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Abstract

Let T ∈ Rn×n be an irreducible stochastic matrix with stationary distribution vector π . Set A = I − T ,
and define the quantity κ3(T ) ≡ 1

2 maxj=1,...,n πj‖A−1
j

‖∞, where Aj , j = 1, . . . , n, are the (n − 1) ×
(n − 1) principal submatrices of A obtained by deleting the jth row and column of A. Results of Cho and
Meyer, and of Kirkland show that κ3 provides a sensitive measure of the conditioning of π under perturbation
of T. Moreover, it is known that κ3(T ) � n−1

2n
.

In this paper, we investigate the class of irreducible stochastic matrices T of order n such that κ3(T ) =
n−1
2n

, for such matrices correspond to Markov chains with desirable conditioning properties. We identify
some restrictions on the zero–nonzero patterns of such matrices, and construct several infinite classes of
matrices for which κ3 is as small as possible.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a finite, ergodic, homogeneous, Markov chain with transition matrix T ∈ Rn×n. For
such a chain, its stationary distribution vector is the unique positive vector π ∈ Rn satisfying that
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πTT = πT and ‖π‖1 = 1. The stationary distribution vector is a key parameter of the chain since
it gives the long-term probabilities for the chain to be in each of the various states.

There is a good deal of interest in the literature on the question of the sensitivity of π to pertur-
bations in the transition matrix T , see, for example, [15,8,16,6,7,12]. Specifically, let T̃ = T + E

be the transition matrix of another finite, irreducible, homogeneous, Markov chain with stationary
distribution vector π̃ . The problem is then to find an upper bound on the difference between π

and π̃ , measured under some suitable vector norm.
Perturbation bounds of that type are typically of the form

‖π − π̃‖p � κl‖E‖q, (1.1)

where (p, q) = (∞, ∞) or (1, ∞) and where κl is some scalar depending on T . Such a κl is
known as a condition number for the chain, and an excellent survey and comparison of various
condition numbers can be found in Cho and Meyer [7].

Among the condition numbers that Cho and Meyer discuss in [7] is the following:

κ3(T ) := 1

2
max

1�j�n
πj‖A−1

j ‖∞, (1.2)

which satisfies ‖π − π̃‖∞ � κ3‖E‖∞ whenever T and T̃ = T + E are irreducible and stochastic.
The comparisons between condition numbers made in [7], coupled with one of the main results

in [12], show that κ3 is the smallest among the eight condition numbers surveyed in [7]. Further,
it is shown in [13] that for all sufficiently small ε > 0, there is a perturbing matrix E such
that ‖E‖∞ < ε, T̃ = T + E is irreducible and stochastic, and ‖π − π̃‖∞ � 1

2κ3‖E‖∞. Thus κ3
provides a tight measure of the conditioning of the stationary distribution under perturbation of
T .

The paper [12] also provides a lower bound on κ3, which we state (in somewhat modified
form) in the following theorem.

Theorem 1 [12, Theorem 2.9]. Let T ∈ Rn×n be an irreducible stochastic matrix. Let π =
[π1, . . . , πn]T be the stationary distribution vector for T . Put A = I − T . Then

κ3(T ) = 1

2
max

1�j�n
πj‖A−1

j ‖∞ � n − 1

2n
, (1.3)

where, to recall,Aj , j = 1, . . . , n, are the (n − 1) × (n − 1) principal submatrices of A obtained
by deleting the j th row and column of A. Equality holds in (1.3) if and only if each of the following
holds:

(i) T is a doubly stochastic matrix with zero diagonal.
(ii) ‖A−1

j ‖∞ = n − 1, for each j = 1, . . . , n.

(iii) If i /= j are indices such that tj,i > 0, then the entry that corresponds to the index i of A−1
j e

is equal to n − 1, where e ∈ Rn−1 is the all ones vector.

Theorem 1 shows that there are limits on how well-conditioned a Markov chain can be. For
instance, picking up on the result in [13] quoted above, we see that for any irreducible sto-
chastic matrix T of order n with stationary vector πT, and all sufficiently small ε > 0, there
is a perturbing matrix E such that ‖E‖∞ < ε, T̃ = T + E is irreducible and stochastic, and
‖π − π̃‖∞ � n−1

4n
‖E‖∞.

