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1. Introduction and preliminaries

The concept of statistical convergence for sequences of real numbers was introduced by Fast [1] and Steinhaus [2]
independently in the same year 1951 and since then several generalizations and applications of this notion have been
investigated by various authors.

Let K € Nand K, := {k < n: k € K}. Then the natural density of K is defined by §(K) = lim, n~!|K,,| if the limit exists,
where |K,| denotes the cardinality of K.

A sequence x = (x;) of real numbers is said to be statistically convergent to £ provided that for every ¢ > 0 the set
K. .= {k € N : |x, — £| > €} has natural density zero, i.e. for each € > 0,

1
lim—|{j <n:|x;—£] >¢€}| =0.
non
The idea of A-statistical convergence was introduced in [3] as follows:
Let A = (A,) be a non-decreasing sequence of positive numbers tending to oo such that
Anp1 <A+ 1,41 =0.
The generalized de la Vallée-Poussin mean is defined by
1
th(x) = ?Tn ij
Jjel
wherel, = [n— A, + 1, n].
A sequence X = (x;) is said to be (V, A)-summable to a number £ (see [4]) if

thy(x) > £ asn — oo.

In this case £ is called the A-limit of x.
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Let K € N. Then
1
8,.(K) zlimk—|{n—kn+1 <j<n:jeKk}|
T An

is said to be A-density of K.
In case A, = n, A-density reduces to the natural density. Also, since (A,/n) < 1, §(K) < 6, (K) for every K C N.

A sequence x = (x) is said to be A-statistically convergent (see [3]) to Lif foreverye > OthesetK. := {k e N: |[x, —L| >
€} has A-density zero, i.e. §; (K.) = 0. In this case we write A(8) — limx = L. That is,

1
lim—|{n—A,+1<j<n:|x—Ll >€}|=0.
noAn
In this case we write st; — limx = ¢ and we denote the set of all A-statistically convergent sequences by S;.
In this paper, we introduce statistical A-convergence and strongly As-convergence (0 < q < o0) and establish some
relations between A-statistical convergence, statistical A-convergence, and strongly A,-convergence. We further apply our

new type of convergence to prove a Korovkin type approximation theorem.
Now, we introduce some new concepts by using the notions of density and generalized de la Vallée-Poussin mean.

Definition 1.1. A sequence x = (x) is said to be statistically A-convergent to L if for every ¢ > O the set K.(A) .= {k € N :
|te(x) — L| > €} has natural density zero, i.e. §(Kc (1)) = 0. In this case we write §(A) — limx = L. That is,

1
lim—|{k<n:|tt(x) —L| >€}| =0.
non

Definition 1.2. Asequencex = (x;) is said to be strongly A4-convergent (0 < q < oo)to the limit Liflimj, ﬁ Zje,n |xj—L|9 =
0, and we write it as x, —> L[V} ],. In this case L is called the [V, ]4-limit of x.

2. Statistical summability results

In our first theorem we establish the relation between our two newly defined concepts of A-statistical convergence and
statistical A-convergence.

Theorem 2.1. If a sequence x = (xy) is bounded and A-statistically convergent to L then it is statistically A-convergent to L but
not conversely.

Proof. Let x = (x;) be bounded and A-statistically convergent to L. Write K;(¢) = {n— A, +1<j<n:|x —L| > €}.
Then

It (x) — L|

1 k
T2 %=D

j=k—Ag+1

1 k

j=k—ag+1

1

Jelk

L > -1

k jek; (o)

1
< —(sup [x; — LK — 0,
Ak

as k — oo, which implies that t;(x) — Lasp — oo. Thatis, x is (V, A)-summable to L and hence statistically A-convergent
to L.
For converse, consider the case A, = n and the sequence x = (x;) defined as

15 ifkisodd,
X=1_1. ifkiseven.

