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Abstract

We study chordal Loewner families in the upper half-plane and show that they have a para
ric representation. We show one, that to every chordal Loewner family there corresponds a
measurable family of probability measures on the real line, and two, that to every measurable
of probability measures on the realline there corresponds a unique chordal Loewner family. In b
cases the correspondence is being given by solving the chordal Loewner equation. We use
show that any probability measure on the real line with finite variance and mean zero has
lent Cauchy transform if and only if it belongs to some chordal Loewner family. If the probability
measure has compact support we give two further necessary and sufficient conditions for the uni
lence of the Cauchy transform, the first in terms of the transfinite diameter of the complemen
image domain of the reciprocal Cauchy transform, and the second in terms of moment ineq
corresponding to the Grunsky inequalities.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we discuss chordal Loewner families, the chordal Loewner equatio
probability measures on the real line whose reciprocal Cauchy transform is univalen
upper half-plane.
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Reciprocal Cauchy transforms of probability measures on the real line play an i
tant role in describing the sum of two noncommutative random variables, namely f
free additive convolution developed by Voiculescu [14], and the monotonic convol
developed by Muraki [11].

In [13], Schramm introduced a family of random compact sets, growing in a do
of the complex plane. He showed that any random, growing, and compact set tha
fies a certain Markovian-type and conformal invariance property belongs to this fa
and that it can be generated by solving Loewner’s equation driven by a Brownian m
on the boundary of the domain. This family is now known as stochastic (or Schra
Loewner evolution (SLE). Its discovery soon lead to rigorous proofs of various conjec
of conformal field theory about the behavior of certain statistical mechanical syste
criticality, see [15] and references therein.

In [2], we noted that a solution of the (chordal) Loewner equation at a fixed tim
the reciprocal Cauchy transform of some probability measure on the real line. Sinc
solution of Loewner’s equation takes values in the set of univalent functions this rais
question of what characterizes probability measures whose reciprocal Cauchy trans
univalent in the upper half-plane. In particular, does any such measure arise by so
suitable Loewner equation, and if so, what kind of driving functions need to be consid

To begin to treat this question we found it necessary to study the chordal Loe
equation beyond the cases we found in the literature. These being either to narrow
purposes, such as the case of compact complement for SLE, [9], or to general, as
where, at least to our knowledge, no consistent normalization and thus parametriza
chordal Loewner families with a complete correspondence with driving functions is po
sible. On the other hand, for the (radial) Loewner equation on the unit diskD there exists
just such a treatment, given in [12]. In that case it is convenient to normalize a uni
functionf onD by f (0) = 0 andf ′(0) > 0. (Radial) Loewner families, i.e., maximal su
ordination chains of such functions, are then parametrized by the derivative atz = 0 and
one can show that there is a one-to-one correspondence between (radial) Loewner famil
and so-called Herglotz families, the correspondence being given by solving the (radial)
Loewner equation.

In the chordal case in the upper half-plane we have to deal with compactness qu
that do not arise in the (radial) disk case. A suitable class of univalent functions to co
are thosef that map the upper half-plane into the upper half plane and satisfy

∣∣f (z) − z
∣∣ � C

�(z)

for someC > 0 for all z in the upper half-plane. Such functions are in fact recip
cal Cauchy transforms of probability measures on the real line with finite varianc
mean zero. We show that the least constantC in the above inequality serves as a pa
meter for chordal Loewner families and that chordal Loewner families are in one-t
correspondence with measurable families of probability measures on the real line, the c
respondence being given by solving the chordal Loewner equation. The structure of o
proof of these results is identical to the structure of the proof of the analogous result
radial case in [12]. However, the basic tools and inequalities used at the various s
the argument are very different. We give a detailed proof in Sections 4 and 5, taking
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bulk of this paper. We hope that our general treatment may be of use in the context
stochastic Loewner evolution if the driving function—Brownianmotion—is replaced by
more general stochastic processes, for example superprocesses.

As a consequence of our results in Sections 4 and 5 we can answer the question,
every probability measure on the real line with univalent Cauchy transform belongs to
chordal Loewner family, in the affirmative, at least when the probability measure has
variance.

In the case where the probability measure has compact support we give two furth
characterizations based on classical results in the theory of univalent functions. Th
characterization is in terms of the transfinitediameter of the complement of the image, a
is a consequence of a Theorem by Hayman. The second is an application of the G
inequalities. It gives, at least in principle, a characterization of probability measures
univalent Cauchy transform in terms of the moments of the measure.

The paper is structured as follows. In Section 2 we fix notation and collect some resu
about reciprocal Cauchy transforms of probability measures on the real line. In Section 3
we begin by recalling some general results on domains of univalence of reciprocal C
transforms and then obtain three characterizations of univalent Cauchy transforms
rems 3.1 and 3.2, Corollary 3.1, and Theorem3.4. In Section 4 we introduce and descr
chordal Loewner families, culminating in the representation as parametrized fami
Theorem 4.3. Finally, in Section 5 we show in Theorem 5.3 that to every chordal Loe
family there corresponds a unique measurable family of probability measures on the re
line, where the correspondence is being given by solving the chordal Loewner equ
and in Theorem 5.6 that to every measurable family of probability measures on th
line there corresponds a unique chordal Loewner family, the correspondence again be
given by solving the chordal Loewner equation.

The author would like to thank Hari Bercovici for asking the question that inspired
paper, and Jochen Becker for bringing the thesis of Betker to my attention. The
would also like to thank an anonymous referee for bringing the paper [7] of Goryaino
Ba to my attention. Some of the main results of this paper can also be deduced from
result. However, the method they employ differs markedly from our approach.

2. Preliminaries

For the complex planeC denoteH ≡ {z ∈ C: �(z) > 0} the upper half-plane,−H ≡
{z ∈ C: �(z) < 0} the lower half-plane, and for every positive real numbera, let Ha =
{z ∈ C: �(z) > a}. Let µ be a finite positive Borel measure onR. The Cauchy transform
G = Gµ of µ is defined by

z ∈ H �→ G(z) =
∫
R

µ(dx)

z − x
∈ −H.