In light of that fact, it is natural to wonder which irreducible stochastic matrices T can yield
equality in the lower bound (1.3), for such matrices will correspond to Markov chains having



120 S.J. Kirkland et al. / Linear Algebra and its Applications 424 (2007) 118–131

optimal conditioning properties. In principal, conditions (i)–(iii) of Theorem 1 characterize the
Markov chains that minimize κ3, but the conditions themselves impart little intuition as to the
nature of the transition matrix, and may be tedious to check for a given stochastic matrix T .

It is straightforward to check (see [12]) that if T is a permutation matrix whose directed graph
is an n-cycle, or if T = 1

n−1 (J − I ), where J is the all ones matrix of the appropriate size, then
equality holds in (1.3). Indeed, it is conjectured in [12] (erroneously, as we shall show) that those
classes of examples are the only ones to minimize κ3.

In this paper we are concerned with constructing classes of irreducible stochastic matrices
attaining equality in (1.3). As a byproduct of our investigation, we will refute the conjecture
mentioned above.

In Section 2 we develop our main results. In particular, we provide a useful recasting of the
equality conditions of Theorem 1. We then show that if an irreducible stochastic matrix T has
either a row or a column having all off-diagonal entries positive, and if T yields equality in (1.3),
then necessarily T = 1

n−1 (J − I ). We also show that the only symmetric, irreducible, stochastic

matrix that yields equality in (1.3) is T = 1
n−1 (J − I ). These results help to narrow the field of

search for matrices yielding equality in (1.3), since they imply that if T /= 1
n−1 (J − I ) yields

equality in that bound, then there are restrictions on the pattern of the entries in T .
Section 3 provides some constructions of classes of stochastic matrices yielding equality in

(1.3). These constructions include both primitive stochastic matrices and irreducible periodic
stochastic matrices, and suggest that the class of matrices yielding equality in (1.3) may be quite
rich. In particular, we characterize the irreducible stochastic matrices yielding equality in (1.3),
and having one off-diagonal zero entry in each row and column.

The techniques of Sections 2 and 3 rely in part on the notion of the mean first passage time
from state Si to state Sj of an ergodic Markov chain with transition matrix T , that is,

mi,j =
∞∑

k=1

kP r{Xk = Sj , Xμ /= Sj , μ = 1, . . . , k − 1|X0 = Si}. (1.4)

Standard results on Markov chains (see [10], for example) assert that

m(j) :=[m1,j , . . . , mj−1,j , mj+1,j , . . . , mn,j ]T = A−1
j e, (1.5)

while mi,i = 1
πi

, i = 1, . . . , n. Thus a discussion of ‖A−1
j ‖∞ can be recast in terms of mean first

passage times.
Due to the skip of the index i over the column number j of mi,j in (1.5), it will be convenient

to adopt the notation that

φ(i, j) =
{
i, if 1 � i < j,

i − 1, if i > j.

Note that 1 � φ(i, j) � n − 1, for all i, j = 1, . . . , n. From (1.5) we see that

‖A−1
j ‖∞ = max

1�i�n
m

(j)

φ(i,j) (1.6)

and that

max
1�j�n

‖A−1
j ‖∞ = max

1�j�n
max

1�i�n
m

(j)

φ(i,j).

We mention that the quantity max1�j�n max1�i�n m
(j)

φ(i,j) has been used in various applications of
mean first passage times. In particular, it has been applied to the quantification of the small-world
properties of ring networks, see, for example, Catral et al. [5].
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2. Equality in (1.3) and mean first passage times

We begin with a few useful preliminary results concerning the mean first passage matrix, i.e.
the n × n matrix M = [mi,j ] consisting of the mean first passage times.

Lemma 2.1 [14, Eq. (3.3)]. Let T ∈ Rn×n be irreducible and stochastic. Let M be its mean first
passage matrix. Then M satisfies the matrix equation

(I − T )M = J − T Mdiag, (2.1)

where Mdiag is the diagonal matrix obtained from M by setting its off-diagonal entries to zero.

