine kinase (Ckm) and troponin T type 2 (Tnnt2) were not
Cell Reports 14, 1156–1168,
properly activated in mH2A1.2i cells (Fig-

ure 3E). Conversely, transcripts of the In-

hibitor of DNA Binding 3 (Id3), a member

of the Id family of helix-loop-helix pro-

teins counteracting muscle differentiation

(Benezra et al., 1990), cyclin D1 (Ccnd1),

and the cell-cycle regulator Mcm5, which

are physiologically downregulated upon

C2C12 differentiation, remained abnor-

mally elevated inmH2A1i cells (Figure 3F).

To validate these findings, we used a

different mH2A1.2 siRNA (mH2A1.2i_1)

(Figure S3A). In mH2A1.2i_1-transfected

cells, transcripts of Myogenin, muscle-

specific MHC 3 (Myh3), cardiac actin

(Actc1), and creatine kinase (Ckm) were

reduced, while those of cyclin D (Ccnd1)

remained elevated (Figure 3G). These
findings indicate that mH2A1.2 is required to activate muscle

gene expression during cell differentiation.

MacroH2A1.2 Is Enriched at Prospective Enhancers and
Is Necessary for Their Activation
We used the assay for transposase-accessible chromatin with

high-throughput sequencing (ATAC-seq) (Buenrostro et al.,

2013) to define chromatin accessibility in C2C12 MBs and

MTs. In ATAC-seq, tagging of nucleosome-free genomic regions

is mediated by transposase-mediated delivery of sequencing

adapters. Tagged regions correlate with DNase I hypersentitive

sites (open chromatin), which are generally found within genomic

regulatory functions. Using two independent replicates,�47,300

and�17,200 transposase-accessible or open chromatin regions

were reproducibly identified in MBs and MTs, respectively (Fig-

ure 4A). More than 84% of these genomic regions (14,448/

17,200) were open in bothMBs andMTs (Figure 4B). The remain-

ing ATAC-seq MT sites (�2,650) were closed in MBs and open

in MTs, and almost all of them (�2,500) were located outside

the promoter regions (Figures 4A and 4B). We refer to these

two groups as constitutive (open in both MBs and MTs) and
February 9, 2016 ª2016 The Authors 1159



Figure 3. MacroH2A1.2 Regulates the Transcriptome of Differentiating Skeletal Muscle Cells

(A) Scatterplot shows the inhibitory effect of mH2A1.2 knockdown on transcriptome during differentiation. Each dot represents a gene, the x axis shows

expression changes during differentiation in FLAG-empty vector (control; CTR), and the y axis shows the expression changes in mH2A1.2i versus CTR in MTs.

Genes marked red and green are upregulated and downregulated during differentiation, respectively.

(B) Venn diagram illustrating number of genes upregulated in control C2C12 MT and downregulated in counterpart mH2A1.2i cells.

(C) GO for genes downregulated in differentiating mH2A1.2i C2C12 cells.

(D) GO for genes whose transcription remains elevated in differentiating mH2A1.2i C2C12 cells.

(E) RNA-seq profiles of downregulated genes Myog, Ckm, and Tnnt2 in differentiating control interference (CTRi) and mH2A1.2i C2C12 cells.

(F) RNA-seq profiles of upregulated genes Id3, Ccnd1, and Mcm5 in differentiating CTLi and mH2A1.2i C2C12 cells.

(G) Myogenin, Actc1, Myh3, Ckm, and Ccnd1 mRNAs were evaluated after siRNA against mH2A1.2 in C2C12 cells.

Data are represented as mean ± SD. *p < 0.01.
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Figure 4. MacroH2A1.2 Influences H3K27

Acetylation at Enhancer Regions

(A) Venn diagram representing ATAC-seq positive

regions in C2C12 MBs and MTs.

(B) Heatmaps of tag densities representing distri-

bution of ATAC-seq signals in C2C12 MBs (red),

MTs (blue), and mH2A1.2 binding (green) in MBs.

