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a b s t r a c t

We characterize the monomial complete intersections in three variables satisfying the
Weak Lefschetz Property (WLP), as a function of the characteristic of the base field.
Our result presents a surprising, and still combinatorially obscure, connection with the
enumeration of plane partitions. It turns out that the rational primes p dividing the
number, M (a, b, c), of plane partitions contained inside an arbitrary box of given sides
a, b, c are precisely those for which a suitable monomial complete intersection (explicitly
constructed as a bijective function of a, b, c) fails to have the WLP in characteristic p. We
wonder howpowerful can be this connection between combinatorial commutative algebra
and partition theory. We present a first result in this direction, by deducing, using our
algebraic techniques for theWLP, some explicit information on the rational primes dividing
M (a, b, c).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let A =


d≥0 Ad be a standard graded K -algebra, where K is an infinite field. A can be identified with a quotient of
a polynomial ring K [x1, . . . , xr ] by a homogeneous ideal I , where the standard grading on R (that is, all xi’s have degree
1) is naturally induced on A. The Hilbert function of A is the arithmetic function H defined by HA(d) := dimK Ad =

dimK Rd − dimK Id, for all d ≥ 0. We suppose here that A = R/I be artinian. This has a number of equivalent formulations,
including that the Krull dimension of A is zero, that the radical of I is the irrelevant ideal m = (x1, . . . , xr) of R, or that
the Hilbert function of A is eventually zero. This latter condition allows one to naturally identify HA with the h-vector of
A, hA := (h0, h1, . . . , he). Notice that h0 = 1 and that we may assume, without loss of generality, that he ≠ 0.

The socle of A is the annihilator ofm in A. Hence it is a homogeneous ideal, andwe define the socle-vector sA := (s0, . . . , se)
to be its Hilbert function. It is easy to see that se = he ≠ 0. The integer e is defined as the socle degree of A (or of hA). If the
socle is concentrated in degree e, that is, si = 0 for all i ≤ e − 1, we say that A is a level algebra. If A is level and se = 1, A
is called Gorenstein. (One often refers to the h-vector of a level or Gorenstein algebra as a level or Gorenstein h-vector.) The
algebra A is monomial if it is presented by monomials (that is, if the ideal I is generated by monomials).

Twowell-known and useful facts about Gorenstein algebras are that their h-vectors are symmetric about themiddle (i.e.,
hi = he−i for all indices i), and that if the algebras are also monomial and artinian, then they are complete intersections. That
is, they are of the form K [x1, . . . , xr ]/(x

a1
1 , . . . , xarr ), for some positive integers a1, . . . , ar .

One of the fundamental properties an artinian algebra can enjoy is the Weak Lefschetz Property (WLP). This is a very
natural property, originally coming from algebraic geometry, which is also of great independent interest in algebra and
combinatorics. A is said to have the WLP if there exists a linear form L of R such that, for all indices i, the multiplication map
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×L between the K -vector spaces Ai and Ai+1 has maximal rank. That is, ×L is injective if dimK Ai ≤ dimK Ai+1 and surjective
if dimK Ai ≥ dimK Ai+1 (and therefore bijective if dimK Ai = dimK Ai+1). If such an L exists, it is called a Lefschetz element of
A. The Lefschetz elements of an algebra with the WLP form a non-empty open set in the Zariski topology of Ar(K), after we
naturally identify a linear form with its coefficients.

A currently active and interesting line of research is to understand the behavior of the WLP for algebras over fields of
positive characteristic (see [6,17,26]). Several of the initial results in this area have beenunexpected or surprising – especially
in the light of what happens in characteristic zero – and many problems today are still little understood. One of the main
goals of this paper is to make a contribution in this direction.

We restrict to the case ofmonomial artinian Gorenstein quotients of a polynomial ring in r = 3 variables, that is, algebras
of the form A = K [x, y, z]/(xα, yβ , zγ ). Our main result entirely characterizes the positive integers α, β, γ and p, where p
is a prime number, such that A has the WLP in characteristic p. This answers, as the particular case α = β = γ , a question
posed byMigliore et al. [17, Question 7.12]. Also, for any such algebra A, the number of primes p for which A fails to have the
WLP in characteristic p is finite. In particular, this reproves a special case of a well-known result of Stanley [23], saying that,
in characteristic 0, all artinian monomial complete intersections have the WLP. (See also [25,21]. Stanley’s result actually
showedmuchmore, namely the Strong Lefschetz Property for such algebras.) At least one of the lemmas we prove along the
way is also of some independent interest in terms of determinant evaluations.

As a byproduct, ourmain result yields a surprising connectionwith partition theory. It turns out that the rational primes p
dividing the number of plane partitions contained inside a given a× b× c box can be characterized as those prime numbers
for which the monomial complete intersection R = K [x, y, z]/(xa+b, ya+c, zb+c) fails to have the WLP in char(K) = p. It
follows as the special case a = 1 that the number,


b+c
b


, of integer partitions contained inside a b× c rectangle is divisible

by p if and only if the algebra K [x, y, z]/(xb+1, yc+1, zb+c) fails to have the WLP in char(K) = p. It would be very interesting
to understand these facts also combinatorially.

We wonder how powerful this new connection between combinatorial commutative algebra and partition theory can
be for either field. We already move a first step in this direction, by deducing, thanks to one of our algebraic techniques for
the WLP, some explicit information on the primes occurring in the integer factorization of the number of plane partitions
contained inside an arbitrary box.

