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Abstract

We study chordal Loewner faties in the upper half-plane and show that they have a paramet-
ric representation. We show one, that to every chordal Loewner family there corresponds a unique
measurable family of probability measures on the real line, and two, that to every measurable family
of probalility measures on the reéihe there corresponds a unique chordal Loewner family. In both
cases the correspondence is being given by solving the chordal Loewner equation. We use this to
show that any probability measure on the real line with finite variance and mean zero has univa-
lent Cauchy transform if and oplif it belongs to some chordal Leser family. If the probability
measure has compact support we give two furtleeessary and sufficient conditions for the univa-
lence of the Cauchy transform, the first in terms of the transfinite diameter of the complement of the
image domain of the reciprocal Cauchy transform, and the second in terms of moment inequalities
corresponding to the @nsky irequalities.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we discuss chordal Loewner families, the chordal Loewner equation, and
probability measures on the real line whose reciprocal Cauchy transform is univalent in the
upper half-plane.
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Reciprocal Cauchy transforms of probability measures on the real line play an impor-
tant role in describing the sum of two noncommutative random variables, namely for the
free additive convolution developed by Voiculescu [14], and the monotonic convolution
developed by Muraki [11].

In [13], Schramm introduced a family of random compact sets, growing in a domain
of the complex plane. He showed that any random, growing, and compact set that satis-
fies a certain Markovian-type and conformal invariance property belongs to this family,
and that it can be generated by solving Loewner’s equation driven by a Brownian motion
on the boundary of the domain. This family is now known as stochastic (or Schramm-)
Loewner evolution (SLE). Its discovery soon lead to rigorous proofs of various conjectures
of conformal field theory about the behavior of certain statistical mechanical systems at
criticality, see [15] and references therein.

In [2], we noted that a solution of the (chordal) Loewner equation at a fixed time is
the reciprocal Cauchy transform of some probability measure on the real line. Since any
solution of Loewner’s equation takes values in the set of univalent functions this raised the
guestion of what characterizes probability measures whose reciprocal Cauchy transform is
univalent in the upper half-plane. In particular, does any such measure arise by solving a
suitable Loewner equation, and if so, what kind of driving functions need to be considered?

To begin to treat this question we found it necessary to study the chordal Loewner
equation beyond the cases we found in the literature. These being either to narrow for our
purposes, such as the case of compact complement for SLE, [9], or to general, as in [5],
where, at least to our knowledge, no consistent normalization and thus parametrization of
chordal Loewner families with a completercespondence with driving functions is pos-
sible. On the other hand, for the (radial) Loewner equation on the unitDislere exists
just such a treatment, given in [12]. In that case it is convenient to normalize a univalent
function f onD by f(0) =0 andf/(0) > 0. (Radial) Loewner families, i.e., maximal sub-
ordination chains of such functions, are then parametrized by the derivative @tand
one can show that there is a one-to-one c@uoasgence between (radial) Loewner families
and so-called Herglotz families, the cogpesdence being given bylving the (radial)
Loewner equation.

In the chordal case in the upper half-plane we have to deal with compactness questions
that do not arise in the (radial) disk case. A suitable class of univalent functions to consider
are thosef that map the upper half-plane into the upper half plane and satisfy

C
S(z2)
for someC > 0 for all z in the upper half-plane. Such functions are in fact recipro-
cal Cauchy transforms of probability measures on the real line with finite variance and
mean zero. We show that the least constannh the above inequality serves as a para-
meter for chordal Loewner families and that chordal Loewner families are in one-to-one
correspondence with measurable families aftyability measures on the real line, the cor-
respondence being given by solving the adarLoewner equation. The structure of our
proof of these results is identical to the structure of the proof of the analogous result in the
radial case in [12]. However, the basic tools and inequalities used at the various steps in
the argument are very different. We give a detailed proof in Sections 4 and 5, taking up the

|f(2)—z| <
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bulk of this paper. We hope that our general treatment may be of use in the context of the
stochastic Loewner evolution if the dig function—Browniarmotion—is replaced by
more general stochastic processes, for example superprocesses.

As a consequence of our results in Sections 4 and 5 we can answer the question, whether
every probability measure on the real line with univalent Cauchy transform belongs to some
chordal Loewner family, in the affirmative, at least when the probability measure has finite
variance.

In the case where the probability measiras compact support we give two further
characterizations based on classical results in the theory of univalent functions. The first
characterization is in terms of the transfirdiameter of the complement of the image, and
is a consequence of a Theorem by Hayman. The second is an application of the Grunsky
inequalities. It gives, at least in principle, a characterization of probability measures with
univalent Cauchy transform in terms of the moments of the measure.

The paper is structured as follows. In 8en 2 we fix notation and collect some results
about reciprocal Cauchy transforms of prblity measures on theeal line. In Section 3
we begin by recalling some general results on domains of univalence of reciprocal Cauchy
transforms and then obtain three characterizations of univalent Cauchy transforms, Theo-
rems 3.1 and 3.2, Corollary 3.1, and Theor@gmh. In Section 4 we introduce and describe
chordal Loewner families, culminating in the representation as parametrized families in
Theorem 4.3. Finally, in Section 5 we show in Theorem 5.3 that to every chordal Loewner
family there corresponds a unique measiegdamily of probability measures on the real
line, where the correspondence is being given by solving the chordal Loewner equation,
and in Theorem 5.6 that to every measurable family of probability measures on the real
line there corresponds a unique chordal Loemamily, the correspondence again being
given by solving the chordal Loewner equation.