G is an analytic function with the property

lim supy
∣∣G(iy)

∣∣ < ∞. (1)

y→∞
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In fact, lim supy→∞ y|G(iy)| = µ(R). Conversely, every analytic function mappingH

into −H that satisfies (1) is the Cauchy transform of a finite positive Borel measureR,
[1, Satz 3, Teil 59, Kapitel VI]. We can recoverµ from its Cauchy transform using Stieltje
inversion formula

µ
(
(a, b)

) + µ
([a, b]) = − 2

π
lim
ε↘0

b∫
a

�(
G(x + iε)

)
dx.

SinceG(z) 	= 0 for all z ∈ H the reciprocal Cauchy transformF ≡ 1/G is an analytic
function that mapsH into H. ThusF is a Pick function. Besides being a Pick function,
reciprocal Cauchy transformF of a probability measureµ satisfies

inf
z∈H

�(F (z))

�(z)
= 1, (2)

see [10], and the following characterization is known

Theorem 2.1 [10]. For an analytic functionF :H → H the following are equivalent:

(i) F is the reciprocal Cauchy transform of a probability measureµ onR.
(ii) There exist a real numberb ∈ R and a finite nonnegative Borel measureν on R such

that

F(z) = b + z +
∫
R

1+ tz

t − z
ν(dt), z ∈ H.

(iii) F satisfies Eq.(2).

For probability measures with finite variance and zero mean this result can be
fied to

Proposition 2.1 [10]. For an analytic functionF :H → H the following are equivalent:

(i) F is the reciprocal Cauchy transform of a probability measure onR with finite vari-
ance and mean zero.

(ii) There exists a finite positive measureρ onR such that for allz ∈ H,

F(z) = z −
∫
R

ρ(dx)

z − x
.

(iii) There exists a positive numberC such that for allz ∈ H,

∣∣F(z) − z
∣∣ � C

�(z)
.

Moreover, the varianceσ 2 of µ in (i), the total weightρ(R) of ρ in (ii) , and the smalles
possible constantC in (iii) are all equal.
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3. Univalent Cauchy transforms

Maps resulting from the Loewner evolution are always conformal. Cauchy trans
on the other hand do not have to be conformal. Since we describe Loewner evolut
Cauchy transforms of an evolving family of measures it is interesting to investigate
Cauchy transforms are conformal.

We first recall some general results about domains of univalence for Cauchy trans
DenoteΓα,β the Stolz angle

Γα,β = {
z ∈ H: |z| > β and − α�(z) < 
(z) < α�(z)

}
.

Proposition 3.1 [4]. Letµ be a probabilitymeasure onR, and let0 < ε < α. There exists
a β > 0 such that

(i) F = 1/G is univalent inΓα,β , and
(ii) F(Γα,β) ⊃ Γα−ε,β(1+ε).

For a probability measureµ with finite variance there is a stronger result.

Proposition 3.2. Letµ be a probabilitymeasure onR with finite varianceσ 2 and recipro-
cal Cauchy transformF . Then the restriction ofF to Hσ takes every value inH2σ precisely
once.

Proof. This follows immediately from [10, Lemma 2.4] where the result is establis
under the additional assumption thatµ has mean-value 0. Indeed, ifµ has mean valuea,
setF̃ (·) = F(·+ a). ThenF̃ is the reciprocal Cauchy transform ofµ̃, whereµ̃ is the push-
forward ofµ under the mapx �→ x − a. µ̃ has mean value 0 and so Lemma 2.4 in [
applies toF̃ . This in turn implies the result forF . �

It follows that there is a right-inverseF−1 :H2σ → Hσ and hence thatF is univalent
onF−1(H2σ ).

We now come to the question that was the initial impetus for this paper, namely,when
is the Cauchy transform of a probability measure univalent in the entire upper half-plan

As a consequence of our general investigation of chordal Loewner families in Sec
we have the following

Theorem 3.1. Suppose thatµ is a probability measure on the real line with varianceσ 2

and mean zero. The reciprocal Cauchy transformF of µ is univalent inH if and only if
there is a chordal Loewner family{f (t; ·), t ∈ [0,∞)} such thatF(z) = f (σ 2; z), z ∈ H.

Using the relation between chordal Loewner families and the chordal Loewner eq
that we develop in Section 5 we get

Theorem 3.2. Suppose thatµ is a probability measure on the real line with varianceσ 2

and mean zero. The reciprocal Cauchy transformF of µ is univalent inH if and only if



R.O. Bauer / J. Math. Anal. Appl. 302 (2005) 484–501 489

ntial

tions
a
er
ditions

s-

that
s

nt

l as-

ic
there is a measurable family{µt, t ∈ [0,∞)} of probability measures onR such that if we
define the family{f (t; z), t ∈ [0,∞)} as the unique solution to the initial value problem

∂

∂t
f (t; z) = −

∫
R

µt (dx)

z − x
· ∂

∂z
f (t; z), f (0; z) = z,

thenF(z) = f (σ 2; z), z ∈ H.

For the definition of chordal Loewner family and the precise meaning of the differe
equation see Sections 4 and 5.

In the case whereµ has compact support we now provide two further characteriza
of the univalence of the reciprocal Cauchy transformFµ. The first characterization is
consequence of a result by Hayman about the transfinite diameter of the “omitted set” und
meromorphic functions, and the second characterization is in terms of moment con
based on the Grunsky inequalities.

We begin by recalling Hayman’s result [8].

Theorem 3.3. Suppose thatf is meromorphic in a domainD whose complementE is
compact and thatf mapsD into a domainD′ whose complement isE′. Further suppose
thatf ′(∞) = 1 which means that

f (z) = z + a0 + a1

z
+ · · · for largez.

Thend(E′) � d(E), whered(E) andd(E′) denote the transfinite diameter ofE andE′,
respectively. Equality holds iff is univalent and mapsD ontoD′.