2. Preliminary results

This section contains the preliminary results needed in the rest of the paper. The first of these is known (as the
Desnanot–Jacobi adjoint matrix theorem), and gives us a tool to compute the determinant of a matrix by induction.

Lemma 2.1 ([11], Section 3; [12], Proposition 10). Let U be an n × n matrix. Denote by U j1,j2,...,jk
i1,i2,...,ik

the submatrix of U in which
rows i1, i2, . . . , ik and columns j1, j2, . . . , jk are omitted. We have

det(U) · det(U1,n
1,n ) = det(U1

1 ) · det(Un
n ) − det(U1

n ) · det(Un
1 ).

We now use Lemma 2.1 to obtain the determinant of a particular matrix in closed form.

Lemma 2.2. Let the matrix N =


a+b
a−i+j


, where 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n. Then, for any integer k = 1, . . . , n + 1, the

determinant of the matrix Nk =


a+b
a−i+j


, where 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n and i ≠ k, is

det(Nk) =

k−1∏
i=1

(n + 1 − i)(b + i)
i(n + a − i)

n∏
i=1

(a + b + i − 1)!(i − 1)!
(a − 2 + i)!(b + i)!

.

(As usual, we set any empty product to equal 1.)

Proof. When n = 1, it is clear that N =



a + b
b



a + b
b + 1


. If k = 1, det(Nk) =


a+b
b+1


. If k = 2, det(Nk) =

b+1
a ·

(a+b)!
(a−1)!(b+1)! =

a+b
b


.

When n = 2,

N =




a + b
b

 
a + b
b − 1



a + b
b + 1

 
a + b
b



a + b
b + 2

 
a + b
b + 1



 , N1 =



a + b
b + 1

 
a + b
b



a + b
b + 2

 
a + b
b + 1


 , N2 =



a + b
b

 
a + b
b − 1



a + b
b + 2

 
a + b
b + 1


 ,
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N3 =



a + b
b

 
a + b
b − 1



a + b
b + 1

 
a + b
b


 .

One can easily check that

det(N1) =

0∏
i=1

(n + 1 − i)(b + i)
i(n + a − i)

2∏
i=1

(a + b + i − 1)!(i − 1)!
(a − 2 + i)!(b + i)!

,

det(N2) =

1∏
i=1

(n + 1 − i)(b + i)
i(n + a − i)

2∏
i=1

(a + b + i − 1)!(i − 1)!
(a − 2 + i)!(b + i)!

,

det(N3) =

2∏
i=1

(n + 1 − i)(b + i)
i(n + a − i)

2∏
i=1

(a + b + i − 1)!(i − 1)!
(a − 2 + i)!(b + i)!

.

We can now assume by induction that the determinant be the desired one for square matrices Nk of size up to n − 1, for
any given integer n − 1 ≥ 2. We want to show that the result is true when Nk has size n. We have

N1,n
k,1,n =


a+b
b−j+i


, which is an (n − 2) × (n − 2) matrix with i ≠ k − 1;

N1
k,1 =


a+b
b−j+i


, which is an (n − 1) × (n − 1) matrix with i ≠ k − 1;

Nn
k,n =


a+b
b−j+i


, which is an (n − 1) × (n − 1) matrix with i ≠ k;

Nn
k,1 =


a+b

b+1−j+i


, which is an (n − 1) × (n − 1) matrix with i ≠ k − 1;

N1
k,n =


a+b

b−1−j+i


, which is an (n − 1) × (n − 1) matrix with i ≠ k.

Thus, by induction, det(N1,n
k,1,n) =

∏k−2
i=1

(n−1−i)(b+i)
i(n−2+a−i)

∏n−2
i=1

(a+b+i−1)!(i−1)!
(a−2+i)!(b+i)! ;

det(N1
k,1) =

∏k−2
i=1

(n−i)(b+i)
i(n−1+a−i)

∏n−1
i=1

(a+b+i−1)!(i−1)!
(a−2+i)!(b+i)! ;

det(Nn
k,n) =

∏k−1
i=1

(n−i)(b+i)
i(n−1+a−i)

∏n−1
i=1

(a+b+i−1)!(i−1)!
(a−2+i)!(b+i)! ;

det(Nn
k,1) =

∏k−2
i=1

(n−i)(b+1+i)
i(n−2+a−i)

∏n−1
i=1

(a+b+i−1)!(i−1)!
(a−3+i)!(b+1+i)! ;

det(N1
k,n) =

∏k−1
i=1

(n−i)(b+i−1)
i(n+a−i)

∏n−1
i=1

(a+b+i−1)!(i−1)!
(a−1+i)!(b−1+i)! .

A straightforward computation also gives:

det(N1
k,1) · det(Nn

k,n)

det(N1,n
k,1,n)

=
(b + n)(n + a − 1)

(1 − k + n)(a + b + n − 1)
·

k−1∏
i=1

(n − i)(b + i)
i(n + a − i)

·

n∏
i=1

(a + b + i − 1)!(i − 1)!
(a + i − 2)!(b + i)!