(C) Average profile of H3K27ac signal in C2C12

MBs (black line), MTs (blue line), andMT-mH2A1.2i

(red line) for constitutive enhancers. WT, wild-type.

(D) Average profile of H3K27ac signal inMBs (black

line), MTs (blue line) and MT-mH2A1.2i (red line) for

MT-specific enhancers.

(E) GSEA of genes assigned to constitutive en-

hancers. Genes are ranked from left to right ac-

cording to their Signal2Noise metric in MB-control

(MB-CTR) versus MB-mH2A1.2i. The ES profile

indicates that the gene set is enriched for down-

regulated genes in mH2A1.2i-MB (p < 2.0e-4,

FDR < 10%).

(F) GSEA of genes assigned to MT-specific en-

hancers. Genes are ranked from left to right ac-

cording to their Signal2Noise metric in MT-control

(MT-CTR) versus MT-mH2A1.2i. The ES profile

indicates that the gene set is enriched for genes

strongly downregulated in mH2A1.2i-MT (p <

2.0e-4, FDR < 10%).

(G) ChIP-qPCR for H3K27ac at the Myogenin and

Myh3 loci in control (CTR), mH2A1.2i, and

mH2A1.2i C2C12 cells transfected with mH2A1.2

expression vector.

Data are represented as mean ± SD. *p < 0.01.
MT-specific enhancers (present only in MTs), respectively.

mH2A1.2 occupied both enhancer groups in MBs (Figure 4B).

While constitutive enhancers were similarly acetylated at

H3K27 in bothMBs andMTs (Figure 4C; compareMB-WT, black

line, and MT-WT, blue line), MT-specific enhancers acquired

H3K27ac only in MTs (Figure 4D; compare MB-WT, black line,

andMT-WT, blue line). To determinewhethermH2A1.2 regulates

the activity of constitutive and MT-specific enhancers, we as-

signed genes to these two groups of enhancers (based on prox-

imity distance ±20 kb) and evaluated how mH2A1.2i affected

expression of the enhancer-assigned genes. Using gene set
Cell Reports 14, 1156–1168,
enrichment analysis (GSEA), we found

that genes assigned to constitutive en-

hancers were positively correlated with

genes whose expression was reduced

by mH2A1.2i in MBs (Figure 4E), whereas

genes whose expression was diminished

by mH2A1.2i in MTs correlated with

genes assigned to MT-specific enhancers

(Figure 4F). Since H3K27 acetylation is a

defining step associated with enhancer

activation (Creyghton et al., 2010; Heintz-

man et al., 2009; Rada-Iglesias et al.,

2011; Zentner et al., 2011; Bonn et al.,

2012), we evaluated whether mH2A1.2

was involved in conferring H3K27 acetyla-

tion by performing H3K27ac ChIP-seq on
mH2A1.2i. H3K27 acetylation at constitutive enhancers was

slightly reduced (Figure 4C; compare MT-WT, blue line, with

MT-mH2A1.2i, red line). A most profound effect of mH2A1.2i

on H3K27 acetylation was observed at MT-specific enhancers.

At these enhancers, mH2A1i.2 reduced H3K27ac to background

levels observed in MBs, where the chromatin of MT-specific en-

hancers is closed (Figure 4D; compare MT-WT, blue line, with

MT-mH2A1.2i, red line). Consistent with amore limited reduction

of H3K27ac at constitutive enhancers (Figure 4C), the transcrip-

tion of genes assigned to constitutive enhancers was less

affected than that of genes controlled by MT-specific enhancers
February 9, 2016 ª2016 The Authors 1161



(Figure 4E; enrichment score [ES] < 0.30; Figure 4F, ES > 0.45) in

mH2A1.2i cells. Next, we analyzed H3K27ac at promoter re-

gions. mH2A1.2i did not modify H3K27ac at constitutive pro-

moters but reduced it at MT-specific promoters (Figures S4A

and S4B). These findings are consistent with the impaired acqui-

sition of MT-specific enhancer competency upon mH2A1.2i and

consequent failure to induce promoter activation (H3K27ac) and

gene transcription. To establish whether a direct link exists be-

tween reduced H3K27 acetylation and mH2A1.2i, we attempted

rescue experiments by overexpressing mH2A1.2 in mH2A1.2i

cells. mH2A1.2 overexpression partially restored H3K27ac at

both the Myogenin and Myh3 loci in mH2A1.2i cells (Figure 4G).