The author would like to thank Hari Bercovici for asking the question that inspired this
paper, and Jochen Becker for bringing the thesis of Betker to my attention. The author
would also like to thank an anonymous referee for bringing the paper [7] of Goryainov and
Ba to my attention. Some of the main results of this paper can also be deduced from their
result. However, the method they employ differs markedly from our approach.

2. Preliminaries

For the complex plan€ denoteH = {z € C: J(z) > 0} the upper half-plane-H =
{z € C: JI(2) < 0} the lower half-plane, and for every positive real numbetet H, =
{z € C: J(z) > a}. Let u be a finite positive Borel measure & The Cauchy transform
G = G, of u is defined by

p(dx)
—X

e —H.

zeH— G(z) = /
R
G is an analytic function with the property

limsupy|G(iy)| < oo. 1)
y—00
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In fact, limsup_,, ¥IG(@iy)| = n(R). Conversely, every analytic function mappitify
into —HI that satisfies (1) is the Cauchy transform of a finite positive Borel measuRe on
[1, Satz 3, Teil 59, Kapitel VI]. We can recoverfrom its Cauchy transform using Stieltjes’
inversion formula

b
w((a, b))+ u(la, bl) = —5 !i@O/%(G(x +i€))dx.

a

Since G(z) # 0 for all z € H the reciprocal Cauchy transforifi = 1/G is an analytic
function that maps$l into H. ThusF is a Pick function. Besides being a Pick function, the
reciprocal Cauchy transforifi of a probability measurg satisfies

nf SFE@) _
zeH B(Z)

1, 2)
see [10], and the following characterization is known
Theorem 2.1 [10]. For an analytic functionF : H — H the following are equivalent

(i) F is the reciprocal Cauchy traierm of a probaldity measureu onR.
(ii) There exist a real numbére R and a finite nonnegative Borel measuren R such
that

1+1¢
F(z)=b+z+/ t <

R

v(dt), zeH.
-z

(i) F satisfies Eq(2).

For probability measures with finite variance and zero mean this result can be speci-
fied to

Proposition 2.1 [10]. For an analytic functionF : H — H the following are equivalent

(i) F isthe reciprocal Cauchy trafierm of a probaldity measure orR with finite vari-
ance and mean zero.
(ii) There exists a finite positive measwren R such that for all; € H,

F(o)=z _/ p(dx)

7—x
R

(iif) There exists a positive numb@rsuch that for allz € H,

C
F(z)—z| < —.
|F(2) —z| < 50

Moreover, the variance? of i in (i), the total weighp (R) of p in (i), and the smallest
possible constard in (iii) are all equal.
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3. Univalent Cauchy transforms

Maps resulting from the Loewner evolution are always conformal. Cauchy transforms
on the other hand do not have to be conformal. Since we describe Loewner evolution via
Cauchy transforms of an evolving family of measures it is interesting to investigate when
Cauchy transforms are conformal.

We first recall some general results about domains of univalence for Cauchy transforms.
Denotely, s the Stolz angle

Tup= {z eH: |z] > Band — aS(z) <NR(z) < af?s(z)}.

Proposition 3.1 [4]. Let u be a probabilitymeasure o, and letO < € < «. There exists
a B > Osuch that

(i) F=1/G isunivalentinly g, and
(ii) F(Fa,ﬁ) D Fd*é,ﬁ(l‘FG)'

For a probability measure with finite variance there is a stronger result.

Proposition 3.2. Let 1 be a probabilitymeasure ofR with finite variancer? and recipro-
cal Cauchy transforn&'. Then the restriction of” to H,, takes every value i, precisely
once.

Proof. This follows immediately from [10, Lemma 2.4] where the result is established
under the additional assumption thahas mean-value 0. Indeed ifhas mean value,
setF(-) = F(-+a). ThenF is the reciprocal Cauchy transform @f whereji is the push-
forward of x under the map — x — a. i has mean value 0 and so Lemma 2.4 in [10]
applies toF. This in turn implies the result foF. O

It follows that there is a right-invers—1:H,, — H, and hence thaF is univalent
on F~1(Hyy).
We now come to the question that was the initial impetus for this paper, nantedy
is the Cauchy transform of a @bability measure univalent in the entire upper half-plane?
As a consequence of our general investigation of chordal Loewner families in Section 4
we have the following

Theorem 3.1. Suppose that is a probability measure on the real line with varianeé
and mean zero. The reciprocal Cauchy transfafnof w is univalent inH if and only if
there is a chordal Loewner familyf (r; ), € [0, c0)} such thatF (z) = f(c2; z), z € H.

Using the relation between chordal Loewner families and the chordal Loewner equation
that we develop in Section 5 we get

Theorem 3.2. Suppose that is a probability measure on the real line with variancé
and mean zero. The reciprocal Cauchy transfafnof n is univalent inH if and only if
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there is a measurable family.,, ¢ € [0, co)} of probability masures orR such that if we
define the family f (¢; z), 7 € [0, co)} as the unique solution to the initial value problem

%f(t; 0= —f peldx) a%f(:; 0. F02)=z.

Z—X
R
thenF(z) = f(02;z),z € H.

For the definition of chordal Loewner family and the precise meaning of the differential
equation see Sections 4 and 5.