;

det(Nn
k,1) · det(N1

k,n)

det(N1,n
k,1,n)

=
(−1 + a)b

(1 − k + n)(a + b + n − 1)
·

k−1∏
i=1

(n − i)(b + i)
i(n + a − i)

·

n∏
i=1

(a + b + i − 1)!(i − 1)!
(a − 2 + i)!(b + i)!

.

Therefore,

det(N1
k,1) · det(Nn

k,n)

det(N1,n
k,1,n)

−
det(Nn

k,1) · det(N1
k,n)

det(N1,n
k,1,n)

=
n

1 − k + n

k−1∏
i=1

(n − i)(b + i)
i(n + a − i)

n∏
i=1

(a + b + i − 1)!(i − 1)!
(a + i − 2)!(b + i)!

=

k−1∏
i=1

(n + 1 − i)(b + i)
i(n + a − i)

n∏
i=1

(a + b + i − 1)!(i − 1)!
(a − 2 + i)!(b + i)!

= det(Nk).

Hence, by Lemma 2.1, det(Nk) =
∏k−1

i=1
(n+1−i)(b+i)

i(n+a−i)

∏n
i=1

(a+b+i−1)!(i−1)!
(a−2+i)!(b+i)! . �

Remark 2.3. Our previous lemma, which is also of independent interest in terms of determinant evaluations, extends C.
Krattenthaler’s result on det

1≤i,j≤n


a+b
a−i+j


(see [12]). The determinant of the same matrix as Krattenthaler’s had also been

evaluated by Roberts [22] with a different method (thanks to Junzo Watanabe for kindly pointing out this reference).
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The next lemma contains two very useful algebraic facts. In particular, it allows us to look at a unique map in order to
determine whether our algebras A have the WLP. (We state it here in a considerably lesser degree of generality than its
original formulation in [17].)

Lemma 2.4 ([17], Propositions 2.1 and 2.2). Let A = R/I be an artinian monomial complete intersection of socle degree e. Then
L = x + y + z is a Lefschetz element of A. Also, A has the WLP if and only if the linear map ×L : A

e−1
2

 → A
e+1
2

 is injective.

Let us set s =
 e−1

2


, and hence s + 1 =

 e+1
2


, for the rest of the paper. We call the integer s + 1 a peak of the h-vector

h, given that h1 ≤ h2 ≤ · · · ≤ hs ≤ hs+1 ≥ hs+2 ≥ · · · he−1 ≥ he = 1 (this chain of inequalities is well known, and is
essentially the unimodality property for complete intersection h-vectors). We prove next that, in the cases we are concerned
with for e even, h has a single peak, i.e., hs < hs+1 > hs+2. When e is odd, by the symmetry of Gorenstein h-vectors, h needs
to have at least a twin peak, that is, hs = hs+1.

The following lemma tells us that, when it comes to determining when theWLP fails, we only need to be concerned with
small values of γ compared to α + β . Precisely, we have

Lemma 2.5. Let A = R/I , where R = K [x, y, z], I = (xα, yβ , zγ ), and α ≤ β ≤ γ . Suppose that γ > α + β − 2 if e is odd,
and γ > α + β − 3 if e is even. Then A has the WLP.

Proof. It is easy to check that those values of γ correspond to the case γ > s + 1. Hence A coincides through degree s + 1
with the algebra B = K [x, y, z]/(xα, yβ). Since z is clearly a non-zero divisor in B (which has Krull dimension 1), we have
that multiplication by a general linear form is an injective map between any two consecutive degrees of B. Hence, it is also
injective through degree s + 1 in A, which proves that A has the WLP (cf. Lemma 2.4). �

Remark 2.6. The previous lemma takes care entirely of the case α = 1, that is, when our monomial complete intersections
are essentially in two variables (after an obvious isomorphism). The stronger fact that all algebras in two variables have the
WLP in characteristic zero (and evenmore, the Strong Lefschetz Property)was first shown in [10]. TheWLP part of that result
was then reproved byMigliore and the second author [18] using tools, including Green’s theoremon hyperplane restrictions,
which are independent of the characteristic (that the result was characteristic-free, however, was not mentioned
in [18]).

Lemma 2.7. Let A = R/I be as above, and suppose that α ≤ β ≤ γ ≤ α + β − 3. If e is even, then hA has a single peak at
s + 1 =

α+β+γ−3
2 , and hs+1 − hs = 1.

Proof. Since for any d, hd =


2+d
d


− dimK Id, we have

hs+1 − hs =


s + 3
2


−


s + 2
2


− (dimK Is+1 − dimK Is).

Hence it suffices to show that dimK Is+1 − dimK Is = s + 1.
The key observation here is that, from the assumption α ≤ β ≤ γ ≤ α + β − 3, it easily follows that no monomial in

Is+1 can be divisible by xαyβ or xαzγ or yβzγ . Thus,

dimK Is+1 − dimK Is =


s + 1 − α + 2

2


+


s + 1 − β + 2

2


+


s + 1 − γ + 2

2


−


s − α + 2

2


+


s − β + 2

2


+


s − γ + 2

2


= (s − α + 2) + (s − β + 2) + (s − γ + 2)
= 3s + 3 − (α + β + γ − 3) = 3(s + 1) − 2(s + 1) = s + 1. �

3. Monomial complete intersections in three variables

According to Lemma 2.4, determining when the WLP holds for A = K [x, y, z]/(xα, yβ , zγ ) is tantamount to determining
when the map ×L : As → As+1 is injective, for L = x + y + z. We use linear algebra to study the problem.