In summary, these results indicate that, during muscle cell differ-

entiation, mH2A1.2 is involved in conferring enhancer activation

by regulating H3K27 acetylation.

Chromatin Engagement of the Transcription Factor
Pbx1 at Muscle Regulatory Regions Is Contingent on
MacroH2A1.2
The presence of mH2A1.2 in MBs at both TSSs and enhancers

destined to become activated in MTs (MT-specific enhancers),

as well as its requirement for their activation, prompted us to

investigate a potential link between mH2A1.2 and the transcrip-

tion factor Pbx1. The TALE (three-amino-acid loop extension)

homeodomain-containing transcription factor Pbx1 is required

to assist MyoD-dependent activation of Myogenin (Berkes

et al., 2004; de la Serna et al., 2005). Pbx1 is constitutively bound

to theMyogenin gene in fibroblasts prior toMyoD-mediated con-

version to muscle and, by directly interacting with two specific

domains, ensures productive and stable MyoD recruitment at

the Myogenin promoter (Berkes et al., 2004). More recently,

the Pbx1/MyoD interaction has been shown to regulate expres-

sion of a large cohort of MyoD-dependent genes (Fong et al.,

2015). Suggesting a relationship between mH2A1.2 and Pbx1,

analysis for DNA-binding motifs showed that, among others,

the Pbx1 consensus binding motif was enriched within

mH2A1.2-bound regions in MBs (Figure S5A). We performed

Pbx1 ChIP-seq and examined the overlap between Pbx1 and

MyoD binding (Mousavi et al., 2013). The majority of Pbx1 peaks

occurred at inter-and intragenic regions in both MBs (88%) and

MTs (76%) (Figures 5A and 5B). Approximately 57% of the Pbx1

peaks overlapped with MyoD inMB and 33% inMT, respectively

(Figures 5C and 5D). Moreover, in MT, MyoD and Pbx1 co-occu-

pied 52% of the MT-specific ATAC-seq regions (Figure 5E). Ex-

amples of muscle genes co-occupied by MyoD and Pbx1 are

shown in Figure 5F. In line with the aforementioned observations,

the E-box (DNA recognition site for MyoD) emerged as one of the

top enriched motifs within Pbx1-occupied regions (Figures S5B

and S5C). Similarly, de novo motif analysis of common binding

regions between MBs and MTs returned, among others, motifs

with consensus matching MyoD/Myf5 and Pbx3 (Figure S5D).

In MB, 5,902 Pbx1 peaks occurred at genomic regions acquiring

epigenetic characteristics of active enhancers (H3K4me1+/

H3K27ac+) in MTs (Table S4). Of the genes assigned to MT-spe-

cific enhancers, 70% was also assigned to these Pbx1+ regula-

tory regions (Table S4). To investigate a potential dependency of

Pbx1 binding on mH2A1.2, we conducted Pbx1 ChIP-seq in

control and mH2A1.2i cells. While overall Pbx1 binding was not
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affected at constitutive enhancers (Figure 6A), it was markedly