In the case wherg has compact support we now provide two further characterizations
of the univalence of the reciprocal Cauchy transfafin The first characterization is a
consequence of a result by Hayman aboutithedfinite diameter of the “omitted set” under
meromorphic functions, and the second characterization is in terms of moment conditions
based on the Grunsky inequalities.

We begin by recalling Hayman'’s result [8].

Theorem 3.3. Suppose thayf is meromorphic in a domai® whose complemert is
compact and thay’ mapsD into a domainD’ whose complement B'. Further suppose
that f’(00) = 1 which means that

ai
f(z2)=z+ao+ —+--- forlargez.
Z

Thend(E") < d(E), whered(E) andd(E’) denote the transfinite diameter 8fand E’,
respectively. Equality holds if is univalent and map® onto D’.

Let u be a compactly supported probability messon the real line with Cauchy trans-
form G = G, and reciprocal Cauchy transforii = F,,. Denote[A,, B,.] the convex
closure of the support gf. Using the Schwarz reflection principle it is easy to see that
both G and F extend as analytic functions ©\ [4,., B.], [3]. Denote these extensions
also byG and F. Then we have the following

Corollary 3.1. With the notation from above, has reciprocal Cauchy transform univalent
in the upper half-plane if and only if the transfinite diameter of the complemean{©f
[A,, B.]) equalsB, — A,,.

Next we consider the characterization by moments. To simplify notation we will as-
sume that the support gf is contained in the intervdl-2, 2]. Let a, = fo";L(dx),
n=0,1,2,..., and note thaG(z) = 322 ya,z~ 3", |z| > 2. G extends as an analytic
function toC \ [—2, 2]. Definey :{z € C: |z] > 1} - C\ [-2,2] by ¥ (z) =z + 1/z.
Thent is univalent and onto. From the expansion

<z + 2) =D (- (” : >z<”+2’<+1>, 2l > 1,

k=0
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we get by rearranging,

[n/2]
G(v() Z|: > an-au(— 1)"( 2kk>:| 7=, 3)

n=0L k=0
and the latter expansion holds fat > 1. Forn =0, 1,2, ..., set

[n/2]

an—zan 2% (— 1)k( 2kk>
k=0
If F=F,=1/G, then F(¥(2)) = gy = Lonco Bz’ ™", Whereaofo = 1, aoBi+
a1Bo=0,a082+a1B1+a2B80=0,....Sinceag = u(R) = 1, we havexg =1 andsp =1
Solving the above system indiiely and substituting back thg,s for thew,, s we find for
instancesy = —ax, B2 = 1+ a? — az, andBs = —ad + 2a1az — as. For the functionF o ¥
we can now consider the Grunsky inequalities.
We briefly recall the definition for the Grunsky coefficients. All results we use regarding
these coefficients can be found in [6]. For an analytic funcgiovith an expansiog(z) =
z+bo+biz 4+ brz72+ - valid for |z| > 1, consider

1g0)  « .
m—gﬂz(wk ,

where the expansion is valid for ajlin some neighborhood afo with F,(w) = w" +
> _1anw" "k, thenth Faber polynomial of. Then

o0
Fu(g@)=2"+) Buz*, n=12...

k=1

The coefficient®,;, are known as the Grunsky coefficientxofSetc,; = \/g Bk, (n, k) €
(Z+)2. Then the (weak) Grunsky inequalities hold if for eaéte Z+t, (A1, ..., Ax) € CV,

N N N
chnkknkk < Z |)‘n|2-
n=1

n=1k=1
These inequalities are a necessary and sufficient conditiog forbe univalent or{z
C: |z| > 1}. We now apply this fact td o .

Theorem 3.4. Suppose that is a probability measure ol such that its support is con-
tained in[—2, 2]. Then the reciprocal Cauchytransformofy,is univalentinH if and only
if for each N e Z* the real symmetric matn{@,,k]n «—1 has all its eigenvalues ip-1, 1].

Proof. Apply the Grunsky inequalities t& o v. Since all coefficients of o i are real,
its Grunsky coefficients are also real. Nolne Grunsky inequaies redue to bounds on
the eigenvalues of the matricpﬁk],’xkzl. O
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These conditions become guly intractable. Foiv =1 we getic11| = |1+ af —as| <
1, while for N = 2 the matrix{c,x12 ,_, reads
1+ a% — a2 —\/z(af — 2a1a2 + a3) :|

[—x/i(af — 2a1a2 + a3) 1+ 36111 — 8afa2 + 3a§ +4ayaz — 2as
If uis even, i.e., all odd moments vanish, then this gives the two conditions,2 and
|1+ 3a§ — 2a4| < 1. Thus the Grunsky inequalities may be useful to quickly rule out that
a certain distribution has a reciprocal Cauchy transform univalent in the upper half-plane
just by looking at a few of its moments.

4. Chordal Loewner families
DenoteR the class of analytic functions: H — H which are univalent and satisfy
C
) —z| S ——
[f@ -z <3 =
for some constant € [0, c0). Denotea the least such constant. By Proposition 2.1,
part (ii),
T . iy
iyliy = fin] = | -——=p(dx),
1y—x
R
wherep is a honnegative Borel measure Brwith total mass:. Thus, by bounded con-
vergence,

Jim_iy[iy = f(in] = p(®) = a.

, z€H, (4)

Remark 4.1. If K ¢ H is compact and such th#l\ K is connected and simply connected,
then there exists a uniquyée R such thatf (H) = H \ K, see [9].