First, we illustrate with a few examples the matrixM associated with the map ×L : As → As+1. Notice thatM is a square
matrix when hA has a twin peak (that is, when the socle degree e is odd), and by Lemma 2.7, it is of size (hs + 1) × hs when
hA has a single peak (i.e., for e even). In the following examples the marked boxes insideM are 1’s and the rest of the matrix
is 0. They have been generated by means of a Mathematica [16] computer program.2

2 The program generating the above matrices can be found on the first author’s webpage, at http://www.mathlab.mtu.edu/∼jizhoul/Commutative_
Algebra_Project3.nb.

http://www.mathlab.mtu.edu/~jizhoul/Commutative_Algebra_Project3.nb
http://www.mathlab.mtu.edu/~jizhoul/Commutative_Algebra_Project3.nb
http://www.mathlab.mtu.edu/~jizhoul/Commutative_Algebra_Project3.nb
http://www.mathlab.mtu.edu/~jizhoul/Commutative_Algebra_Project3.nb
http://www.mathlab.mtu.edu/~jizhoul/Commutative_Algebra_Project3.nb
http://www.mathlab.mtu.edu/~jizhoul/Commutative_Algebra_Project3.nb
http://www.mathlab.mtu.edu/~jizhoul/Commutative_Algebra_Project3.nb
http://www.mathlab.mtu.edu/~jizhoul/Commutative_Algebra_Project3.nb
http://www.mathlab.mtu.edu/~jizhoul/Commutative_Algebra_Project3.nb
http://www.mathlab.mtu.edu/~jizhoul/Commutative_Algebra_Project3.nb
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Now let

Zm×(m+1) =


1 1 0 · · · 0 0 0
0 1 1 · · · 0 0 0
...

...
. . .

. . .
. . .

...
...

0 0 0 · · · 1 1 0
0 0 0 · · · 0 1 1


m×(m+1)
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and

Zm×m =



1 1 0 · · · 0 0 0
0 1 1 · · · 0 0 0
...

...
. . .

. . .
. . .

...
...

0 0 0 · · · 1 1 0
0 0 0 · · · 0 1 1
0 0 0 · · · 0 0 1


m×m

.

We have the following result:

Proposition 3.1. If hA has a twin peak, that is, γ = α + β − 2m for some integer m ≥ 1, then the matrix Mhs×hs is

Zm×(m+1) 0 · · · 0 0 · · · 0 0 · · · 0 0
Im+1 Z(m+1)×(m+2) · · · 0 0 · · · 0 0 · · · 0 0

...
. . .

. . .
...

...
...

...
... · · ·

...
...

0 · · · Iα−1 Z(α−1)×α 0 · · · 0 0 · · · 0 0
0 · · · · · · Iα Zα×α · · · 0 0 · · · 0 0
...

...
...

...
...

. . .
...

... · · ·
...

...
0 · · · · · · 0 0 · · · Zα×α 0 · · · 0 0
0 · · · · · · 0 0 · · · Iα ZT

(α−1)×α · · · 0 0
... · · · · · ·

...
...

...
...

...
. . .

...
...

0 · · · · · · 0 0 · · · 0 0 Im+2 ZT
(m+1)×(m+2) 0

0 · · · · · · 0 0 · · · 0 0 · · · Im+1 ZT
m×(m+1)



.

If hA has a single peak, that is, γ = α + β − 2m + 1 for some integer m > 1, then M(hs+1)×hs is

Zm×(m+1) 0 · · · 0 0 · · · 0 0 · · · 0 0
Im+1 Z(m+1)×(m+2) · · · 0 0 · · · 0 0 · · · 0 0

...
. . .

. . .
...

...
...

...
... · · ·

...
...

0 · · · Iα−1 Z(α−1)×α 0 · · · 0 0 · · · 0 0
0 · · · · · · Iα Zα×α · · · 0 0 · · · 0 0
...

...
...

...
...

. . .
...

... · · ·
...

...
0 · · · · · · 0 0 · · · Zα×α 0 · · · 0 0
0 · · · · · · 0 0 · · · Iα ZT

(α−1)×α · · · 0 0
... · · · · · ·

...
...

...
...

... · · ·
...

...

0 · · · · · · 0 0 · · · 0 0
. . . 0 0

0 · · · · · · 0 0 · · · 0 0 Im+1 ZT
m×(m+1) 0

0 · · · · · · 0 0 · · · 0 0 · · · Im ZT
(m−1)×m



.

(There are β − α blocks of Zα×α in both cases. 0 represents a block matrix with all 0’s.)
Proof. We arrange the monomial basis of As in colexicographical order. This ordering is defined, for monomials of the

same degree, by setting xa11 xa22 · · · xann < x
a′1
1 x

a′2
2 · · · xa

′
n

n if the following relation among base 10 expansions is satisfied:
(anan−1 · · · a1)10 < (a′

na
′

n−1 · · · a′

1)10. For instance, the colexicographical order on the degree 3 monomials of K [x1, x2, x3]
gives x31 < x21x2 < x1x22 < x32 < x21x3 < x1x2x3 < x22x3 < x1x23 < x2x23 < x33.