decreased at MT-specific enhancers, including theMyogenin lo-

cus (Figures 6B–6D). Moreover, the promoters and/or enhancer

regions of genes regulated by Pbx1 (Berkes et al., 2004) were

co-occupied by Pbx1 and MyoD, and their transcription was

reduced by mH2A1.2i (Figure 6E). Next, we evaluated whether

mH2A1.2 is sufficient to promote Pbx1 recruitment by express-

ing FLAG-tagged mH2A1.2 and performing ChIP-qPCR for

Pbx1 at Myogenin. Compared to control, Pbx1 recruitment at

the Myogenin locus was increased in C2C12 mH2A1.2-trans-

fected cells (Figure 6F). Importantly, Pbx1 transcripts were not

affected by mH2A1.2 expression (Figure S6A). Thus, mH2A1.2

overexpression promotes Pbx1 engagement at Myogenin and

activates its transcription (Figures 2E and 2F). Consistent with

these findings, mH2A1.2 expression in mH2A1.2i cells partially

restored Pbx1 binding at Myogenin (Figure 6G). In line with

a role of Pbx1 in stabilizing MyoD binding (Berkes et al.,

2004), MyoD engagement at Myogenin was also reduced by

mH2A1.2i (Figure 6H). Overexpressed as well as endogenous

and chromatin-bound mH2A1.2 interacted with Pbx1 (Figures

S6B and S6C) and, using bacterially produced and purified

proteins, we detected an interaction of the macro domain—but

not of the H2A-like region—of mH2A1.2 with Pbx1 (Figure S6D).

Pbx1 also interacted with canonical H2A (data not shown).

Altogether, the data reported in this paragraph indicate that

mH2A1.2 regulates Pbx1 recruitment at developmental (MT-

specific) enhancers and transcription of the associated genes.

DISCUSSION

Here, we report that mH2A1.2 is a positive regulator of transcrip-

tion and muscle cell differentiation. In agreement with previous

studies, we have identified genomic regions co-occupied by

mH2A1.2 and H3K27me3 (Buschbeck et al., 2009; Ratnakumar

et al., 2012; Gaspar-Maia et al., 2013). However, mH2A1.2

knockdown neither modified H3K27me3 (data not shown) nor re-

sulted in gene de-repression (Table S3), suggesting that, similary

to what was observed with pluripotency genes (Gaspar-Maia

et al., 2013), mH2A1.2 may play a redundant silencing role.

Genome-wide distribution of mH2A1.2 localized at transcription-

ally competent regulatory regions in undifferentiated C2C12

MBs. However, competency of constitutive enhancers was

only modestly affected by mH2A1.2i, indicating that, once en-

hancers are activated, mH2A1.2 may not be critical for their

maintenance. Instead, mH2A1.2 exerted a critical function

during the differentiation process. ReducingmH2A1.2 prevented

activation of the myogenic gene regulatory network, with

approximately 80% of the genes whose transcription is pro-

moted during differentiation failing to be activated. This phe-

nomenon coincided with the inability of muscle developmental

enhancers to be appropriately H3K27 acetylated in mH2A1.2i

cells.

The presence of mH2A1.2 at prospective enhancers and its

requirement for their activation suggest that mH2A1.2 functions

as a ‘‘marking’’ histone (Bell et al., 2011). Pioneer transcription

factors can access silent chromatin by recognizing their com-

plete or partial DNAmotifs on nucleosomes followed by the sub-

sequent binding of other transcription factors and chromatin
rs



Figure 5. Genome-wide Analysis of Pbx1 and MyoD Binding in Skeletal Muscle Cells

(A and B) Genome-wide distribution of Pbx1 binding in C2C12 MBs and MTs.

(C and D) Venn diagrams representing Pbx1 and MyoD peaks in C2C12 MBs and MTs.

(E) MyoD and Pbx1 distribution relative to MT-specific ATAC-seq regions.