For an example, lete [0, co) and define the functior (¢; -) by

1
f(t;z)zmzz—éJrO(—)» > %0

|z|2

Then f(¢; -) belongs toR and its ranges; is the upper half-plane with a slit along the
imaginary axis from zero te/2:. We note thatf (s; -) is the reciprocal Cauchy transform
of the arcsine law with density/Lr+/2r — x2) supported if—+/2r, +/2r]. The functions
f@; ), t €0, 00), form a totally ordered “chain” relative to the partial ordering induced
by inclusion of the image domains. In fa¢q; };c[0.o0) is @ maximal totally ordered family
of simply connected regions iH.

Let f, g € R. We sayf is subordinate tg and write f < g if f = goh forsomeh € fR.

Lemma4.1.If f, g € R, thenf < g ifand only if f (H) € g(H). In this case
lim iy[iy — f@)] < lim iy[iy —g@iy)] (5)
y—>0o0 y—>00

with equality if and only iff = g.
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Proof. If f =g oh with h € R, then f(H) = g(h(H)) C g(H), so the condition is nec-
essary. Conversely, if (H) C g(H), thenh = g~ o f:H — H is univalent. Denote
a, b € (0, 00) the least constants such th#(z) —z| < b/3(z), and|g(z) —z| < a/J(z), for
all z € H. We then also hav¢ (iy) =i(y +b/y) +0(1/y), and sof (iy) € g(Hy) forall y
large enough. And iff (iy) = g(z) for somez with 3(z) > 1, then|g~1(f (iy)) — f(iy)| =
|z —g(2)| <a.Since alsd f(iy) —iy| < b for y > 1 we get

le7H(Fay) —iv| < g7 X fGy) = Fa|+ | fG@y) —iy| <a+b

for all y large enough. Hence lim, « y/|g~1(f(iy))| = 1 andg~ o f is the reciprocal
Cauchy transform of a probability measure on the real linezletg~1(iy) and setj =
y —a/y. Fory large enough botl(z) > 1 andy > 1. Theng(iy) =iy + o(1/]y|) and so
lz =iyl =1g *iy) — g Mg = o(1/Iy]) sincel(g~H)'(2)| is bounded fory(z) > 1.
Similarly |g’(z)| is bounded fof3(z) > 1 and sdg(z) — g(iy)| < Clz —i¥| =o(1/|y]). In
particularz; = O(]y|) and

iv[iy — gt in)] = 8@[g(2) — 2] = z[g(2) — 2] + 0(1) = iF[g(F) — iF] + o).
So limy_, o0 iyliy — g~ 1(iy)] = liMj_ « i$[g (i) — i3] = —a. Since
iv[iy — g7 (f )] = iy[iy — £a)]+iv[f@y) — g H(f(@y)]
b
=iy[iy — f(iy)] +i<y + ;)

o) o)

we now get lim_, o iy[iy — g Y(f(iy))]=b—a.lf F isthe reciprocal Cauchy transform
of a probability measurg onR we introduce the function

1 1
y€(0,00)— Cr(y) =y(F(iy) iy) eC.
One can show, [10], that lif, o0 yS(CF(y)) = [ x2 n(dx), and, if [ x2 u(dx) < oo,
then lim,_ oo M(Cr(y)) = [ x u(dx). On the other hand;r(y) = —F’gy) iy — F(@iy)]
andsoforF =g~ 1o f

lim yCr(y) =— lim —— lim iy[iy— F(iy)]=i(b - a).
y—00 y—o0 F(iy) y—o0

Henceg 1o f is the reciprocal Cauchy transform of a probability measure on the real line

with mean zero and varianée— a. It follows in particular thatf < ¢ and also thab > a,

i.e., (5). Finally, ifb = a, thenu has mean and variance both equal to zero, thatisa

unit point mass at zero. In that caﬁgu(dx)/(z —x)=1/zandsog (f(z)=z. O

Note that the above result implies in particular that the functipisR are determined
by their image domains. Subordination is a partial orderinfoBy a chain iR we mean
a nonempty totally ordered subsgbf R, and by achordal Loewner family we mean a
maximal chain, i.e., wheneveérC ¢ whereC is a chain irtR, theng = €.
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Theorem 4.1. Every f € R belongs to some chordal Loewner family. More generally,
every chaing in R is contained in a chordal Loewner family.

Proof. See proof of Theorem B in section 7.10 in [12]0

The following theorem plays in the chordal case the role the Carathéodory convergence
theorem plays in the radial (disk) case.

Theorem 4.2. Let {f,};2, be a sequence iR and for everyn e Zt let a, =
limy_ oo iyliy — fu(iy)]. If a =lim,_. a, exists and is finite, then there exists a func-

tion f € R and a subsequenea, n2, ..., such that for everyn € Z*
sup ‘f(Z) — fue (Z)‘ — 0, ask— oo. (6)
ZE]Hll/m

Furthermore, ifA° denotes the interior of a set, then

ran=JUJ ( () fue (Hl/m>) (7)

m=11=1 \ k=l
and

a= yli_)mooiy[iy — f(iy)]. 8)

If, in addition, the family{ f,,}°° , is totally ordered, thery' is unique and6) and(7) hold

without going to subsequences.