Let µ be a compactly supported probability measure on the real line with Cauchy tran
form G = Gµ and reciprocal Cauchy transformF = Fµ. Denote[Aµ,Bµ] the convex
closure of the support ofµ. Using the Schwarz reflection principle it is easy to see
bothG andF extend as analytic functions toC \ [Aµ,Bµ], [3]. Denote these extension
also byG andF . Then we have the following

Corollary 3.1. With the notation from above,µ has reciprocal Cauchy transform univale
in the upper half-plane if and only if the transfinite diameter of the complement ofF(C \
[Aµ,Bµ]) equalsBµ − Aµ.

Next we consider the characterization by moments. To simplify notation we wil
sume that the support ofµ is contained in the interval[−2,2]. Let an = ∫

R
xn µ(dx),

n = 0,1,2, . . . , and note thatG(z) = ∑∞
n=0 anz

−(1+n), |z| > 2. G extends as an analyt
function toC \ [−2,2]. Defineψ : {z ∈ C: |z| > 1} → C \ [−2,2] by ψ(z) = z + 1/z.
Thenψ is univalent and onto. From the expansion(

z + 1

z

)−(n+1)

=
∞∑

(−1)k
(

n + k

n

)
z−(n+2k+1), |z| > 1,
k=0
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we get by rearranging,

G
(
ψ(z)

) =
∞∑

n=0

[ [n/2]∑
k=0

an−2k(−1)k
(

n − k

n − 2k

)]
z−(n+1), (3)

and the latter expansion holds for|z| > 1. Forn = 0,1,2, . . . , set

αn =
[n/2]∑
k=0

an−2k(−1)k
(

n − k

n − 2k

)
.

If F = Fµ = 1/G, then F(ψ(z)) = 1
G(ψ(z))

= ∑∞
n=0 βnz

1−n, whereα0β0 = 1, α0β1+
α1β0 = 0,α0β2+α1β1+α2β0 = 0, . . . . Sincea0 = µ(R) = 1, we haveα0 = 1 andβ0 = 1.
Solving the above system inductively and substituting back theans for theαns we find for
instanceβ1 = −a1, β2 = 1+ a2

1 − a2, andβ3 = −a3
1 + 2a1a2 − a3. For the functionF ◦ ψ

we can now consider the Grunsky inequalities.
We briefly recall the definition for the Grunsky coefficients. All results we use regar

these coefficients can be found in [6]. For an analytic functiong with an expansiong(z) =
z + b0 + b1z

−1 + b2z
−2 + · · · valid for |z| > 1, consider

ζg′(ζ )

g(ζ ) − w
=

∞∑
n=0

Fn(w)ζ−n,

where the expansion is valid for allζ in some neighborhood of∞ with Fn(w) = wn +∑n
k=1 ankw

n−k , thenth Faber polynomial ofg. Then

Fn

(
g(z)

) = zn +
∞∑

k=1

βnkz
−k, n = 1,2, . . . .

The coefficientsβnk are known as the Grunsky coefficients ofg. Setcnk =
√

k
n
βnk , (n, k) ∈

(Z+)2. Then the (weak) Grunsky inequalities hold if for eachN ∈ Z+, (λ1, . . . , λN ) ∈ CN ,∣∣∣∣∣
N∑

n=1

N∑
k=1

cnkλnλk

∣∣∣∣∣ �
N∑

n=1

|λn|2.

These inequalities are a necessary and sufficient condition forg to be univalent on{z ∈
C: |z| > 1}. We now apply this fact toF ◦ ψ .

Theorem 3.4. Suppose thatµ is a probability measure onR such that its support is con
tained in[−2,2]. Then the reciprocal Cauchy transformF ofµ is univalent inH if and only
if for eachN ∈ Z+ the real symmetric matrix[cnk]Nn,k=1 has all its eigenvalues in[−1,1].

Proof. Apply the Grunsky inequalities toF ◦ ψ . Since all coefficients ofF ◦ ψ are real,
its Grunsky coefficients are also real. Nowthe Grunsky inequalities reduce to bounds on
the eigenvalues of the matrices[cnk]N . �
n,k=1
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These conditions become quickly intractable. ForN = 1 we get|c11| = |1+ a2
1 − a2| �

1, while forN = 2 the matrix[cnk]2n,k=1 reads[
1+ a2

1 − a2 −√
2
(
a3

1 − 2a1a2 + a3
)

−√
2
(
a3

1 − 2a1a2 + a3
)

1+ 3a4
1 − 8a2

1a2 + 3a2
2 + 4a1a3 − 2a4

]
.

If µ is even, i.e., all odd moments vanish, then this gives the two conditions,a2 � 2 and
|1+ 3a2

2 − 2a4| � 1. Thus the Grunsky inequalities may be useful to quickly rule out
a certain distribution has a reciprocal Cauchy transform univalent in the upper half
just by looking at a few of its moments.

4. Chordal Loewner families

DenoteR the class of analytic functionsf :H → H which are univalent and satisfy∣∣f (z) − z
∣∣ � C

�(z)
, z ∈ H, (4)

for some constantC ∈ [0,∞). Denotea the least such constant. By Proposition 2
part (ii),

iy
[
iy − f (iy)

] =
∫
R

iy

iy − x
ρ(dx),

whereρ is a nonnegative Borel measure onR with total massa. Thus, by bounded con
vergence,

lim
y→∞ iy

[
iy − f (iy)

] = ρ(R) = a.

Remark 4.1. If K ⊂ H̄ is compact and such thatH\K is connected and simply connecte
then there exists a uniquef ∈ R such thatf (H) = H \ K, see [9].

For an example, lett ∈ [0,∞) and define the functionf (t; ·) by

f (t; z) =
√

z2 − 2t = z − t

z
+ O

(
1

|z|2
)

, z → ∞.

Thenf (t; ·) belongs toR and its rangeGt is the upper half-plane with a slit along th
imaginary axis from zero to

√
2t . We note thatf (t; ·) is the reciprocal Cauchy transfor

of the arcsine law with density 1/(π
√

2t − x2) supported in[−√
2t,

√
2t]. The functions

f (t; ·), t ∈ [0,∞), form a totally ordered “chain” relative to the partial ordering induc
by inclusion of the image domains. In fact,{Gt }t∈[0,∞) is a maximal totally ordered famil
of simply connected regions inH.