(F) ChIP-seq tracks at the Tnnt1 and Myh3 loci. Bottom to top: mH2A1.2 in MBs (red track), H3K4me3 in MTs (green track), H3K27ac in MTs (yellow track),

H3K4me1 in MTs (blue track), Pbx1 in MTs (blue tracks), and MyoD in MTs (orange track). The ChIP-seq signals were corrected for input DNA.
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remodelers (Zaret and Carroll, 2011; Iwafuchi-Doi and Zaret,

2014; Soufi et al., 2015). MyoD can convert non-myogenic cells

to adopt the skeletal muscle phenotype (Davis et al., 1987). The

ability of MyoD to initiate myogenesis in non-muscle cells is

conferred by two independent domains, the cysteine-rich

domain and the C-terminal helix III region (Gerber et al., 1997;

Bergstrom and Tapscott, 2001). These two domains ensure sta-

ble binding of MyoD to the Myogenin promoter via interaction

with a protein complex containing Pbx1, a homeodomain tran-

scription factor constitutively bound to the Myogenin promoter

(Berkes et al., 2004; de la Serna et al., 2005). Pbx1 has been pro-

posed to act as a pioneer factor to guide chromatin recruitment

of estrogen receptors in breast cancer (Magnani et al., 2011). Our

findings indicate that mH2A1.2 exerts a licensing function for

Pbx1 recruitment and H3K27 acetylation. The observed anti-

correlation between mH2A1.2 occupancy and Pbx1 binding at

MT-specific enhancers in MTs (Figure 6B; Figure S2B) suggests

that, once enhancers are bound by Pbx1 (and/or MyoD), the

mH2A1.2-containing nucleosomes are disassembled and

mH2A1.2 may dissociate from its target regions during chro-

matin remodeling events. It has been recently shown that

pioneer activity can be achieved by different strategies. While

the prototypic pioneer factor FoxA exploits the homology of its

DNA-binding domain with linker histone to interact with its

DNA motif exposed on nucleosomes (Clark et al., 1993; Ramak-

rishnan et al., 1993; Cirillo and Zaret, 1999; Cirillo et al., 2002), the

reprogramming factor Oct4 can target partial sequences of its

DNA-bindingmotif, using the two separate PouS and PouHD do-

mains, and Sox2 may take advantage of the pre-bent conforma-

tion of its DNA-binding motif, as well as its nonspecific DNA

binding properties (Soufi et al., 2015). To penetrate and remodel

closed chromatin, MyoD requires the two regions that interact

with Pbx (Gerber et al., 1997; Bergstrom and Tapscott, 2001;

Berkes et al., 2004), and point mutations abolishing Pbx interac-

tion redirect MyoD binding toward neuronal targets (Fong et al.,

2015). Decreased Pbx1 recruitment at Myogenin after mH2A1.2

knockdown was partially rescued by mH2A1.2 overexpression.

While the most parsimonious explanation of this phenomenon

is that mH2A1.2 favors Pbx1 chromatin engagement, we cannot

formally rule out that unidentified factor/s may directly or indi-

rectly be involved. Our data suggest the possibility that, by

interacting with the macro domain of mH2A1.2, Pbx1 may gain

access to repressed chromatin. However, canonical H2A also

interacted with Pbx1. Despite the high homology between ca-

nonical H2A and the H2A-like domain of mH2A1.2 (Chakravarthy

et al., 2005), the latter does not interact with Pbx1, indicating

specificity of Pbx1 interaction within the mH2A1.2 moiety. As

mH2A1.2 tends to form hybrid nucleosomes containing canoni-

cal H2A and H2B (Chakravarthy and Luger, 2006), Pbx1-binding

specificity may arise from unique H2A-H2B-mH2A1.2 combina-

torial composition of the nucleosomes. The mH2A1 macro

domain interacts with histone deacetylases (Chakravarthy

et al., 2005), and mH2A1 phosphorylation at serine 137 results

in its exclusion from the heterochromatin of the inactive X chro-

mosome (Bernstein et al., 2008). It is, therefore, possible that

post-translational modifications may participate in imparting

alternative functions to mH2A1 by modulating protein-protein

interactions.
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EXPERIMENTAL PROCEDURES

Cell Culture and Reagents

All cells were cultured at 37�C with 5% CO2. Cell media were supplemented

with 500 mg/ml penicillin-streptomycin-glutamine (GIBCO). Both HEK293

and C2C12 cells (ATCC) were grown in 13 DMEM with 10% qualified fetal

bovine serum (FBS) (GIBCO). For C2C12 cell differentiation, FBSwas replaced

with 2% horse serum and 13 insulin-transferrin-selenium (GIBCO). For siRNA

experiments, cells were transfected with Lipofectamine RNAiMax (Invitrogen)

according to themanufacturer’s instructions. siRNA sequences are reported in

Table S5. Plasmids were transfected in C2C12 cells using Lipofectamine 2000

(Invitrogen).

