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a b s t r a c t

In this paper we define a new type of summability method via statistical convergence by
using the density and (V , λ)-summability. We further apply our new summability method
to prove a Korovkin type approximation theorem.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

The concept of statistical convergence for sequences of real numbers was introduced by Fast [1] and Steinhaus [2]
independently in the same year 1951 and since then several generalizations and applications of this notion have been
investigated by various authors.

Let K ⊆ N and Kn := {k ≤ n : k ∈ K}. Then the natural density of K is defined by δ(K) = limn n−1|Kn| if the limit exists,
where |Kn| denotes the cardinality of Kn.

A sequence x = (xk) of real numbers is said to be statistically convergent to ℓ provided that for every ϵ > 0 the set
Kϵ := {k ∈ N : |xk − ℓ| ≥ ϵ} has natural density zero, i.e. for each ϵ > 0,

lim
n

1
n
|{j ≤ n : |xj − ℓ| ≥ ϵ}| = 0.

The idea of λ-statistical convergence was introduced in [3] as follows:
Let λ = (λn) be a non-decreasing sequence of positive numbers tending to∞ such that
λn+1 ≤ λn + 1, λ1 = 0.

The generalized de la Vallée-Poussin mean is defined by

tn(x) =:
1
λn

−
j∈In

xj

where In = [n− λn + 1, n].
A sequence x = (xj) is said to be (V , λ)-summable to a number ℓ (see [4]) if

tn(x)→ ℓ as n→∞.
In this case ℓ is called the λ-limit of x.
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Let K ⊆ N. Then

δλ(K) = lim
n

1
λn
|{n− λn + 1 ≤ j ≤ n : j ∈ K}|

is said to be λ-density of K .
In case λn = n, λ-density reduces to the natural density. Also, since (λn/n) ≤ 1, δ(K) ≤ δλ(K) for every K ⊆ N.

A sequence x = (xk) is said to be λ-statistically convergent (see [3]) to L if for every ϵ > 0 the set Kϵ := {k ∈ N : |xk− L| ≥
ϵ} has λ-density zero, i.e. δλ(Kϵ) = 0. In this case we write λ(δ)− lim x = L. That is,

lim
n

1
λn
| {n− λn + 1 ≤ j ≤ n : |xk − L| ≥ ϵ} | = 0.

In this case we write stλ − lim x = ℓ and we denote the set of all λ-statistically convergent sequences by Sλ.
In this paper, we introduce statistical λ-convergence and strongly λq-convergence (0 < q < ∞) and establish some

relations between λ-statistical convergence, statistical λ-convergence, and strongly λq-convergence. We further apply our
new type of convergence to prove a Korovkin type approximation theorem.

Now, we introduce some new concepts by using the notions of density and generalized de la Vallée-Poussin mean.

Definition 1.1. A sequence x = (xk) is said to be statistically λ-convergent to L if for every ϵ > 0 the set Kϵ(λ) := {k ∈ N :
|tk(x)− L| ≥ ϵ} has natural density zero, i.e. δ(Kϵ(λ)) = 0. In this case we write δ(λ)− lim x = L. That is,

lim
n

1
n
| {k ≤ n : |tk(x)− L| ≥ ϵ} | = 0.

Definition 1.2. A sequence x = (xk) is said to be stronglyλq-convergent (0 < q <∞) to the limit L if limn
1
λn

∑
j∈In |xj−L|q =

0, and we write it as xk −→ L[Vλ]q. In this case L is called the [Vλ]q-limit of x.

2. Statistical summability results

In our first theorem we establish the relation between our two newly defined concepts of λ-statistical convergence and
statistical λ-convergence.

Theorem 2.1. If a sequence x = (xk) is bounded and λ-statistically convergent to L then it is statistically λ-convergent to L but
not conversely.