Letf,g ∈ R. We sayf is subordinate tog and writef ≺ g if f = g ◦h for someh ∈ R.

Lemma 4.1. If f,g ∈ R, thenf ≺ g if and only iff (H) ⊆ g(H). In this case

lim
y→∞ iy

[
iy − f (iy)

]
� lim

y→∞ iy
[
iy − g(iy)

]
(5)

with equality if and only iff ≡ g.
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Proof. If f = g ◦ h with h ∈ R, thenf (H) = g(h(H)) ⊆ g(H), so the condition is nec
essary. Conversely, iff (H) ⊆ g(H), then h ≡ g−1 ◦ f :H → H is univalent. Denote
a, b ∈ (0,∞) the least constants such that|f (z)−z| � b/�(z), and|g(z)−z| � a/�(z), for
all z ∈ H. We then also havef (iy) = i(y + b/y) + o(1/y), and sof (iy) ∈ g(H1) for all y
large enough. And iff (iy) = g(z) for somez with �(z) > 1, then|g−1(f (iy))−f (iy)| =
|z − g(z)| < a. Since also|f (iy) − iy| < b for y > 1 we get∣∣g−1(f (iy)

) − iy
∣∣ �

∣∣g−1(f (iy)
) − f (iy)

∣∣ + ∣∣f (iy) − iy
∣∣ < a + b

for all y large enough. Hence limy→∞ y/|g−1(f (iy))| = 1 andg−1 ◦ f is the reciproca
Cauchy transform of a probability measure on the real line. Letz = g−1(iy) and setỹ =
y − a/y. Fory large enough both�(z) � 1 andỹ � 1. Theng(iỹ) = iy + o(1/|y|) and so
|z − iỹ| = |g−1(iy) − g−1(g(iỹ))| = o(1/|y|) since|(g−1)′(z)| is bounded for�(z) � 1.
Similarly |g′(z)| is bounded for�(z) � 1 and so|g(z) − g(iỹ)| � C|z − iỹ| = o(1/|y|). In
particularz = O(|y|) and

iy
[
iy − g−1(iy)

] = g(z)
[
g(z) − z

] = z
[
g(z) − z

] + o(1) = iỹ
[
g(iỹ) − iỹ

] + o(1).

So limy→∞ iy[iy − g−1(iy)] = lim ỹ→∞ iỹ[g(iỹ) − iỹ] = −a. Since

iy
[
iy − g−1(f (iy)

)] = iy
[
iy − f (iy)

] + iy
[
f (iy) − g−1(f (iy)

)]
= iy

[
iy − f (iy)

] + i

(
y + b

y

)

×
[
i

(
y + b

y

)
− g−1

(
i

(
y + b

y

))]
+ o(1),

we now get limy→∞ iy[iy − g−1(f (iy))] = b − a. If F is the reciprocal Cauchy transfor
of a probability measureµ on R we introduce the function

y ∈ (0,∞) �→ CF (y) ≡ y

(
1

F(iy)
− 1

iy

)
∈ C.

One can show, [10], that limy→∞ y�(CF (y)) = ∫
R

x2 µ(dx), and, if
∫

R
x2 µ(dx) < ∞,

then limy→∞ 
(CF (y)) = ∫
R

x µ(dx). On the other hand,CF (y) = − iy
F (iy)

[iy − F(iy)]
and so forF = g−1 ◦ f

lim
y→∞yCF (y) = − lim

y→∞
y

F(iy)
lim

y→∞ iy
[
iy − F(iy)

] = i(b − a).

Henceg−1 ◦ f is the reciprocal Cauchy transform of a probability measure on the rea
with mean zero and varianceb − a. It follows in particular thatf ≺ g and also thatb � a,
i.e., (5). Finally, ifb = a, thenµ has mean and variance both equal to zero, that isµ is a
unit point mass at zero. In that case

∫
R

µ(dx)/(z − x) = 1/z and sog−1(f (z)) = z. �
Note that the above result implies in particular that the functionsf in R are determined

by their image domains. Subordination is a partial ordering onR. By a chain inR we mean
a nonempty totally ordered subsetC of R, and by achordal Loewner familyL we mean a
maximal chain, i.e., wheneverL ⊆ C whereC is a chain inR, thenL = C.
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Theorem 4.1. Every f ∈ R belongs to some chordal Loewner family. More genera
every chainC in R is contained in a chordal Loewner family.

Proof. See proof of Theorem B in section 7.10 in [12].�
The following theorem plays in the chordal case the role the Carathéodory conve

theorem plays in the radial (disk) case.

Theorem 4.2. Let {fn}∞n=1 be a sequence inR and for everyn ∈ Z+ let an =
limy→∞ iy[iy − fn(iy)]. If a = limn→∞ an exists and is finite, then there exists a fu
tion f ∈ R and a subsequencen1, n2, . . . , such that for everym ∈ Z+

sup
z∈H1/m

∣∣f (z) − fnk (z)
∣∣ → 0, ask → ∞. (6)

Furthermore, ifAo denotes the interior of a setA, then

f (H) =
∞⋃

m=1

∞⋃
l=1

( ∞⋂
k=l

fnk (H1/m)

)o

(7)

and

a = lim
y→∞ iy

[
iy − f (iy)

]
. (8)

If, in addition, the family{fn}∞n=1 is totally ordered, thenf is unique and(6) and(7) hold
without going to subsequences.

Proof. Since |fn(z)| = |(fn(z) − z) + z| � an/�(z) + |z|, the family {fn} is locally
bounded and there exists a subsequencen1, n2, . . . and an analytic functionf :H → H

such thatfnk → f uniformly on compact subsets ofH ask → ∞. Furthermore, sincefn

is univalent for eachn, f is either univalent or constant. For eachz ∈ H, |f (z) − z| �
|f (z) − fnk (z)| + ank/�(z). It follows that f is nonconstant, that|f (z) − z| � a/�(z),
and thata is the least constant such that this inequality holds. This proves (8) alo
subsequence.