Antibodies

A list of the antibodies used is reported in the Supplemental Experimental

Procedures.

Plasmid Construction

Plasmid construction is reported in the Supplemental Experimental

Procedures.

Protein Expression and Purification

GST fusion proteins were expressed in E. coli and purified using Glutathione

Sepharose 4B (GE Healthcare Life Sciences) according to manufacturer’s pro-

tocol. His-Pbx1a was expressed in E. coli and purified using HisPur Cobalt

Resin (Thermo Scientific) according to manufacturer’s protocol.

In Vitro Protein Interaction

Purified His-Pbx1a and glutathione S-transferase (GST)-macroH2A1.2 pro-

teins were incubated with anti-Pbx1 antibody (Abnova, H00005087) in immu-

noprecipitation (IP) buffer (20 mM Tris-HCl [pH 8.0], 10% glycerol, 0.15 M KCl,

5 mM MgCl2, 0.1% NP-40), and the complexes bound to protein A agarose

(Roche) were washed three times with IP buffer (with 0.5 M KCl) and once

with IP buffer (with 0.15 M KCl). The interaction between Pbx1-a and GST pro-

teins was detected by western blot with anti-Pbx1 and anti-GST (Santa Cruz

Biotechnology, sc-459) antibodies.

IPs

For co-IP, HEK293T cells were co-transfected with plasmids expressing

Pbx1a (Addgene, #21029) and FLAG-tagged macroH2A1.2 and harvested

with lysis buffer (20 mM Tris-HCl [pH 8.0], 10% glycerol, 150 mM NaCl,

5 mM MgCl2, 0.1% NP-40, protease inhibitor cocktail). 1 mg whole-cell lysate

was incubated with anti-FLAG M2-agarose beads (Sigma). Protein interac-

tions were detected by western blot with anti-Pbx1 (Abnova H00005087)

and anti-FLAG (M2, Sigma) antibodies.

Chromatin Fraction Isolation and IP

Detailed protocols for chromatin isolation and IP are reported in the Supple-

mental Experimental Procedures.

ChIP-qPCR and ChIP-Seq

Cells were crosslinked in 1% formaldehyde and processed according to pub-

lished protocols (Métivier et al., 2003; Mousavi et al., 2012). Briefly, cells were

lysed in RIPA buffer (13 PBS, 1% NP-40, 0.5% sodium deoxycholate, 0.1%

SDS) and centrifuged at 2,000 rpm for 5 min. The chromatin fraction was

sheared by sonication (four times, each lasting 30 s) in 1.5-ml siliconized

Eppendorf tubes. The resulting sheared chromatin samples were cleared for

1 hr, immunoprecipitated overnight, and washed in buffer I (20 mM Tris-HCl

[ pH 8.0], 150 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton X-100), buffer II

(20 mM Tris-HCl [pH 8.0], 500 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton

X-100), buffer III (10mMTris-HCl [ pH 8.0] 250mMLiCl, 1%NP-40; 1% sodium

deoxycholate, 1 mM EDTA), and Tris-EDTA (pH 8.0). All washes were per-

formed at 4�C for 5 min. Finally, crosslinking was reversed in elution buffer

(100 mM NaHCO3, 1% SDS) at 65�C overnight. Real-time qPCR was per-

formed using Power SYBR Green PCR Master Mix (Applied Biosystems)

following the standard procedure. A list of primers used for qPCR is provided

in Table S5. For ChIP-seq, 10 ng immuno-precipitated DNA fragments were
rs



Figure 6. MacroH2A1.2 Regulates Recruitment of Pbx1 at Muscle Enhancer Regions

(A) Average profile of Pbx1 signal in MT-WT (blue line) and differentiating mH2A1.2i C2C12 cells (red line) at constitutive enhancers.