We let {fs,1, fs,2, . . . , fs,hs} be the monomial basis of As, arranged in colexicographical order. If f ∈ As then f =

α1fs,1 + α2fs,2 + · · · + αhs fs,hs . By applying the linear operator ×L on f , we get

L · f = (x + y + z) · f = β1fs+1,1 + β2fs+1,2 + · · · + βhs+1 fs+1,hs+1 ∈ As+1,

where {fs+1,1, fs+1,2, . . . , fs+1,hs+1} is the monomial basis of As+1 in colexicographical order, and βi = αj + αk + αk+1. Notice
that if xaybzc ∈ As+1, then xa−1ybzc, xayb−1zc, xaybzc−1

∈ As, which implies that xa−1ybzc, xayb−1zc are next to each other
according to our ordering. Hence, the difference of the subscripts of the coefficients is 1. It is easy to see that

M ·


α1
α2
...

αhs

 =


β1
β2
...

βhs+1

 .
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If we now expand the product (x+ y+ z) · f in terms of x, y, z, after a standard but tedious computation we obtain that the
matrixM has the desired form. �

Define, for any integers a, b, c ≥ 1,

M (a, b, c) :=

a∏
i=1

b∏
j=1

c∏
k=1

i + j + k − 1
i + j + k − 2

=

a∏
i=1

(b + c + i − 1)!(i − 1)!
(b + i − 1)!(c + i − 1)!

,

and for α, β, γ as in our assumptions and such that α + β + γ is odd,

H(k) :=

k−1∏
i=1


α+β−γ+1

2 − i
 

−α+β+γ−1
2 + i


i(α − i)

· M


α + β − γ − 1
2

,
α − β + γ − 1

2
,
−α + β + γ + 1

2


.

We are now ready for themain result of this paper, where we characterize the artinianmonomial complete intersections
in 3 variables having the WLP in characteristic p.

Theorem 3.2. Let A = R/I , where R = K [x, y, z], I = (xα, yβ , zγ ), and char(K) = p.

(1) If e is odd (that is, α + β + γ is even), then A fails to have the WLP if and only if

p | M


α + β − γ

2
,
α − β + γ

2
,
−α + β + γ

2


.

(2) If e is even (that is, α + β + γ is odd), then A fails to have the WLP if and only if, for all integers 1 ≤ k ≤
α+β−γ+1

4 ,

p | H(k).

Proof. Recall that we denote by M the matrix associated with the map ×L : As → As+1, where L = x + y + z. Our strategy
consists of computing the absolute value of the determinant of M when M is a square matrix, and all the maximal minors
ofM whenM is not a square matrix. It follows from the above observations that A fails to have theWLP in characteristic p if
and only if p is a prime factor of the determinant ofM or of all the maximal minors ofM . For simplicity we keep the notation
det(T ) when we actually mean the absolute value of det(T ).

(1) Let γ = α + β − 2m, for somem ≥ 1. Set

U =



Im+1 Z(m+1)×(m+2) · · · 0 0 · · · 0 0 · · · 0
...

. . .
. . .

...
...

...
...

... · · ·
...

0 · · · Iα−1 Z(α−1)×α 0 · · · 0 0 · · · 0
0 · · · · · · Iα Zα×α · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

... · · ·
...

0 · · · · · · 0 0 · · · Zα×α 0 · · · 0
0 · · · · · · 0 0 · · · Iα ZT

(α−1)×α · · · 0
... · · · · · ·

...
...

...
...

...
. . .

...

0 · · · · · · 0 0 · · · 0 0 Im+2 ZT
(m+1)×(m+2)

0 · · · · · · 0 0 · · · 0 0 · · · Im+1


,

V =



0
...
0
0
...
0
0
...
0

ZT
m×(m+1)


, W =


Zm×(m+1) 0 · · · 0 0 · · · 0 0 · · · 0


, X = [0] .

Thus,M =


W X
U V


. Evaluating det(M) up to sign is equivalent to evaluating the determinant ofM ′

=


U V
W X


. We have

det(M ′) = det(U) det(WU−1V ) = det(WU−1V ). It is a standard task to check that U−1 is the matrix
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Im+1 −Z(m+1)×(m+2) · · · (−1)nZ(m+1)×(m+2)Z(m+2)×(m+3) · · · Zα×α · · · Zα×α · · · ZT

(m+2)×(m+3)Z
T
(m+1)×(m+2)

0 Im+2 · · · (−1)n−1Z(m+2)×(m+3) · · · Zα×α · · · Zα×α · · · ZT
(m+2)×(m+3)Z

T
(m+1)×(m+2)

...
...

. . .
...

0 0 0 −ZT
(m+1)×(m+2)

0 0 0 Im+1

 .

Thus, WU−1V = (−1)nZm×(m+1)Z(m+1)×(m+2) · · · Zα×α · · · Zα×α · · · ZT
(m+1)×(m+2)Z

T
m×(m+1). Using the properties of the

Pascal triangle, one can easily verify that

Zm×(m+1)Z(m+1)×(m+2) · · · Zα×α · · · Zα×α · · · ZT
(m+1)×(m+2)Z

T
m×(m+1)

=




α + β − 2m

β − m

 
α + β − 2m
β − m − 1


· · ·


α + β − 2m
β − 2m + 1




α + β − 2m
β − m + 1

 
α + β − 2m

β − m


· · ·


α + β − 2m
β − 2m + 2


...

...
...