Proof. Since |f,(2)| = |(fn(z) — 2) + z| < a,/3(2) + |z|, the family {f,} is locally
bounded and there exists a subsequencey, ... and an analytic functiorf :H — H
such thatf,, — f uniformly on compact subsets &f ask — oco. Furthermore, sincg;,
is univalent for each:, f is either univalent or constant. For eacle H, | f(z) — z| <
| f(2) = fur @] + an, /S(2). It follows that f is nonconstant, thatf (z) — z| < a/3(2),
and thata is the least constant such that this inequality holds. This proves (8) along a
subsequence.

We havef,(z) =z — [ pn(dx)/(z — x), and f (z) =z — [ p(dx)/(z — x), wherep,
andp are nonnegative Borel measures with total mgsanda, respectively. Suppose that
a>0.Then

i/pnk(dX) N }/ p(dx)

Qp, 7—X a 7—x
R
uniformly on compact subsets &f. Sincep,/a, and p/a are probability measures, it
follows by [10, Theorem 2.5] thap,/a, converges weakly t@/a. This implies that
Jg P (dx)/(z —x) = [ p(dx)/(z — x) uniformly onHy,,, for everym € Z*, see [3].
The case: = 0 is easily treated directly. This proves (6) along a subsequence.
Next, if

we U U(ﬂfnk (Hl/m)) ;

m=11=1 \k=I]
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then there exisin, k € Z* ande > 0 such thafw’: |w — w’'| <€} C (M fue Hi/m))°.
ConsiderA,, = fn—kl({w’: lw — w'| < €}) C Hi/m. Then, by (6),w € f(Ay,) for all k
large enough. Conversely, suppases f(H). Then there exist: € ZT ande > 0 such
that{w’: |w—w'| <€} C f(Ham). Considerd = f~1({w’: |w—w’'| < €}). Then, by (6),
S H1m) D {w': Jw — w'| < €/2} for all k large enough and this proves (7) along a
subsequence.

Finally, suppose thdtf, },° , is totally ordered. Givem, n € Z+ we may assume with-
out loss of generality thaf,, < f,,. Then f,, = f,, o g for someg € R. By Lemma 4.1
18(2) — z| < (an — am) /3(2). Thus| £, (2) — fin ()| = [ fn(g(2)) — fm(2)] — O, uniformly
on compact subsets &ff, asm, n — oo, and this proves the theoremo

Lemma 4.2. Let f, f1, f>,... and g, g1, g2, ... belong toR. For eachn € Z* let
an =My oo iyliy — fu(@y)], by = limy_ o iy[iy — g,(iy)]. Assume thasup, a, < oo,
sup, b, < oo, and f, — f, g» — g, uniformly on compact subsets Bf asn — oo. If
fu < gn foreachn e Z*, thenf < g.

Proof. For eactn € ZT, define the functiork, by f, = g, o h,. Then lim_ o iy[iy —
h(iy)] = a, — b,. By Theorem 4.2, there exisisce Y1 and a subsequeneg, ny, ... such
thath,, — h uniformly on compact subsets Hf, ask — oco. Since
lg(h(2) — f@)] < [g(h(2)) = g(hn, (@))| + |8 (7, (D) — &y (ny (2))]
+ | fn @ = f(2)
andg,, — g, fa, — f uniformly, the right-hand side tends to zerokas> co. O

’

Lemma4.3. Lety : [0, 1) — H be a Jordan arc such that
H limg3 = 00.
y(0)edH and tl/rqo(y(t)) 00

For eachr € [0, 1) let f(¢; -) € R be the unique function whose range is the complement of
y([0,¢]) in H, and setu(t) = limy,_ o iy[iy — f(t;iy)]. Thent € [0, 1) — a(t) € [0, oo)
is nondecreasing, continuous, and onto.

Proof. Lett,11,1,... be points in[0, 1) such thatt, — ¢, asn — oco. By Remark 4.1,

sup, a(t,) < oo, and so there is a convergent subsequence. Applying the first part of The-
orem 4.2, it follows that there is a subsequenggny, ... such thatf (z,,) — f € R, and

a(t,,) — a. Itis straightforward to check that

U U(ﬁf(m: Hl/m)) =H\ y([0,1]),
m=11=1 \ k=l

and sof = f(¢). Now we apply the second part of Theorem 4.2 and it followsthata(¢)
is continuous. It remains to check that) — oo asr ' 1. By Proposition 3.2/ (¢; H)
containst, /;7 and the lemma follows. O

Lemma4d.d. Let f < gwheref, g e R, a=Ilim,_ o iyliy— fiy)],b=Ilimy_iyliy —
g(iy)], and letc be a positive number.
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(i) If ¢ <b,thereis anm: € | such thalim,_, iy[iy — h(iy)]=candg < h.
(i) If b <c <a,thereisam € R such thalim,_, o iy[liy —h(iy)|=cand f <h < g.
(i) If a <c, thereis am € R such thalim,_, o iy[iy — h(iy)]=candh < f.