Of course this sequence is not A-statistically convergent. On the other hand, x is (V, A)-summable to 0 and hence statistically
A-convergent to 0.
This completes the proof of the theorem. O

Next theorem gives the relation between A-statistical convergence and strong A4-convergence.
Theorem 2.2. (a) If 0 < q < oo and a sequence x = (x) is strongly Aq-convergent to the limit L, then it is A-statistically

convergent to L.
(b) If x = (xx) is bounded and A-statistically convergent to L then x, —> L[V;]g.
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Proof. (a)If0 < g < oo and x;, —> L[V, ], then

1 1
72: 9> 2: I
0<—)\ | — L|7 > |xj — L]

m jely, n el
\xj—lee
€
> —|Kl,
An
asn — oo. That is, lim,_, ﬁ|K6| = 0 and so §,(K.) = 0, where K, := {k <n:|x, —L| > €}. Hence x = (xy) is A-

statistically convergent to L.
(b) Suppose that x = (x) is bounded and A-statistically convergent to L. Then for ¢ > 0, we have §, (K.) = 0. Since
X € ly, there exists M > Osuchthat |x, —L| <M (k= 1, 2, ...). We have

1 1 u 1 .
— x—L=— xe— LT+ — xk — L|* = S1(n) + S2(n),
HD, | M_Zu | AH_ZM 1 = $1(n) + Sa(n)
jeh k=n—Ain+1 k=n—ip+1
ketKe keKe
where
1 1 1 .
Sm=—3 l—U" and Sm=-— Y x—L"
N k=n—ipn+1 N k=n—ipn+1
ketKe keKe

Now if k & K, then S;(n) < €. For k € K., we have
Sa(n) < (sup [xx — L) (IKe|/An) < MIKe|/An — O,

asn — oo, since 8, (Kc) = 0. Hence x, — L[V, ],
This completes the proof of the theorem. O

In the next result we characterize statistically A-convergent sequences through the (V, 1)-summable subsequences.
Theorem 2.3. A sequence x = (x) is statistically A-convergent to L if and only if there existsaset K = {ky < ky; < --- <k, <

---} € Nsuchthat §(K) = 1and A — limx,, = L.

Proof. Suppose that there existsasetK := {k; <k, <--- <k, < ---} € Nsuchthat§(K) := 1and A — limx,, = L. Then
there is a positive integer N such that forn > N,

ltax) — L| < €. (2.3.1)

PutK.(A) == {n € N: |t, (x) — L| > €} and K" := {knt1, kn2, .. .}. Then §(K’) = 1and K. (1) € N — K’ which implies
that §(K. (1)) = 0. Hence x = (xy) is statistically A-convergent to L.

Conversely, let x = (x;) be statistically A-convergentto L. Forr = 1,2,3,...,putK,(A) = {j e N: |t,<j x) =Ll =>1/r}
and M;(A) ={j e N: |tkj(x) —L| < 1/r}. Then 6(K; (1)) = 0 and

M;(A) D Ma(A) D ---Mi(A) D Mi1(A) D -+ (2.3.2)
and
SM,(M)=1, r=1,2,3,.... (2.3.3)

Now we have to show that forj € M; (1), (xk].) is A-convergent to L. Suppose that (xk].) is not A-convergent to L. Therefore,
there is € > 0 such that It (x) — L] > € for infinitely many terms. Let Mc(A) = {j € N : lti;(x) — L| < €} and
€e>1/r(r=1,2,3,...).Then

3(Mc (1)) =0, (2.3.4)

and by (2.3.2), M, (A) C M.()). Hence §(M,())) = 0, which contradicts (2.3.3) and therefore (xkj) is A-convergent to L.
This completes the proof of the theorem. O

Similarly we can prove the following dual statement:

Theorem 2.4. A sequence x = (xy) is A-statistically convergent to L if and only if there existsaset K := {ky < ky < --- <k, <
.-} € Nsuch that §,(K) = 1and limx;, = L.
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3. Statistical Korovkin type approximation theorem

In this section, we prove an analogue of the classical Korovkin theorem by using the concept of statistical A-convergence.
Recently, such types of approximation theorems are proved in [5-7] by using the notion of statistical convergence. The
classical Korovkin approximation theorem states as follows (see [8,9]):

Let C[a, b] be the space of all functions f continuous on [a, b]. Suppose that (T,) be a sequence of positive linear operators
from C[a, b] into C[a, b]. Then

i) lim, |T(f, x) — f(x)|lo = O, for all f € C[a, b], if and only if
(ii) limy [Ta(fi, ) — fi®) |l = 0,fori =0, 1, 2,

where fy(x) = 1, fi(x) = xand f>(x) = x%.
We know that C[a, b] is a Banach space with norm ||f || s := Supg<x<p [f (®)|, f € C[a, b]. We write T;,(f, x) for T, (f (t), x)
and we say that T is a positive operator if T(f, x) > 0 for all f (x) > 0.