We havefn(z) = z − ∫
R

ρn(dx)/(z − x), andf (z) = z − ∫
R

ρ(dx)/(z − x), whereρn

andρ are nonnegative Borel measures with total massan anda, respectively. Suppose th
a > 0. Then

1

ank

∫
R

ρnk (dx)

z − x
→ 1

a

∫
R

ρ(dx)

z − x
,

uniformly on compact subsets ofH. Sinceρn/an and ρ/a are probability measures,
follows by [10, Theorem 2.5] thatρn/an converges weakly toρ/a. This implies that∫

R
ρnk (dx)/(z − x) → ∫

R
ρ(dx)/(z − x) uniformly on H1/m, for everym ∈ Z+, see [3].

The casea = 0 is easily treated directly. This proves (6) along a subsequence.
Next, if

w ∈
∞⋃ ∞⋃( ∞⋂

fnk (H1/m)

)o

,

m=1 l=1 k=l
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then there existm,k ∈ Z+ andε > 0 such that{w′: |w − w′| < ε} ⊂ (
⋂∞

k=l fnk (H1/m))o.
ConsiderAnk ≡ f −1

nk
({w′: |w − w′| < ε}) ⊂ H1/m. Then, by (6),w ∈ f (Ank ) for all k

large enough. Conversely, supposew ∈ f (H). Then there existm ∈ Z
+ andε > 0 such

that{w′: |w −w′| < ε} ⊂ f (H1/m). ConsiderA ≡ f −1({w′: |w −w′| < ε}). Then, by (6),
fnk (H1/m) ⊃ {w′: |w − w′| < ε/2} for all k large enough and this proves (7) along
subsequence.

Finally, suppose that{fn}∞n=1 is totally ordered. Givenm,n ∈ Z+ we may assume with
out loss of generality thatfn ≺ fm. Thenfn = fm ◦ g for someg ∈ R. By Lemma 4.1
|g(z) − z| � (an − am)/�(z). Thus|fn(z) − fm(z)| = |fm(g(z)) − fm(z)| → 0, uniformly
on compact subsets ofH, asm,n → ∞, and this proves the theorem.�
Lemma 4.2. Let f,f1, f2, . . . and g,g1, g2, . . . belong to R. For each n ∈ Z+ let
an = limy→∞ iy[iy − fn(iy)], bn = limy→∞ iy[iy − gn(iy)]. Assume thatsupn an < ∞,
supn bn < ∞, andfn → f , gn → g, uniformly on compact subsets ofH, asn → ∞. If
fn ≺ gn for eachn ∈ Z+, thenf ≺ g.

Proof. For eachn ∈ Z+, define the functionhn by fn = gn ◦ hn. Then limy→∞ iy[iy −
h(iy)] = an − bn. By Theorem 4.2, there existsh ∈ R and a subsequencen1, n2, . . . such
thathnk → h uniformly on compact subsets ofH, ask → ∞. Since∣∣g(

h(z)
) − f (z)

∣∣ �
∣∣g(

h(z)
) − g

(
hnk (z)

)∣∣ + ∣∣g(
hnk (z)

) − gnk

(
hnk (z)

)∣∣
+ ∣∣fnk (z) − f (z)

∣∣,
andgnk → g, fnk → f uniformly, the right-hand side tends to zero ask → ∞. �
Lemma 4.3. Let γ : [0,1) → H̄ be a Jordan arc such that

γ (0) ∈ ∂H and lim
t↗1

�(
γ (t)

) = ∞.

For eacht ∈ [0,1) let f (t; ·) ∈ R be the unique function whose range is the compleme
γ ([0, t]) in H, and seta(t) = limy→∞ iy[iy − f (t; iy)]. Thent ∈ [0,1) �→ a(t) ∈ [0,∞)

is nondecreasing, continuous, and onto.

Proof. Let t, t1, t2, . . . be points in[0,1) such thattn → t , asn → ∞. By Remark 4.1,
supn a(tn) < ∞, and so there is a convergent subsequence. Applying the first part o
orem 4.2, it follows that there is a subsequencen1, n2, . . . such thatf (tnk ) → f ∈ R, and
a(tnk ) → a. It is straightforward to check that

∞⋃
m=1

∞⋃
l=1

( ∞⋂
k=l

f (tnk ;H1/m)

)o

= H \ γ
([0, t]),

and sof = f (t). Now we apply the second part of Theorem 4.2 and it follows thatt �→ a(t)

is continuous. It remains to check thata(t) → ∞ as t ↗ 1. By Proposition 3.2,f (t;H)

containsH2
√

a(t) and the lemma follows. �
Lemma 4.4. Letf ≺ g wheref,g ∈ R, a = limy→∞ iy[iy − f (iy)], b = limy→∞ iy[iy −
g(iy)], and letc be a positive number.
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(i) If c < b, there is anh ∈ R such thatlimy→∞ iy[iy − h(iy)] = c andg ≺ h.
(ii) If b < c < a, there is anh ∈ R such thatlimy→∞ iy[iy − h(iy)] = c andf ≺ h ≺ g.
(iii) If a < c, there is anh ∈ R such thatlimy→∞ iy[iy − h(iy)] = c andh ≺ f .

Proof. The result can be reduced to the case where the complements of the rangf
andg in H are compact, bounded by Jordan arcs, and separated by at leastε > 0 in H. To
reduce to the case of compact complement, letfn be the element ofR such thatfn(H) =
f (H) ∪ {z ∈ H: |
(z)| > n}. By Theorem 4.2,fn → f , uniformly on compact subse
of H. Definegn similarly. By construction,fn ≺ gn, and it follows from Lemma 4.2 that
is enough to proof the result forfn andgn. Approximating the compact complementK of
the range off in H by lemniscates we may assume thatK is bounded by Jordan arcs, an
after shifting the range off by a small amount along the imaginary axis, we may ass
that the complements of the ranges off andg in H are separated by at leastε.