Proof. The result can be reduced to the case where the complements of the ranfges of
andg in H are compact, bounded by Jordan arcs, and separated by at teésin H. To
reduce to the case of compact complementfjebe the element dR such thatf, (H) =
fMH) U {z € H: |R(2)| > n}. By Theorem 4.2/, — f, uniformly on compact subsets
of H. Defineg, similarly. By constructionf,, < g,, and it follows from Lemma 4.2 that it
is enough to proof the result fgf, andg, . Approximating the compact complemekitof
the range off in H by lemniscates we may assume tiRais bounded by Jordan arcs, and,
after shifting the range of by a small amount along the imaginary axis, we may assume
that the complements of the rangesfondg in H are separated by at least

Now the proof proceeds as in [12, Lemma 7.11D]. The Jordany arged to producé
first traces out the boundary of the rangegoin H, say from left to right. If this part
of the boundary consists of more than one component, then the Jordan arc connects the
components by moving along the real axis between components. Afters traced the
boundary ofg(H) in H, it then moves out to trace the boundaryfaf) in H from right to
left. Since the two boundaries are separajedontinues to be a Jordan arc. Finally, after
has traced both boundaries it continuesdeo that its imaginary part also goesto. O

Theorem 4.3. If £ is any chordal Loewner family, then
feLr lim iy[iy— f(iy)] €0, 00)
y—>00

is one-to-one and onto. Thus the famiy has a parametric representatioff =
{f(t; )}te[0.00), Where eachy (¢; -) satisfies

f(t;iy):i(y+£> +0<i>, y — 00,
y [¥]

f(b; ) is subordinate tof (a; -), wheneved < a < b < 00, and £ (0; z) = z.

Proof. The proof is analogous to the proof of [12, Theorem 7.12] and is omitted.

5. Chordal Loewner equation

Let £ be any chordal Loewner family with parametric representafipty; -), ¢ €
[0,00)}. If0 <a < b < oo, thenf(b;-) < f(a;-) and thereforef (b; z) = f(a; B(a, b; z))
for some functiomB(a, b; -) € R. ThenB(a, a; z) =z and lim,_, o iy[iy — B(a, b; iy)] =
b — a. Furthermore

B(a,c;z) = B(a, b; B(b, c; 2)), 9)

whenever 0< a < b < ¢ < 0o. We say£ is a chordal Loewner family with associated
semigrougB(a, b; ), 0< a < b < oo}. Sincef(t;z) = B(0,t; ), t € [0, 00), z € H, the
semigroup determines.
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Theorem 5.1. Let £ be a chordal Loewner family with associated semigréBgu, b; -),
0<a<b<oc}. Thenforallz € H,

|B(a,c;2) — B(b,c;2)| < l;;; (10)
b—a\c—>b
|B(a,b,Z)_B((l,C,Z)|<<1+ W)TZ)’ (11)

wheneved < a < b < ¢ < o0o. Thus, for each € H,

(i) the functiory € [0, c0) — f(t; z) € H is absolutely continuous,
(i) if b>0,a€[0,b]— B(a,b;z) € His absolutely continuous,
(i) ifa>0,b € [a,o0)— B(a,b;z) € His absolutely continuous.

Proof. We have|B(a, c;z) — B(b,c; z)| = |B(a, b; B(b,c;z)) — B(b,c;2)| < (b —a)/
3J(z), sinceI(B(b, c; z)) = J(z). This proves (10). For (11), note th&ta, b;z) =z —
fR Pa.p(dx)/(z — x), for some nonnegative Borel measyg, with p, ,(R) =b —a. So
|B'(a,b; z) — 1| < (b — a)/3(z)2. Since alsqB(b, c; z) — z| < (¢ — b)/I(z), we get

|B(a,b; 2) — B(a, ¢; 2)| = | B(a, b; 2) — B(a, b; B(b, c; 2))|

o <1+b—a)c—b
h 3(2)2) (@)

Theorem 5.2. Assume the same situation as in Theofein

(i) There is a subseaV of [0, co) of Lebesgue measure zero such thatdf[0, co) \ N,
then(d/9t) f (¢; z) exists, uniformly on compact subsetdibf
(i) For eachb > 0, there is a subseN of [0, b] of Lebesgue measure zero such that if
a €[0,b]\ N, then(d/da)B(a, b; z) exists, uniformly on compact subsetdibf
(iii) For eacha > 0, there is a subse¥ of [a, o) of Lebesgue measure zero such that if
b ela,o0)\ N, then(d/ab)B(a, b; z) exists, uniformly on compact subsetdiof

Proof. We will only check (i). The other parts can then be handled in a similar way. By
Theorem 5.1, for fixed, (8/9t) f (z; z) exists a.e. on0, co). The exceptional null set
depends orx, but we may choose a single nulls€tc [0, oo) such that the derivative
exists for allz € [0, 00) \ N andz = 1/2,2/3,3/4,.... Fix t € [0, 00) \ N, and consider
the difference quotients f(t + h; z) — f(t;z))/h, O < |h| < t/2} as analytic functions
onH. Note thatf (+ + h; z) — f(t;z) = B(0,t + h; z) — B(0, t; z), and so, by (11),
@)JZ), if t/2>h >0,

(14 L) b if —1/2<h <.

()27 @)’

|f(t+h;2) — ft;2)]| < (12)

Thus, forall 0< |h| < /2,
|(f+hi2)— f(t:2)/h] < (1+1/3(2)?)/3(2)



R.O. Bauer / J. Math. Anal. Appl. 302 (2005) 484-501 497

and the family of difference quotients is locally bounded. Now apply Vitali’'s theorem to
complete the proof of (i). O

We endow the space of proliaty measures with the topology of weak convergence
and define a measurable family of probability measures in terms of the Beakgebra
for this topology. In the following we will idetify two measurable fiamilies of probability
measures on the real lingy;, 1 € [0, 00)}, {v;, ¢ € [0, 00)}, if there is a subseV C [0, oco)
of Lebesgue measure zero such that v, forall t € [0, 00) \ N.