Proof. Let x = (xk) be bounded and λ-statistically convergent to L. Write Kλ(ϵ) := {n− λn + 1 ≤ j ≤ n : |xk − L| ≥ ϵ}.
Then

|tk(x)− L| =

 1
λk

−
j∈Ik

xj − L

 =
 1
λk

k−
j=k−λk+1

xj − L

 =
 1
λk

k−
j=k−λk+1

(xj − L)


≤

 1
λk

−
j∈Kλ(ϵ)

(xj − L)

 ≤ 1
λk
(sup

j
|xj − L|)Kϵ → 0,

as k→∞, which implies that tk(x)→ L as p→∞. That is, x is (V , λ)-summable to L and hence statistically λ-convergent
to L.

For converse, consider the case λn = n and the sequence x = (xk) defined as

xk =

1; if k is odd,
−1; if k is even.

Of course this sequence is not λ-statistically convergent. On the other hand, x is (V , λ)-summable to 0 and hence statistically
λ-convergent to 0.

This completes the proof of the theorem. �

Next theorem gives the relation between λ-statistical convergence and strong λq-convergence.

Theorem 2.2. (a) If 0 < q < ∞ and a sequence x = (xk) is strongly λq-convergent to the limit L, then it is λ-statistically
convergent to L.

(b) If x = (xk) is bounded and λ-statistically convergent to L then xk −→ L[Vλ]q.
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Proof. (a) If 0 < q <∞ and xk −→ L[Vλ]q, then

0 ←
1
λn

−
j∈In

|xj − L|q ≥
1
λn

−
j∈In
|xj−L|≥ϵ

|xj − L|q

≥
ϵq

λn
|Kϵ |,

as n → ∞. That is, limn→∞
1
λn
|Kϵ | = 0 and so δλ(Kϵ) = 0, where Kϵ := {k ≤ n : |xk − L| ≥ ϵ}. Hence x = (xk) is λ-

statistically convergent to L.
(b) Suppose that x = (xk) is bounded and λ-statistically convergent to L. Then for ϵ > 0, we have δλ(Kϵ) = 0. Since

x ∈ l∞, there exists M > 0 such that |xk − L| ≤ M (k = 1, 2, . . .). We have

1
λn

−
j∈In

|xj − L|q =
1
λn

n−
k=n−λn+1

k∉Kϵ

|xk − L|q +
1
λn

n−
k=n−λn+1

k∈Kϵ

|xk − L|q = S1(n)+ S2(n),

where

S1(n) =
1
λn

n−
k=n−λn+1

k∉Kϵ

|xk − L|q and S2(n) =
1
λn

n−
k=n−λn+1

k∈Kϵ

|xk − L|q.

Now if k ∉ Kϵ then S1(n) < ϵq. For k ∈ Kϵ , we have

S2(n) ≤ (sup |xk − L|)(|Kϵ |/λn) ≤ M|Kϵ |/λn → 0,

as n→∞, since δλ(Kϵ) = 0. Hence xk −→ L[Vλ]q.
This completes the proof of the theorem. �

In the next result we characterize statistically λ-convergent sequences through the (V , λ)-summable subsequences.

Theorem 2.3. A sequence x = (xk) is statistically λ-convergent to L if and only if there exists a set K = {k1 < k2 < · · · < kn <
· · ·} ⊆ N such that δ(K) = 1 and λ− lim xkn = L.

Proof. Suppose that there exists a set K := {k1 < k2 < · · · < kn < · · ·} ⊆ N such that δ(K) := 1 and λ− lim xkn = L. Then
there is a positive integer N such that for n > N ,

|tn(x)− L| < ϵ. (2.3.1)

Put Kϵ(λ) := {n ∈ N : |tkn(x)− L| ≥ ϵ} and K ′ := {kN+1, kN+2, . . .}. Then δ(K ′) = 1 and Kϵ(λ) ⊆ N− K ′ which implies
that δ(Kϵ(λ)) = 0. Hence x = (xk) is statistically λ-convergent to L.