(B) Average profiles of Pbx1 signal in MT-WT (blue line), in MT-mH2A1.2i (red line), and in MB-WT at MT-specific enhancers.

(C) ChIP-seq tracks at theMyogenin locus. Top to bottom:mH2A1.2 inMTs andMBs (red tracks); H3K4me1 in MBs andMTs (light blue tracks); H3K4me3 inMBs

and MTs (green tracks); H3K27ac in MBs and MTs (yellow tracks); MyoD in MTs (orange track); Pbx1 in MTs (blue tracks); and ATACseq signal in MBs and sMT

(purple tracks). Turquoise shading identifies an H3K27ac+/H3K4me1+/Pbx1+/MyoD+/H3K4me3� region.

(D) ChIP-seq tracks at theMyogenin locus. Top to bottom: H3K27ac inMBs,MTs, andMT_mH2A1.2i (yellow tracks); Pbx1 inMT-control (MT-CTR) andmH2A1.2i

(blue tracks).

(legend continued on next page)
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used to prepare ChIP-seq libraries with the NEBNext RNA Library Prep Kit

(New England Biolabs) and the Ovation SP Ultralow DR Multiplex System

(NuGEN) following the manufacturer’s protocol. The libraries were sequenced

for 50 cycles on a HiSeq 2000 or HiSeq2500 Illumina instrument.

RNA-Seq

mRNA sequencing (mRNA-seq) (poly(A)+ fraction) samples were prepared and

processed according to the manufacturer’s protocol (Illumina). Briefly, total

RNA was extracted from approximately 1 3 106 C2C12 cells using the Trizol

reagent. 500 ng of total RNA was retrotranscribed using the High Capacity

cDNA Reverse Transcription Kit (Applied Biosystems). qPCR was performed

with the Power SYBRGreen PCRMaster Mix (Applied Biosystems). All primers

used for amplification are listed in Table S5. 1 mg to 3 mg of total RNA was used

to prepare RNA-seq libraries with the NEBNext RNA Library Prep Kit (New

England Biolabs) and the Ovation SP Ultralow DR Multiplex System (NuGEN),

following the manufacturer’s protocol. The libraries were sequenced for 50

cycles (single-end reads) on a HiSeq 2000 or HiSeq2500 Illumina instrument.

ATAC-Seq

ATAC-seqwas performed according to a published protocol (Buenrostro et al.,

2013), with minor modification. Briefly, 5 3 104 C2C12 cells were pelleted,

washed with 50 ml of 13 PBS, and lysed in 50 ml lysis buffer (10 mM Tris-

HCl,[ pH 7.4], 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630). To tag and

fragment accessible chromatin, nuclei were centrifuged at 500 3 g for 10 min

and re-suspended in 40 ml transposition reactionmix with 2 ml Tn5 transposase

(Illumina #FC-121-1030). The reaction was incubated at 37�C, with shaking at

300 rpm for 30 min. DNA fragments were then purified and amplified by PCR

(12–15 cycles based on the amplification curve). C2C12 MB and MT samples

were multiplexed using primers Ad2.1–4 paired with Ad1 for final library ampli-

fication as described previously (Buenrostro et al., 2013). Purified librarieswere

then sequenced on a HiSeq2500 Illumina instrument.

Venn Diagrams

The area-proportional Venn diagramswere drawn based on images generated

using free online software (http://bioinforx.com/free/bxarrays/venndiagram.

php).

Bioinformatic Analysis

RNA-Seq Analysis

Whole-transcriptome sequencing (RNA-seq) of C2C12 MBs and MTs for

control and mH2A1.2i in three biological replicates were completed on

HiSeq2000/2500 Illumina instruments, using cDNA libraries generated from

poly(A)+ purified mRNA samples. 50-bp single-end reads were mapped to

mouse genome (mm9 assembly) using TopHat (Trapnell et al., 2009), and

gene transcript levels were determined via Cuffdiff in the form of fragments

per kilobase of exon per million fragments mapped, or FPKM (RPKM [reads

per kilobase of exon per million reads mapped]) values, by correcting for

multi-reads and using geometric normalization (Trapnell et al., 2013).