Theorem 5.3.1f { f(¢; -), t € [0, 00)} is any chordal Loewner family, then there is a unique
measurable familyu,, ¢ € [0, co)} of probability masures on the real line and a subset
N C [0, 0o0) of Lebesgue measure zero such that

d (dx) o
8—f(t;Z)=—/M—'—f(t;Z) (13)
t Z—x 02
R
forall t € [0, 00) \ N, andz € H.
Proof. Let {B(a,b;-), 0 < a < b < oo} be the semigroup associated to the chordal
Loewner family{ f (¢; -), ¢t € [0, 00)}. Then

fb:z)— fla:z) _ fla; B(a,b;2)) — f(a;z) Bla.biz)—z
b—a - B(a,b:7)—z b—a

(14)

By (11), B(a,b; z) — z, asb \( a and the first factor on the right in (14) converges
to (0/9z) f(a; z). Since(9/9z) f (a; z) # 0, the second factor also convergeshas, a.
Furthermore, since|(B(a, b;iy) —iy)/(b —a)| = 1+ o(1), asy — oo, each function
[B(a, b; z) — z]/(b — a) is the Cauchy transform of a probability measurefarBy [10,
Theorem 2.5], the limit is also the Cauchy transform of a probability measuRe say ., .

For fixedz € H, the functiora € [0, o0) - G,(2) = fR waq(dx)/(z — x) is measurable.
It follows thata € [0, o0) — G, € C(H; —H) is also measurable if we endaA(H; —H),
the space of continuous functions, with the topology of uniform convergence on compact
subsets and consider the Bosefield. By [10, Theorem 2.5], the mape [0, c0) — u, €
M1(R) is then measurable if we enddw; (R), the space of probability measures on the
real line, with the topology of weak convergence. Finally, the farfily, t € [0, c0)} is
unigue because the measures are determined, a,dyr(13). O

Theorem 5.4. In Theorenb.3, let{B(a, b; -), 0 < a < b < oo} be the semigroup associated
to the chordal Loewner family.

(i) On[a,0), (8/3s)B(a,s;z) = — [g us(dx)/(z—x) - (3/02)B(a, s; z), and B(a, a;
7)) =2z.

(iiy If b > 0, then on[0,b] (3/3t)B(t,b;z) = [R we(dx)/(B(t,b; z) —x), and B(b, b;
7)) =2z.
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Proof. On[a, 00), (3/3s) f(s;z) = f2(a; B(a, s; 2))(d/3s)B(a, s; z), and

/M(dx)’if(S;z)=/M(dx) 'fz(a;B(a,s;z))iB(a,s;z).
0z 0z

Z—X —X
R R
By Theorem 5.1 the application of the chain rule is valid, [12, Theorem 8.3C]. Now (13)
implies (i).

If0 <a<t<b,thenB(a, b;z) = B(a, t; B(t, b; z)). Therefore
0= By(a,t; B(t,b; 2)) + Ba(a, t; B(t, b; 2))(3/31) B(t, b; 2).
SinceBz(a, 1; w) = — [p i (dx)/(w — x) - Ba(a, t; w) by (i), we get

Ba(a,t; B(t, b; z))%B(r, b; z) :/ pa(dx)

—  .B ,t; B(t, b; .
B b —x Dol BUbi0)
R

Again by Theorem 5.1 the application of the chain rule is justified and, together with
B3(a, t; w) # 0, this proves (ii). O

We now want to show that every measurable fanjjly, ¢ € [0, c0)} of probability
measures on the real line determines a unique chordal Loewner fgfidity:), 7 € [0, co)}

such thatfi(r; 2) = — [ i (dx)/(z — x) - fa(t; 2).

Theorem 5.5. Let{u,, t € [0, 00)} be a measurable family giobability meaares on the

real line. There exists a unique family of functidi&a, b; -), 0 < a < b < oo} with these

properties:

(i) Forfixeda, b, B(a,b;-)isin®R, lim,_, o iyliy — B(a,b;iy)]=b —a, and
B(a,c;z)=B(a,b; B(b, c; 2)) (15)

wheneved <a <b <c.
(i) Forfixedb > 0andz € H, a € [0, b] — B(a, b; z) € H is absolutely continuous such
that

(3/0a)B(a, b; Z)=/Ma(dX)/(B(a,b; Z)—X), (16)
R
a.e.on[0, b],andB(b, b; 7) = z.

Proof. If B(., b; z) solves the initial value problem (16), then it also solves the integral
equation

b
B(a,b;Z):z—/(/#dzx))_x)ds, 0<a<hb. a7
a R ’

Furthermore, continuous solutions of (17) satisfy
S(B(a,b:z)) >3(z), 0<a<b, (18)



R.O. Bauer / J. Math. Anal. Appl. 302 (2005) 484-501 499

if J(z) > 0. To solve (17) we construct functiom®(a), B1(a), ..., a € [0, b] such that
Bo(a) =z and

b
b=z~ [( [ Yas. acion,

a R
n=0,1,2, ....Using induction it easily follows thak(B,(a)) > J(z) for all n € Z* and
a € [0, b]. Furthermore,
; (dx)
Mslax
B — B = B, — B
|Br1@) = By (@) / (Ba(s) "1“))(R/ (Bu(5) — x)(Bny (5) — x))ds

b
1
< WﬂB”(s) — By—_1(s)| ds.