...
α + β − 2m

β − 1

 
α + β − 2m

β − 2


· · ·


α + β − 2m

β − m




.

By Krattenthaler’s result ([12], 2.17), we have

det


α + β − 2m
β − m + i − j


1≤i,j≤m

= M


α + β − γ

2
,
α − β + γ

2
,
−α + β + γ

2


.

Hence the absolute value of determinant ofM isM


α+β−γ

2 ,
α−β+γ

2 ,
−α+β+γ

2


, as desired.

(2) We now consider whenM is a non-square matrix. In this case, we set γ = α + β − 2m + 1, for somem > 1.
By Lemma 2.7, M is an (hs + 1) × hs matrix. Thus, its maximal minors are the matrices obtained by omitting one of the

rows. Denote byMk the maximal minor obtained by omitting the kth row. We define U to be

Im+1 Z(m+1)×(m+2) · · · 0 0 · · · 0 0 · · · 0 0
...

. . .
. . .

...
...

...
...

... · · ·
...

...
0 · · · Iα−1 Z(α−1)×α 0 · · · 0 0 · · · 0 0
0 · · · · · · Iα Zα×α · · · 0 0 · · · 0 0
...

...
...

...
...

. . .
...

... · · ·
...

...
0 · · · · · · 0 0 · · · Zα×α 0 · · · 0 0
0 · · · · · · 0 0 · · · Iα ZT

(α−1)×α · · · 0 0
... · · · · · ·

...
...

...
...

...
. . .

...
...

0 · · · · · · 0 0 · · · 0 0 Im+2 ZT
(m+1)×(m+2) 0

0 · · · · · · 0 0 · · · 0 0 · · · Im+1 ZT
m×(m+1)

0 · · · · · · 0 0 · · · 0 0 · · · 0 Im



,

V =


0
...
0

ZT
(m−1)×m

 , W =

Zm×(m+1) 0 · · · 0 0 · · · 0 0 · · · 0 0


, X = [0] .

Hence M =


W X
U V


. If 1 ≤ k ≤ m =

α+β−γ+1
2 , we need to omit the kth row of W and X , in order to omit the kth

row of M . Let Wk and Xk be the matrices W and X without their kth row. Therefore, Mk =


Wk Xk
U V


. Obtaining det (Mk) is

equivalent to evaluating the determinant of


U V
Wk Xk


. Notice that det


U V
Wk Xk


= det(WkU−1V ).

Hence, we can use the same approach as in part (1) in order to obtain the determinant of the matrix WkU−1V . Entirely
similar computations show that this matrix is

WkU−1V =


α + β − 2m + 1
β − m + i − j


, where 1 ≤ i ≤ m, 1 ≤ j ≤ m − 1, and i ≠ k.
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By Lemma 2.2, for k = 1, 2, . . . α+β−γ+1
2 = m, we have

det(WkU−1V ) =

k−1∏
i=1


α+β−γ+1

2 − i
 

−α+β+γ−1
2 + i


i(α − i)

· M


α + β − γ − 1
2

,
α − β + γ − 1

2
,
−α + β + γ + 1

2


= det(Mk) = H(k).

Notice that omitting the kth row, by symmetry, gives the same determinant (up to sign) that we obtain by omitting the
α+β−γ+1

2 + 1 − k

th row.

However, we cannot apply the same method for k > m, because in this case we would end up omitting a row from both
matrices U and V and affecting the entire structure of Mk. We use a different approach to evaluate the determinant of Mk.
Instead of deleting a row, we add an extra column S with 1 as the kth entry. The rest are all zeros. Now the newmatrixM ′′ is

Zm×(m+1) 0 · · · 0 0 · · · 0 0 · · · 0 0 0
Im+1 Z(m+1)×(m+2) · · · 0 0 · · · 0 0 · · · 0 0 0

...
. . .

. . .
...

...
...

...
... · · ·

...
... S

0 · · · Iα−1 Z(α−1)×α 0 · · · 0 0 · · · 0 0 0
0 · · · · · · Iα Zα×α · · · 0 0 · · · 0 0 0
...

...
...

...
...

. . .
...

... · · ·
...

...
...

0 · · · · · · 0 0 · · · Zα×α 0 · · · 0 0 0
0 · · · · · · 0 0 · · · Iα ZT

(α−1)×α · · · 0 0 0
... · · · · · ·

...
...

...
...

... · · ·
...

...
...

0 · · · · · · 0 0 · · · 0 0
. . . 0 0 0

0 · · · · · · 0 0 · · · 0 0 Im+1 ZT
m×(m+1) 0 0

0 · · · · · · 0 0 · · · 0 0 · · · Im ZT
(m−1)×m 0



,

with

S =



0
...
0
1
0
...
0


.

Note that M ′′ is a square matrix. Evaluating det(Mk) is equivalent to evaluating det(M ′′). We again consider M ′′ as four
blocks, where now

V =



0 0
... S
0 0
0 0
...

...
0 0
0 0
...