Theorem 3.1. Suppose that T, : C[a, b] — Cla, b] is a sequence of positive linear operators. Then for any function f € Cl[a, b],

§() —lIm|Th(f, %) = f®) o = 0, (3.0)
if and only if

§() —lim [ITy(1,%) — 1floc = 0, (3.1)

§() —lim [T (t, ) — X[loc = 0, (3.2)

8() —lim I Ty(%, %) — ¥l = 0. (3.3)

Proof. Conditions (3.1)-(3.3) follow immediately from condition (3.0), since each of the functions 1, x, x*> belongs to C[a, b].
We prove the converse part. By the continuity of f on [a, b], we can write

f&)| <M, —oo0<x<o0.
Therefore,
ft) —fx| <2M, —o0 <t,x < o00. (3.4)

Also, since f € C[a, b], for every € > 0, there is § > 0 such that

() —f)l <€, Vt—x| <8, (35)
Using (3.4), (3.5) and putting v (t) = (t — x)?, we get
2M
f) —f®)] <e+ 5—2¢, V|t — x| < 8.
This means

2M 2M
—e— GV <fO-f0) <e+ 5

Now we could apply T, (1, x) to this inequality since T, (f, x) is monotone and linear. Hence,

2M 2M
Ta(1.%) (—e - ) < Tu(1.0) (F(6) — (X)) < Ta(1.%) (e + 5—2w) .

Note that x is fixed and so f (x) is a constant number. Therefore,
2M 2M
—€eTp(1,x) — szTn(llf, X) < To(f, %) — fX)T(1,%) < €Ty (1, %) + szTn(II/, X). (3.6)

But
To(f, ) = f() = To(f, 0) — FCOTH(1, %) + fCOT, (1, %) — f (%)
= [Th(f, %) — fFCOTu(1, 0] + f()[Ta(1, x) — 1]. (3.7)
Using (3.6) and (3.7), we have

T,(f,x) —f(x) < eT(1,%) + %Tn(w,x) + ) (Ta(1,%) — 1). (3.8)
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Now, let us estimate T, (¥, x)
Ta(V, X) = To((t — %)%, X) = To(t? — 2tx + x%, x)
T, (t2, x) — 2xT, (t, ) + x°To(1, X)
[Ta(t2, X) — x*] — 2X[Ty(t, x) — X] + x2[T,(1, x) — 1].

Using (3.8), we get
To(f,x) — f(x) < €Tp(1,%) + %{[Tn(tz,X) —X°] = 2x[ T, (t, %) — x] + X°[Ta(1, %) — 11} + FX)(To(1,%) — 1)

2M 5 5
= €[Ty(1,x) — 1]+ € + 5—2{[Tn(t ,X) — X7 — 2x[T,(¢t, x) — x]

+ X [Ta(1, %) = 11} + F ) (Ta(1, %) — 1),

Since € is arbitrary we can write

A

2Mb? 4Mb 2M , 5
ITo(f, %) —fO)loo < | €+ 52 +M ) ITy(1,%) — 1o + 872||Tn(tax) — Xl + 872||Tn(t X)) — X o

IA

K (ITa(1,20) = oo + I1Ta(, 20 = Xlloo + ITa (.0 = ¥ loc) (39)
where K = max (6 + 21:3/172132 +M, 4%17)

Now replacing T, (t, x) by Bi(t, x) = %k T.(t, x), and for €’ > 0, write

nely

E/
D:= {k € N [IBe(1, %) = Tlloo + I1Bi(t, X) — Xlloo + [1Be(t?, %) = ¥*[loo > K} ;

’
Dy =1k eN:|B(1,%) — 1lloc = }

i
Dy := 1k € N: [[B(t, x) — X|loo > }

3K
Then D C D; U D, U D3, and so §(D) < §(D1) + 8(D2) + §(D3). Therefore, using conditions (3.1)-(3.3), we get
§() —lim [ Ta(f, %) — f(®)lloc = 0.

6/
D3 := 1k € N: |[Bp(t?, X) — X*||0o > *}-

This completes the proof of the theorem. O
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