Thus, by induction, we obtain continuous functiaBga), Bi(a), B2(a), ..., a € [0, b],
satisfying

1 (b —a)"tt
ST (41!
for eachn € N. The estimates imply that the limit

|Bus1(a) — Bu(a)| < a €0,b],

o
B(a)= lm By(a)=z+ ) (Bur1(a) - By(a))
n=0
exists uniformly or[0, 5], that3(B(a)) > J(z), a € [0, b], and that: € [0, b] > B(a) e H
satisfies (17). To show that is the unique solution of (17) suppose thatis another
continuous function of0, b] satisfying (17). The®(B(a)) > J(z) and

b
|B(a) — B(a)| = ‘ f(é(s) - B(s))</ s (dx) )ds‘

(B(s) — x)(B(s) — x)

R
b
< i/w(s) — B(s)|ds
RNOE '

Now Gronwall's inequality impliesB(a) = B(a), a € [0,b]. To show thatB(a) =
B(a, b; z) is analytic as a function of € H note first thatBg(a) = z is analytic onH.
Suppose now thaB, (a) = B, (a, b; z) is analytic onH. SinceJ(B,(a, b; z)) > I(z) we
get by bounded convergence that H — B, 11(a, b; z) € H is continuous and, by Fu-
bini’s theorem, that for any closed triangtein H

b
1
/Bn+l(a,b§ Z)dZZ/[/(/de> ,U«(dx)i|ds=0
A 9

a R A
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It follows by Morera’s theorem thaB,1(a, b; z) is analytic as a function of in H.
Since B, (a, b; z) - B(a, b; z), n — oo, uniformly on compact subsets &f, it follows
that B(a, b; 7) is analytic as a function of in H.

We show thatB(a, b; ) is univalent onH for a € [0, b]. This is clear fora = b and
to prove it fora € [0, b) suppose thaB(ag, b; z1) = B(ao, b; z2) for someag € [0, b) and
71, 72 € H. Note that

9
- (Bla,b;z1) - Bla, b; 22))

ta(dx)
(B, b:z1) w”m»!(m%bmﬂ—XXMmbmﬂ—xY

for almost everya € [0, b]. Hence, settingu(a) = B(a, b; z1) — B(a, b; z2), we have
w(ag) = 0 and|(8/da)w(a)| < |w(a)|/(3(z1)I(z2)) for a.e.a € [0, b]. ChooseM > 0
such thaiw(a)| < M for a € [ag, b]. Then|w(a)| < M(a — ag)/(3(z1)I(z2)) and

a

1 M (a — ag)?
w(a) </# w(s)|ds < P —
| | J(z21)3(z2) | | 2!1(3(21)3(z2))?
ag
Upon iteration we obtain a sequence of estimates which implyiia) = O for a €
[ag, b]. In particularw(0) = 0 impliesz1 = z2 and this completes the proof thBta, b; z)
is univalent ori.

Next, for fixed 0< a < ¢ andz € H definer € [0, ¢] — u(¢) € H by
w(t) = { B(t, a; B(a,c; z)), !f t €[0,al, (19)
B(t,c;z), if 1 € (a,c].

It is easy to show that satisfies (17). Uniqueness of the solution to (17) then implies the
flow identity (15).
Finally, by bounded convergence,as> oo,

b

iy[iy—B(a,b; iy)]:/(/B(sb_liiy)_x,us(de ds —>b—a. O

a R

By Theorem 5.3, for every chordal Loewner famjlg(z; -), ¢ € [0, co)} there is a mea-
surable family{u,, ¢ € [0, c0)} of probability measures oR such that

0 o v, (dx) 0 _

—X
R
Every measurable family of probability measuredsioarises in this way.
Theorem 5.6. If {u;, t € [0, 00)} is any measurable familgf probability measures on

the real line, then there exists a unique chordal Loewner fafiily; -), ¢ € [0, co)} such
that (20) holds.
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Proof. Construct{B(a,b;-), 0 <a < b < oo} as in Theorem 5.5 and set(z; z) =
B(0,%;z7), z€ H, t € [0,00). By (15), {f(t;-), t € [0,00)} is a chain infR which, by
the statement preceding (15) and Theorem 4.3, is maximal{ f.&.,-), t € [0, c0)} is a
chordal Loewner family. By Theorem 5.3(¢; z) solves (20) for some measurable family
{vs, t €0, 00)} of probability measures on the real line. Sinte:; z) = f(t; B(t, a; z))
fort €0, al,

0= fi(t; B(t,a; 2)) + f2(t; B(t,a; z))/

R

we(dx)
B(t,a;z) —x

It follows that u; = v, a.e. int and thereforef (¢; z) satisfies (20) for the given family

{ur, 1 €10, 00)}.
Suppose thag(z; -), t € [0, c0)} is another chordal Loewner family that satisfies (20).
Then, by the generalized chain rule and Theorem 5.4(ii),

(3/00)[g(t; B(t,a;2))] = g1(t; B(t,a; 2)) + g2(t; B(t,a;2))(3/31)B(t,a;2) =0

a.e. on[0, a]. Thereforeg(t; B(t,a; z)) = g(a; B(a,a; z)) = g(a; z) forall t € [0, a]. In
particular,g(a; z) = g(0; B(0,a;z)) = B(0,a;z) = f(a;z). O
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