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Let G be a finite, connected, undirected graph, without loops or 
multiple edges. The degree p(v) of a vertex v is the number of  edges 
incident with v. R. L. Brooks [1] has shown that 

k ~< 1 + max p(v), (1) 

where k = k(G) is the chromatic number of  G, with equality if and 
only if G is a complete graph or an odd circuit. 

More recently Wilf [2] sharpened Brooks'  inequality to 

k(G) ~< 1 + ~, (2) 

where A = A(G) is the largest eigenvalue of  the vertex-adjacency matrix 
of  G, i.e., the matrix whose i, j entry is 1 is vertices i and j are connected 
and 0 otherwise. In the case of a star graph with n vertices (k = 2), 

(1) gives only k ~ n whereas (2) gives 0(V'n). 

In examination it appears that the only properties of  the function A(G) 
needed in the proof  of (2) are 

P~. G' C G ~ A(G') ~ ,~(G). 

In fact the following is true: 

THEOREM. Let A(G) be any real valued function on G with the properties 
P1 and P~ above. Then 

k(G) ~< )(G) + 1. (3) 

* This paper was written while the authors were on Sabbatical leave at Imperial 
College, London. The second author was supported in part by the National Science 
Foundation. 
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Pgoov: Let the chromatic number of G be k. By removing a finite 
number of vertices, if necessary, we obtain a critical subgraph Gc C G 
with the property that k(Gc) = k and the removal of  any vertex from Gc 
lowers the chromatic number. By property P~, A(G~) ~< A(G). But clearly 
G~ cannot contain a vertex with p(v) < k -- 1, therefore by P2, 

k -- 1 ~ min p(v) <~ )t(Gc) <~ )t(G) 
v ~ G  o 

and (3) is proved. 

Write/x(G) = minvea p(v). The function 

A(G) = max tx(G') (4) 
G ' C G  - - "  " 

evidently satisfies conditions Pz,  P2, and is in fact the smallest such 
function. Thus the most favorable inequality obtainable from the theorem 
is 

k(G) <~ A(G) + 1 = 1 -}- max min p(v), (5) 
G ' ~ G  v C G "  

valid for all finite connected graphs (with or without loops or multiple 
edges). Note that for the star graph of  any order, (5) supplies the correct 
value. For  planar graphs it gives k(G) ~< 6 in general. 

For  given G the value of A(G) can be determined by the following 
algorithm: Take an integer v ~>/~(G) and remove from Go = G all stars 
of vertices with p(v) <~ u. From the subgraph G1 so obtained again remove 
all vertices with p(v) <~ v and repeat the process with the subgraph G~ so 
obtained, etc. After a finite number of steps (say p ~ p(v) steps) we either 
exhaust all vertices (i.e., G~ is empty), or we obtain a non-empty G~ C G 
with/z(G~) > v. 

In the second case we clearly have A(G) > ~,; in the first case we show 
that A(G) ~ u. 

For let S l ..... S~ denote the successive sets of vertices removed, and 
suppose that we had a subgraph G' C G with tz(G') > v. Clearly G' does 
not contain any vertices from $1 since their orders are ~< v, hence G' C G1 �9 
But $2 is the set of those vertices of Ga with p(v) <~ v, hence G' does not 
contain any vertices from $2 either, G ' C  G~ etc., G 'C  G~ and so G' is 
empty. Thus/z(G')  ~< v for every non-empty G'C G and so A(G) ~ v. 
We conclude that A(G) is equal to the smallest value of v(>~/~(G)) for 
which G~(,) is empty. 

The algorithm supplies a second (constructive) proof  of the theorem; 
by starting from the empty G~(,) and by adjoining successively (and in 
any order) the stars of the vertices of Sq to Gq, at no stage will more than 
v + 1 = A(G) + 1 colors be needed. Hence k(G) <~ A(G) + 1. 
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