Conversely, let x = (xk) be statistically λ-convergent to L. For r = 1, 2, 3, . . . , put Kr(λ) := {j ∈ N : |tkj(x)− L| ≥ 1/r}
andMr(λ) := {j ∈ N : |tkj(x)− L| < 1/r}. Then δ(Kr(λ)) = 0 and

M1(λ) ⊃ M2(λ) ⊃ · · ·Mi(λ) ⊃ Mi+1(λ) ⊃ · · · (2.3.2)

and

δ(Mr(λ)) = 1, r = 1, 2, 3, . . . . (2.3.3)

Nowwe have to show that for j ∈ Mr(λ), (xkj) is λ-convergent to L. Suppose that (xkj) is not λ-convergent to L. Therefore,
there is ϵ > 0 such that |tkj(x) − L| ≥ ϵ for infinitely many terms. Let Mϵ(λ) := {j ∈ N : |tkj(x) − L| < ϵ} and
ϵ > 1/r (r = 1, 2, 3, . . .). Then

δ(Mϵ(λ)) = 0, (2.3.4)

and by (2.3.2), Mr(λ) ⊂ Mϵ(λ). Hence δ(Mr(λ)) = 0, which contradicts (2.3.3) and therefore (xkj) is λ-convergent to L.
This completes the proof of the theorem. �

Similarly we can prove the following dual statement:

Theorem 2.4. A sequence x = (xk) is λ-statistically convergent to L if and only if there exists a set K := {k1 < k2 < · · · < kn <
· · ·} ⊆ N such that δλ(K) = 1 and lim xkn = L.
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3. Statistical Korovkin type approximation theorem

In this section, we prove an analogue of the classical Korovkin theorem by using the concept of statistical λ-convergence.
Recently, such types of approximation theorems are proved in [5–7] by using the notion of statistical convergence. The
classical Korovkin approximation theorem states as follows (see [8,9]):

Let C[a, b] be the space of all functions f continuous on [a, b]. Suppose that (Tn) be a sequence of positive linear operators
from C[a, b] into C[a, b]. Then

(i) limn ‖Tn(f , x)− f (x)‖∞ = 0, for all f ∈ C[a, b], if and only if
(ii) limn ‖Tn(fi, x)− fi(x)‖∞ = 0, for i = 0, 1, 2,

where f0(x) = 1, f1(x) = x and f2(x) = x2.
We know that C[a, b] is a Banach space with norm ‖f ‖∞ := supa≤x≤b |f (x)|, f ∈ C[a, b]. We write Tn(f , x) for Tn(f (t), x)

and we say that T is a positive operator if T (f , x) ≥ 0 for all f (x) ≥ 0.

Theorem 3.1. Suppose that Tn : C[a, b] → C[a, b] is a sequence of positive linear operators. Then for any function f ∈ C[a, b],

δ(λ)− lim
n
‖Tn(f , x)− f (x)‖∞ = 0, (3.0)

if and only if

δ(λ)− lim
n
‖Tn(1, x)− 1‖∞ = 0, (3.1)

δ(λ)− lim
n
‖Tn(t, x)− x‖∞ = 0, (3.2)

δ(λ)− lim
n
‖Tn(t2, x)− x2‖∞ = 0. (3.3)

Proof. Conditions (3.1)–(3.3) follow immediately from condition (3.0), since each of the functions 1, x, x2 belongs to C[a, b].
We prove the converse part. By the continuity of f on [a, b], we can write

|f (x)| ≤ M, −∞ < x <∞.

Therefore,

|f (t)− f (x)| ≤ 2M, −∞ < t, x <∞. (3.4)

Also, since f ∈ C[a, b], for every ϵ > 0, there is δ > 0 such that

|f (t)− f (x)| < ϵ, ∀|t − x| < δ. (3.5)

Using (3.4), (3.5) and putting ψ(t) = (t − x)2, we get

|f (t)− f (x)| < ϵ +
2M
δ2
ψ, ∀|t − x| < δ.