Now the proof proceeds as in [12, Lemma 7.11D]. The Jordan arcγ used to produceh
first traces out the boundary of the range ofg in H, say from left to right. If this par
of the boundary consists of more than one component, then the Jordan arc conne
components by moving along the real axis between components. Afterγ has traced the
boundary ofg(H) in H, it then moves out to trace the boundary off (H) in H from right to
left. Since the two boundaries are separated,γ continues to be a Jordan arc. Finally, afteγ

has traced both boundaries it continues to∞ so that its imaginary part also goes to∞. �
Theorem 4.3. If L is any chordal Loewner family, then

f ∈ L �→ lim
y→∞ iy

[
iy − f (iy)

] ∈ [0,∞)

is one-to-one and onto. Thus the familyL has a parametric representationL =
{f (t; ·)}t∈[0,∞), where eachf (t; ·) satisfies

f (t; iy) = i

(
y + t

y

)
+ o

(
1

|y|
)

, y → ∞,

f (b; ·) is subordinate tof (a; ·), whenever0 � a � b < ∞, andf (0; z) = z.

Proof. The proof is analogous to the proof of [12, Theorem 7.12] and is omitted.�

5. Chordal Loewner equation

Let L be any chordal Loewner family with parametric representation{f (t; ·), t ∈
[0,∞)}. If 0 � a � b < ∞, thenf (b; ·) ≺ f (a; ·) and thereforef (b; z) = f (a;B(a, b; z))

for some functionB(a, b; ·) ∈ R. ThenB(a, a; z) = z and limy→∞ iy[iy − B(a, b; iy)] =
b − a. Furthermore

B(a, c; z) = B
(
a, b;B(b, c; z)

)
, (9)

whenever 0� a � b � c < ∞. We sayL is a chordal Loewner family with associate
semigroup{B(a, b; ·), 0 � a � b < ∞}. Sincef (t; z) = B(0, t; z), t ∈ [0,∞), z ∈ H, the
semigroup determinesL.
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Theorem 5.1. Let L be a chordal Loewner family with associated semigroup{B(a, b; ·),
0 � a � b < ∞}. Then for allz ∈ H,

∣∣B(a, c; z) − B(b, c; z)
∣∣ � b − a

�(z)
, (10)

∣∣B(a, b; z) − B(a, c; z)
∣∣ �

(
1+ b − a

�(z)2

)
c − b

�(z)
, (11)

whenever0 � a � b � c < ∞. Thus, for eachz ∈ H,

(i) the functiont ∈ [0,∞) �→ f (t; z) ∈ H is absolutely continuous,
(ii) if b > 0, a ∈ [0, b] �→ B(a, b; z) ∈ H is absolutely continuous,
(iii) if a � 0, b ∈ [a,∞) �→ B(a, b; z) ∈ H is absolutely continuous.

Proof. We have|B(a, c; z) − B(b, c; z)| = |B(a, b;B(b, c; z)) − B(b, c; z)| � (b − a)/

�(z), since�(B(b, c; z)) � �(z). This proves (10). For (11), note thatB(a, b; z) = z −∫
R

ρa,b(dx)/(z − x), for some nonnegative Borel measureρa,b with ρa,b(R) = b − a. So
|B ′(a, b; z) − 1| � (b − a)/�(z)2. Since also|B(b, c; z) − z| � (c − b)/�(z), we get∣∣B(a, b; z) − B(a, c; z)

∣∣ = ∣∣B(a, b; z) − B
(
a, b;B(b, c; z)

)∣∣
�

(
1+ b − a

�(z)2

)
c − b

�(z)
. �

Theorem 5.2. Assume the same situation as in Theorem5.1.

(i) There is a subsetN of [0,∞) of Lebesgue measure zero such that ift ∈ [0,∞) \ N ,
then(∂/∂t)f (t; z) exists, uniformly on compact subsets ofH.

(ii) For eachb > 0, there is a subsetN of [0, b] of Lebesgue measure zero such tha
a ∈ [0, b] \ N , then(∂/∂a)B(a, b; z) exists, uniformly on compact subsets ofH.

(iii) For eacha � 0, there is a subsetN of [a,∞) of Lebesgue measure zero such tha
b ∈ [a,∞) \ N , then(∂/∂b)B(a, b; z) exists, uniformly on compact subsets ofH.

Proof. We will only check (i). The other parts can then be handled in a similar way
Theorem 5.1, for fixedz, (∂/∂t)f (t; z) exists a.e. on(0,∞). The exceptional null se
depends onz, but we may choose a single nullsetN ⊂ [0,∞) such that the derivativ
exists for allt ∈ [0,∞) \ N andz = 1/2,2/3,3/4, . . . . Fix t ∈ [0,∞) \ N , and conside
the difference quotients{(f (t + h; z) − f (t; z))/h, 0 < |h| < t/2} as analytic functions
on H. Note thatf (t + h; z) − f (t; z) = B(0, t + h; z) − B(0, t; z), and so, by (11),

∣∣f (t + h; z) − f (t; z)
∣∣ �




(
1+ t

�(z)2

)
h

�(z)
, if t/2 > h > 0,(

1+ t+h

�(z)2

) −h
�(z)

, if − t/2 < h < 0.
(12)

Thus, for all 0< |h| < t/2,∣∣(f (t + h; z) − f (t; z)
)
/h

∣∣ �
(
1+ t/�(z)2)/�(z)
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and the family of difference quotients is locally bounded. Now apply Vitali’s theore
complete the proof of (i). �

We endow the space of probability measures with the topology of weak convergen
and define a measurable family of probability measures in terms of the Borelσ -algebra
for this topology. In the following we will identify two measurable families of probability
measures on the real line,{µt, t ∈ [0,∞)}, {νt , t ∈ [0,∞)}, if there is a subsetN ⊂ [0,∞)

of Lebesgue measure zero such thatµt = νt for all t ∈ [0,∞) \ N .

Theorem 5.3. If {f (t; ·), t ∈ [0,∞)} is any chordal Loewner family, then there is a uniq
measurable family{µt, t ∈ [0,∞)} of probability measures on the real line and a subs
N ⊂ [0,∞) of Lebesgue measure zero such that

∂

∂t
f (t; z) = −

∫
R

µt (dx)

z − x
· ∂

∂z
f (t; z) (13)

for all t ∈ [0,∞) \ N , andz ∈ H.