Up- and downregulated genes were selected using 1.5-fold change cutoff,

and only genes with a mean RPKM value of >1 in at least one condition

were included. GO analyses for a list of selected genes were performed by

the online bioinformatics resource DAVID (National Institute of Allergy and In-

fectious Diseases, NIH) (Huang et al., 2009a, 2009b).

ChIP-Seq and ATAC-Seq Analyses

ChIP-seq data from two biological replicates for each sample were obtained

using HiSeq 2000/2500 Illumina instruments, de-multiplexed through an Illu-

mina pipeline, and mapped to the mouse genome (mm9 assembly) using the

Bowtie algorithm (Langmead et al., 2009), with default parameters except

for seed length set to 32 and suppressing all alignments for reads if more
(E) Summary of Pbx1and MyoD occupancy in MBs and MTs, expression in M

enhancers of Pbx1-dependent genes reported in Berkes et al. (2004).

(F) Pbx1 ChIP-qPCR in CTR and mH2A1.2-overexpressing (2 mg mH2A1.2 plasm

(G) ChIP-qPCR for Pbx1 at the Myogenin locus in control (CTR), mH2A1.2i, and

(H) ChIP-qPCR for MyoD at the Myogenin locus in control (CTR) and mH2A1.2i C

Data are represented as mean ± SD. *p < 0.01.
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than 20 were presented. ChIP-seq data generated from genomic DNA (input

DNA) or immunoglobulin G (IgG) were used as a control for calling enriched re-

gions. Peaks for macroH2A1 and Pbx1 were called using MACS, version 2

(Zhang et al., 2008), with q value set at 0.05. Previously published ChIP-seq

data for MyoD in MBs and MTs (Mousavi et al., 2013) were re-analyzed using

similar parameters. Regions of open chromatin were identified using MACS

from ATAC-seq data obtained from two biological replicates in C2C12 MBs

and MTs. Only regions called in both replicates were used in downstream

analysis. In all cases, redundant reads were removed, and only one mapped

read to each unique regions of the genome was kept and used in peak calling.

Peaks were assigned to promoters if they were located in the ±1,000-bp

vicinity of TSS; assigned to intragenic if they were located in gene body,

excluding +1,000 bp of TSS; and assigned to intergenic otherwise. For gener-

ating the profile of different marks across TSSs or ATAC-seq sites, aligned

reads, after removing redundant reads, were directly mapped to sliding win-

dows of 100 bp in 25-bp steps, at ±2,000 bp around the center of ATAC-seq

peaks or ±5,000 bp around the TSS. Signals were averaged across all sites

and normalized to the total number of reads for each sample. Profiles and

HeatMap, as well as other downstream analyses, were done using custom

programing in MATLAB. GSEA was done using GSEA tools (Subramanian

et al., 2005; Mootha et al., 2003), with number of permutation set to 5,000,

and permutation was applied to the gene set. Gene lists were generated by

assigning genes to the genomic regions of interest (e.g., enhancers), using a

proximity distance of ±20 kbp of gene body (region of interest lies within the

interval of TSS� 20 kbp, TES [transcription end site]+ 20 kbp), increasing

the proximity distance to ±50 kbp or ±100 kbp, while increasing the number

of total and false-positive assigned genes did not returned any new enriched

GO terms. The BEDTools package (Quinlan and Hall, 2010) was handy for

several applications, including intersecting regions, generating BedGraph files

converted to Bigwig files presented in genome browser tracks, filtering reads,

etc. Motif enrichment and de novo motif analysis were carried out using the

Homer package (Heinz et al., 2010) for regions spanning 200 bp around the

peaks’ summit.
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