...
0 0
0 0

ZT
(m−1)×m 0



,

and the other three blocks are the same as before. Therefore we only need to evaluate the determinant ofWU−1V .
Employing the same method, after a series of standard computations we get

det(Mk) = det(WU−1V ) =

α+β−γ+1
2−

k=1

(−1)k ·


s

j − k


· H(k)
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for 
1 ≤ s ≤

α − β + γ − 1
2

and 1 ≤ j ≤
α + β − γ + 1

2
+ s

α − β + γ + 1
2

≤ s ≤
−α + β + γ − 1

2
and 1 ≤ j ≤ α,

and

p |

α+β−γ+1
2−

k=1

(−1)k ·


s

−α+β+γ−1
2 + k − j


· H(k)

for all −α+β+γ+1
2 ≤ s ≤ γ − 1 such that 1 ≤ j ≤

α+β+γ−1
2 − s, and for all 1 ≤ k ≤

α+β−γ+1
2 .

Notice that, if p | H(k), then obviously, for all 1 ≤ k ≤
α+β−γ+1

2 ,

p |

α+β−γ+1
2−

k=1

(−1)k ·


s

j − k


· H(k)

and

p |

α+β−γ+1
2−

k=1

(−1)k ·


s

−α+β+γ−1
2 + k − j


· H(k).

Therefore p only needs to satisfy the condition p | H(k) for all 1 ≤ k ≤
α+β−γ+1

4 . This completes the proof of the
theorem. �

Remark 3.3. In a different but similar effort to ours, Hara and Watanabe [9] recently computed the determinants of
the incidence matrices between graded components of the Boolean lattice on an r-set. This was equivalent, because of
considerations analogous to those we have made above, to determining in which characteristics the complete intersections
K [x1, . . . , xr ]/(x21, . . . , x

2
r ) have the Strong Lefschetz Property.

Example 3.4. Let A = K [x, y, z]/(xb+1, yb+1, z2b), where b is any positive integer. Hence the socle degree of A is 4b− 1, and
by Theorem 3.2, A fails to have the WLP in characteristic p if and only if p dividesM (1, b, b) =


2b
b


.

Notice that 2 |


2b
b


for all integers b ≥ 1. For instance, this can be easily seen by observing that the involution on

the class of b-subsets of a given 2b-set, defined by taking the complementary of each set, has no fixed points. Thus, for any
b ≥ 1, A fails to have the WLP in char(K) = 2.

Remark 3.5. Notice that, over the integers, the matrix M of Theorem 3.2 has a non-zero determinant when it is a square
matrix. Similarly, when it is non-square, it is easy to see that not all its maximal minorsMk can have a zero determinant (for
instance, M1). This reproves that all artinian monomial complete intersections in three variables have the WLP over a field
of characteristic zero, which is a (very) special case of a well-known result of Stanley [23] (see also [25], and for the first
proof using only commutative algebra methods, Reid et al. [21]).

Theorem 3.2 also answers, as the particular case α = β = γ , a question raised by Migliore, Mirò-Roig and Nagel ([17],
Question 7.12). Define, for any given d ≥ 3 odd, a function F as

F (k) :=

k−1∏
i=1

 d+1
2 − i


·
 d−1

2 + i


i(d − i)
· M


d − 1
2

,
d − 1
2

,
d + 1
2


.

Corollary 3.6. Let A = R/I , where R = K [x, y, z], I = (xd, yd, zd), and char(K) = p. Then A fails to have the WLP if and only if
p | M

 d
2 ,

d
2 ,

d
2


if d is even, and p | F (k) for all integers 1 ≤ k ≤

d+1
4 if d is odd.

Proof. This follows immediately from Theorem 3.2, by setting α = β = γ = d. �

In general, even though Theorem 3.2 has established necessary and sufficient conditions in order for an algebra to fail
the WLP, obviously determining explicitly such algebras is extremely difficult computationally. Indeed, this problem is
equivalent to that of determining the primes in the integer factorization of the determinants of Theorem 3.2. However,
we can prove with a simple algebraic argument the following explicit bounds in any characteristic p:
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Proposition 3.7. Let A = K [x, y, z]/(xα, yβ , zγ ), where α ≤ β ≤ γ . Then, for any prime number p such that

γ ≤ pn ≤


α + β + γ − 3

2


for some positive integer n, A fails to have the WLP in char(K) = p.

Proof. Recall that the peak of hA is in degree s+ 1 =


α+β+γ−3

2


. It is a nice (combinatorial) exercise to check that p |


pn

k


for all integers k = 1, 2, . . . , pn − 1 (see [3]). Thus, from the assumption α ≤ β ≤ γ ≤ pn, we have that

(x + y + z) · (x + y + z)p
n
−1

= (x + y + z)p
n

= 0

in A. Therefore, since L = x+ y+ z ≠ 0 in A, by induction on the degree we easily get that the map ×L : Apn−1 → Apn is not
injective. Hence A fails to have the WLP. �

Example 3.8. Consider again the special case α = β = γ = d. The bounds of Proposition 3.7 become

d ≤ pn ≤


3d − 3

2


,

for some integer n ≥ 1. It is easy to see that this already proves that at least one third of all algebrasA = K [x, y, z]/(xd, yd, zd)
fail to have the WLP in a given char(K) = p.

We propose the following conjecture in characteristic 2.

Conjecture 3.9. The algebra K [x, y, z]/(xd, yd, zd) has the WLP in char(K) = 2 if and only if d =


2n+1

3


for some positive

integer n.

Notice, for instance, that d =


2n+1

3


is odd for all n ≥ 1, and therefore it follows from our conjecture that

K [x, y, z]/(xd, yd, zd) has theWLP for all d even. It would be very interesting to find a combinatorial proof of our conjecture,
especially in the light of the connection we present in the next section between the WLP and the enumeration of plane
partitions.