Proof. Let {B(a, b; ·), 0 � a � b < ∞} be the semigroup associated to the cho
Loewner family{f (t; ·), t ∈ [0,∞)}. Then

f (b; z) − f (a; z)

b − a
= f (a;B(a, b; z))− f (a; z)

B(a, b; z) − z
· B(a, b; z) − z

b − a
. (14)

By (11), B(a, b; z) → z, as b ↘ a and the first factor on the right in (14) converg
to (∂/∂z)f (a; z). Since(∂/∂z)f (a; z) 	= 0, the second factor also converges asb ↘ a.
Furthermore, sincey|(B(a, b; iy)− iy)/(b − a)| = 1 + o(1), asy → ∞, each function
[B(a, b; z) − z]/(b − a) is the Cauchy transform of a probability measure onR. By [10,
Theorem 2.5], the limit is also the Cauchy transform of a probability measure onR, sayµa .

For fixedz ∈ H, the functiona ∈ [0,∞) → Ga(z) ≡ ∫
R

µa(dx)/(z − x) is measurable
It follows thata ∈ [0,∞) �→ Ga ∈ C(H;−H) is also measurable if we endowC(H;−H),
the space of continuous functions, with the topology of uniform convergence on co
subsets and consider the Borelσ -field. By [10, Theorem 2.5], the mapa ∈ [0,∞) �→ µa ∈
M1(R) is then measurable if we endowM1(R), the space of probability measures on
real line, with the topology of weak convergence. Finally, the family{µt, t ∈ [0,∞)} is
unique because the measures are determined, a.e. int , by (13). �
Theorem 5.4. In Theorem5.3, let {B(a, b; ·),0� a � b < ∞} be the semigroup associate
to the chordal Loewner family.

(i) On [a,∞), (∂/∂s)B(a, s; z) = − ∫
R

µs(dx)/(z − x) · (∂/∂z)B(a, s; z), and B(a, a;
z) = z.

(ii) If b > 0, then on[0, b] (∂/∂t)B(t, b; z) = ∫
R

µt(dx)/(B(t, b; z) − x), and B(b, b;
z) = z.
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with
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Proof. On [a,∞), (∂/∂s)f (s; z) = f2(a;B(a, s; z))(∂/∂s)B(a, s; z), and∫
R

µs(dx)

z − x
· ∂

∂z
f (s; z) =

∫
R

µs(dx)

z − x
· f2

(
a;B(a, s; z)

) ∂

∂z
B(a, s; z).

By Theorem 5.1 the application of the chain rule is valid, [12, Theorem 8.3C]. Now
implies (i).

If 0 � a � t � b, thenB(a, b; z) = B(a, t;B(t, b; z)). Therefore

0 = B2
(
a, t;B(t, b; z)

)+ B3
(
a, t;B(t, b; z)

)
(∂/∂t)B(t, b; z).

SinceB2(a, t;w) = − ∫
R

µt (dx)/(w − x) · B3(a, t;w) by (i), we get

B3
(
a, t;B(t, b; z)

) ∂

∂t
B(t, b; z) =

∫
R

µt (dx)

B(t, b; z) − x
· B3

(
a, t;B(t, b; z)

)
.

Again by Theorem 5.1 the application of the chain rule is justified and, together
B3(a, t;w) 	= 0, this proves (ii). �

We now want to show that every measurable family{µt, t ∈ [0,∞)} of probability
measures on the real line determines a unique chordal Loewner family{f (t; ·), t ∈ [0,∞)}
such thatf1(t; z) = − ∫

R
µt(dx)/(z − x) · f2(t; z).

Theorem 5.5. Let {µt, t ∈ [0,∞)} be a measurable family ofprobability measures on the
real line. There exists a unique family of functions{B(a, b; ·), 0 � a � b < ∞} with these
properties:

(i) For fixeda, b, B(a, b; ·) is in R, limy→∞ iy[iy − B(a, b; iy)] = b − a, and

B(a, c; z) = B
(
a, b;B(b, c; z)

)
(15)

whenever0 � a � b � c.
(ii) For fixedb > 0 andz ∈ H, a ∈ [0, b] �→ B(a, b; z) ∈ H is absolutely continuous suc

that

(∂/∂a)B(a, b; z) =
∫
R

µa(dx)/
(
B(a, b; z) − x

)
, (16)

a.e. on[0, b], andB(b, b; z) = z.

Proof. If B(·, b; z) solves the initial value problem (16), then it also solves the inte
equation

B(a, b; z) = z −
b∫

a

(∫
R

µs(dx)

B(s, b; z) − x

)
ds, 0 � a � b. (17)

Furthermore, continuous solutions of (17) satisfy

�(
B(a, b; z)

)
� �(z), 0� a � b, (18)
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if �(z) > 0. To solve (17) we construct functionsB0(a),B1(a), . . . , a ∈ [0, b] such that
B0(a) ≡ z and

Bn+1(a) = z −
b∫

a

(∫
R

µs(dx)

Bn(s) − x

)
ds, a ∈ [0, b],

n = 0,1,2, . . . . Using induction it easily follows that�(Bn(a)) � �(z) for all n ∈ Z+ and
a ∈ [0, b]. Furthermore,

∣∣Bn+1(a) − Bn(a)
∣∣ =

∣∣∣∣∣
b∫

a

(
Bn(s) − Bn1(s)

)(∫
R

µs(dx)

(Bn(s) − x)(Bn1(s) − x)

)
ds

∣∣∣∣∣
� 1

�(z)2

b∫
a

∣∣Bn(s) − Bn−1(s)
∣∣ds.