This means

−ϵ −
2M
δ2
ψ < f (t)− f (x) < ϵ +

2M
δ2
ψ.

Now we could apply Tn(1, x) to this inequality since Tn(f , x) is monotone and linear. Hence,

Tn(1, x)

−ϵ −

2M
δ2
ψ


< Tn(1, x) (f (t)− f (x)) < Tn(1, x)


ϵ +

2M
δ2
ψ


.

Note that x is fixed and so f (x) is a constant number. Therefore,

− ϵTn(1, x)−
2M
δ2

Tn(ψ, x) < Tn(f , x)− f (x)Tn(1, x) < ϵTn(1, x)+
2M
δ2

Tn(ψ, x). (3.6)

But

Tn(f , x)− f (x) = Tn(f , x)− f (x)Tn(1, x)+ f (x)Tn(1, x)− f (x)
= [Tn(f , x)− f (x)Tn(1, x)] + f (x)[Tn(1, x)− 1]. (3.7)

Using (3.6) and (3.7), we have

Tn(f , x)− f (x) < ϵTn(1, x)+
2M
δ2

Tn(ψ, x)+ f (x)(Tn(1, x)− 1). (3.8)
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Now, let us estimate Tn(ψ, x)

Tn(ψ, x) = Tn((t − x)2, x) = Tn(t2 − 2tx+ x2, x)
= Tn(t2, x)− 2xTn(t, x)+ x2Tn(1, x)
= [Tn(t2, x)− x2] − 2x[Tn(t, x)− x] + x2[Tn(1, x)− 1].

Using (3.8), we get

Tn(f , x)− f (x) < ϵTn(1, x)+
2M
δ2
{[Tn(t2, x)− x2] − 2x[Tn(t, x)− x] + x2[Tn(1, x)− 1]} + f (x)(Tn(1, x)− 1)

= ϵ[Tn(1, x)− 1] + ϵ +
2M
δ2
{[Tn(t2, x)− x2] − 2x[Tn(t, x)− x]

+ x2[Tn(1, x)− 1]} + f (x)(Tn(1, x)− 1).

Since ϵ is arbitrary we can write

‖Tn(f , x)− f (x)‖∞ ≤

ϵ +

2Mb2

δ2
+M


‖Tn(1, x)− 1‖∞ +

4Mb
δ2
‖Tn(t, x)− x‖∞ +

2M
δ2
‖Tn(t2, x)− x2‖∞

≤ K

‖Tn(1, x)− 1‖∞ + ‖Tn(t, x)− x‖∞ + ‖Tn(t2, x)− x2‖∞


, (3.9)

where K = max

ϵ + 2Mb2

δ2
+M, 4Mb

δ2


.

Now replacing Tn(t, x) by Bk(t, x) = 1
λk

∑
n∈Ik

Tn(t, x), and for ϵ′ > 0, write

D :=

k ∈ N : ‖Bk(1, x)− 1‖∞ + ‖Bk(t, x)− x‖∞ + ‖Bk(t2, x)− x2‖∞ ≥

ϵ′

K


,

D1 :=


k ∈ N : ‖Bk(1, x)− 1‖∞ ≥

ϵ′

3K


,

D2 :=


k ∈ N : ‖Bk(t, x)− x‖∞ ≥

ϵ′

3K


,

D3 :=


k ∈ N : ‖Bk(t2, x)− x2‖∞ ≥

ϵ′

3K


.

Then D ⊂ D1 ∪ D2 ∪ D3, and so δ(D) ≤ δ(D1)+ δ(D2)+ δ(D3). Therefore, using conditions (3.1)–(3.3), we get

δ(λ)− lim
n
‖Tn(f , x)− f (x)‖∞ = 0.

This completes the proof of the theorem. �
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