4. The connection with plane partitions

A plane partition of a positive integer n is a finite two-dimensional array A = (ai,j) of positive integers, non-increasing
from left to right and top to bottom, that add up to n. That is, ai,j ≥ ai,j+1 ≥ ai+1,j ≥ 1 for all i and j, and

∑
i,j ai,j = n. (For

details on this fascinating topic, see for instance [1].)
We say that a plane partition A = (ai,j) is contained inside an a × b × c box, if 1 ≤ i ≤ a, 1 ≤ j ≤ b, and ai,j ≤ c for

all i and j. MacMahon determined the number of plane partitions contained inside an a × b × c box (see [14,15,20]; for the
first combinatorial proof of this result, see [13]). In fact, surprisingly, he proved that the number isM (a, b, c), the very same
M (a, b, c) we met in the previous section when determining the WLP for our monomial complete intersections.

Remark 4.1. A similar relationship, in that case involving certain classes of monomial almost complete intersections, has
been discovered (independently but earlier) also by Cook and Nagel [6]. (Their paper actually mentions other combinatorial
objects, lozenges, which are known to be in bijection with plane partitions; see [7,8].)

SinceM


α+β−γ

2 ,
α−β+γ

2 ,
−α+β+γ

2


enumerates, byMacMahon’s result, the plane partitions contained inside an α+β−γ

2 ×

α−β+γ

2 ×
−α+β+γ

2 box, from Theorem 3.2 we have

Theorem 4.2. For any given positive integers a, b, c, the number of plane partitions contained inside an a× b× c box is divisible
by a rational prime p if and only if the algebra K [x, y, z]/(xa+b, ya+c, zb+c) fails to have the WLP when char(K) = p.
Proof. This is immediate from Theorem 3.2. �

The case a = 1 corresponds to that of integer partitions (among the several possible choices, for an introduction, a
survey of the main results and techniques, or the philosophy behind this remarkably broad field, see [1,2,20,24]). Thus,
from Theorem 4.2 we immediately have

Corollary 4.3. For any given positive integers b and c, the number of integer partitions, M (1, b, c) =


b+c
b


, contained inside a

b× c rectangle is divisible by a rational prime p if and only if the algebra K [x, y, z]/(xb+1, yc+1, zb+c) fails to have the WLP when
char(K) = p.

It seems reasonable to believe that such a nice connection between combinatorial commutative algebra and partition
theory must have some deep combinatorial explanation. However, this is unclear to us at the moment. Notice that our
bijection is entirely different from the more natural one given by associating, to each monomial artinian ideal I in three
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variables, the plane partition whose solid Young diagram is the staircase diagram of (the order ideal of monomials outside
of) I (see [19] for details).

We wonder how powerful the connection between monomial complete intersections and plane partitions given by
Theorem 4.2 could be for either field. One of our algebraic techniques used in studying theWLP allows us tomove a first step
in this direction, by providing a highly non-trivial result on the function enumerating plane partitions. Namely, we are able
to deduce some explicit information on the possible primes occurring in the integer factorization of the number of plane
partitions contained inside an arbitrary box. We have

Theorem 4.4.

(1) Fix three positive integers a ≤ b ≤ c − 1. Then, for any prime number p such that

b + c ≤ pn ≤ a + b + c − 1

for some integer n ≥ 1, we have

p | M (a, b, c) .

(2) Fix two positive integers a ≤ b. Then, for any prime number p such that

2b ≤ pn ≤ a + 2b − 2

for some integer n ≥ 1, we have

p | M (a, b, b) .

Proof. (1) Set α = a+ b+ 1, β = a+ c and γ = b+ c. The result easily follows from Theorem 3.2(2) (considering H(1)),
and Proposition 3.7.

(2) Now set α = a + b, β = a + c and γ = b + c. The result follows from Theorem 3.2(1), and Proposition 3.7. �

Example 4.5. Let a = b = 50. Then Theorem 4.4 gives that the number,M (50, 50, 50), of plane partitions contained inside
a 50 × 50 × 50 box is divisible by any rational prime p such that 100 ≤ pn ≤ 148 for some n ≥ 1. These values of p are

2, 5, 11, 101, 103, 107, 109, 113, 127, 131, 137, 139.

Note added on August 11, 2010. After our work was submitted, Brenner and Kaid wrote paper [4] providing, by means of
a nice geometric argument, a more explicit characterization, in the special case α = β = γ = d, of the primes p of our
Theorem 3.2 forwhich the algebra A = K [x, y, z]/(xα, yβ , zγ ) has theWLP in characteristic p. In particular, Brenner and Kaid
were able to solve (positively) our Conjecture 3.9. It remains an open and very interesting problem to find a combinatorial
proof of Conjecture 3.9. We are grateful to Holger Brenner for sending us a copy of [4].

Also, Chen (Berkeley), Guo (Duke), Jin (Minnesota) and Liu (Princeton), four REU students working in Summer 2010 at
the University of Minnesota under the direction of Vic Reiner and Dennis Stanton, found, among other interesting things, a
beautiful combinatorial explanation for our connection WLP-plane partitions, which was only proved algebraically in this
paper. We are grateful to Vic Reiner for sending us an early copy of their work [5].
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