Thus, by induction, we obtain continuous functionsB0(a),B1(a),B2(a), . . . , a ∈ [0, b],
satisfying

∣∣Bn+1(a) − Bn(a)
∣∣ � 1

�(z)2n+1 · (b − a)n+1

(n + 1)! , a ∈ [0, b],
for eachn ∈ N. The estimates imply that the limit

B(a) = lim
n→∞Bn(a) = z +

∞∑
n=0

(
Bn+1(a) − Bn(a)

)
exists uniformly on[0, b], that�(B(a)) � �(z), a ∈ [0, b], and thata ∈ [0, b] �→ B(a) ∈ H

satisfies (17). To show thatB is the unique solution of (17) suppose thatB̃ is another
continuous function on[0, b] satisfying (17). Then�(B̃(a)) � �(z) and

∣∣B(a) − B̃(a)
∣∣ =

∣∣∣∣∣
b∫

a

(
B̃(s) − B(s)

)(∫
R

µs(dx)

(B(s) − x)(B̃(s) − x)

)
ds

∣∣∣∣∣
� 1

�(z)2

b∫
a

∣∣B(s) − B̃(s)
∣∣ds.

Now Gronwall’s inequality impliesB(a) = B̃(a), a ∈ [0, b]. To show thatB(a) =
B(a, b; z) is analytic as a function ofz ∈ H note first thatB0(a) ≡ z is analytic onH.
Suppose now thatBn(a) = Bn(a, b; z) is analytic onH. Since�(Bn(a, b; z)) � �(z) we
get by bounded convergence thatz ∈ H �→ Bn+1(a, b; z) ∈ H is continuous and, by Fu
bini’s theorem, that for any closed triangle∆ in H

∫
Bn+1(a, b; z) dz =

b∫ [∫ (∫
1

Bn(s, b; z) − x
dz

)
µ(dx)

]
ds = 0.
∆ a R ∆
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It follows by Morera’s theorem thatBn+1(a, b; z) is analytic as a function ofz in H.
SinceBn(a, b; z) → B(a, b; z), n → ∞, uniformly on compact subsets ofH, it follows
thatB(a, b; z) is analytic as a function ofz in H.

We show thatB(a, b; z) is univalent onH for a ∈ [0, b]. This is clear fora = b and
to prove it fora ∈ [0, b) suppose thatB(a0, b; z1) = B(a0, b; z2) for somea0 ∈ [0, b) and
z1, z2 ∈ H. Note that

∂

∂a

(
B(a, b; z1) − B(a, b; z2)

)
= (

B(a, b; z1) − B(a, b; z2)
)∫

R

µa(dx)

(B(a, b; z1) − x)(B(a, b; z2) − x)
,

for almost everya ∈ [0, b]. Hence, settingw(a) = B(a, b; z1) − B(a, b; z2), we have
w(a0) = 0 and |(∂/∂a)w(a)| � |w(a)|/(�(z1)�(z2)) for a.e.a ∈ [0, b]. ChooseM > 0
such that|w(a)| � M for a ∈ [a0, b]. Then|w(a)| � M(a − a0)/(�(z1)�(z2)) and

∣∣w(a)
∣∣ �

a∫
a0

1

�(z1)�(z2)

∣∣w(s)
∣∣ds � M(a − a0)

2

2!(�(z1)�(z2))2
.

Upon iteration we obtain a sequence of estimates which imply thatw(a) = 0 for a ∈
[a0, b]. In particular,w(0) = 0 impliesz1 = z2 and this completes the proof thatB(a, b; z)

is univalent onH.
Next, for fixed 0� a � c andz ∈ H definet ∈ [0, c] �→ u(t) ∈ H by

u(t) =
{

B
(
t, a;B(a, c; z)

)
, if t ∈ [0, a],

B(t, c; z), if t ∈ (a, c]. (19)

It is easy to show thatu satisfies (17). Uniqueness of the solution to (17) then implies
flow identity (15).

Finally, by bounded convergence, asy → ∞,

iy
[
iy − B(a, b; iy)

] =
b∫

a

(∫
R

iy

B(s, b; iy) − x
µs(dx)

)
ds → b − a. �

By Theorem 5.3, for every chordal Loewner family{f (t; ·), t ∈ [0,∞)} there is a mea
surable family{µt, t ∈ [0,∞)} of probability measures onR such that

∂

∂t
f (t; z) = −

∫
R

νt (dx)

z − x
· ∂

∂z
f (t; z). (20)

Every measurable family of probability measures onR arises in this way.

Theorem 5.6. If {µt, t ∈ [0,∞)} is any measurable familyof probability measures on
the real line, then there exists a unique chordal Loewner family{f (t; ·), t ∈ [0,∞)} such
that (20)holds.
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Proof. Construct{B(a, b; ·), 0 � a � b < ∞} as in Theorem 5.5 and setf (t; z) =
B(0, t; z), z ∈ H, t ∈ [0,∞). By (15), {f (t; ·), t ∈ [0,∞)} is a chain inR which, by
the statement preceding (15) and Theorem 4.3, is maximal, i.e.,{f (t; ·), t ∈ [0,∞)} is a
chordal Loewner family. By Theorem 5.3,f (t; z) solves (20) for some measurable fam
{νt , t ∈ [0,∞)} of probability measures on the real line. Sincef (a; z) = f (t;B(t, a; z))

for t ∈ [0, a],
0 = f1

(
t;B(t, a; z)

) + f2
(
t;B(t, a; z)

)∫
R

µt(dx)

B(t, a; z) − x
.

It follows that µt = νt a.e. in t and thereforef (t; z) satisfies (20) for the given famil
{µt, t ∈ [0,∞)}.

Suppose that{g(t; ·), t ∈ [0,∞)} is another chordal Loewner family that satisfies (2
Then, by the generalized chain rule and Theorem 5.4(ii),

(∂/∂t)
[
g
(
t;B(t, a; z)

)] = g1
(
t;B(t, a; z)

) + g2
(
t;B(t, a; z)

)
(∂/∂t)B(t, a; z) = 0

a.e. on[0, a]. Thereforeg(t;B(t, a; z)) = g(a;B(a, a; z)) = g(a; z) for all t ∈ [0, a]. In
particular,g(a; z) = g(0;B(0, a; z)) = B(0, a; z) = f (a; z). �
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