Remark 2.2. From (2.1) we easily find that for any 1 � i, j � n,

mi,j = 1 +
∑

1�k�n;k /=j

ti,kmk,j . (2.2)

Observe that in the special case that T is an irreducible doubly stochastic matrix, taking i = j in
(2.2), we find that n = mj,j = 1 + ∑

k /=j tj,kmk,j � (1 − tjj ) maxk /=j mk,j , so that

max
1�k�n

m
(j)

φ(k,j) = ‖A−1
j ‖∞ � n − 1

1 − tj,j
(2.3)

(note that tj,j < 1 since T is irreducible). Observe that equality is attainable in that lower bound
on ‖A−1

j ‖∞; for instance, if T = J/n ∈ Rn×n, then ‖A−1
j ‖∞ = n = (n − 1)/(1 − tj,j ), for each

j = 1, . . . , n.

Lemma 2.3 [9, Theorem 2.4]. Let T ∈ Rn×n be an irreducible stochastic matrix. Let M = [mi,j ]
and π = [π1, . . . , πn]T be the mean first passage matrix and the stationary distribution vector
for T , respectively. Then there exists a constant K > 0 such that for any 1 � i � n,

n∑
k=1

πkmi,k = 1 + trace(A#) = K. (2.4)

The constant K is called the Kemeny constant. Here A# is the group inverse2 of A = I − T .
In particular, when T is irreducible and doubly stochastic, (2.4) reduces to

n∑
k=1

mi,k = nK, i = 1, . . . , n. (2.5)

Lemma 2.4 [1]. Let A ∈ Rn×n, with det(A) = 0, be positive semidefinite and let A† be the
Moore–Penrose inverse of A. Then in the ordering of the cone of positive semidefinite matrices,
i.e. the Lowner ordering,

A ◦ A† � P ◦ P, (2.6)

where P is the orthogonal projection onto R(A) and where ◦ denotes the entrywise (i.e. Hadam-
ard) product of matrices.

2 See the books by Ben-Israel and Greville [2] and Campbell and Meyer [4].
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It is known that when A = I − T , where T ∈ Rn×n is irreducible and stochastic, P is given
by I − eπT, where π is the stationary distribution vector for T . Thus in particular, P = I − J/n

when T is doubly stochastic. Note that if T is also symmetric, then A† = A#, the group inverse
of A.

Lemma 2.5 [18, Theorem 2.2]. Let T ∈ Rn×n be an irreducible doubly stochastic matrix. Put
A = I − T . Let M = [mi,j ] be the mean first passage matrix for T . Define the matrix L = [�i,j ] ∈
R(n−1)×(n−1) by

�i,j = mi,n + mn,j − mi,j , for i /= j ; �i,i = mi,n + mn,i . (2.7)

Then

nA−1
n = L. (2.8)

In our first result we show that condition (ii) in the case of equality in Theorem 1, coupled with
the fact that T is doubly stochastic, is sufficient to imply that T has zero diagonal.

Theorem 2. Let T = [ti,j ] ∈ Rn×n be irreducible and doubly stochastic. If ‖A−1
j ‖∞ � n − 1,

for each j = 1, . . . , n, then tj,j = 0, for each j = 1, . . . , n.

Proof. From the hypothesis, we find that max1�j�n πj‖A−1
j ‖∞ � (n − 1)/n. That inequality,

coupled with (1.3), then yields that max1�j�n πj‖A−1
j ‖∞ = (n − 1)/n. From the equality char-

acterization of Theorem 1, we see that tj,j = 0, for each j = 1, . . . , n. �

Next, we show that condition (iii) of Theorem 1 can be deduced from condition (ii) and the
fact that T is doubly stochastic.

Theorem 3. Let T = [ti,j ] ∈ Rn×n be irreducible and doubly stochastic. Then:

(a) if ‖A−1
j ‖∞ � n − 1, for each j = 1, . . . , n, then for any i /= j, tj,i > 0 implies that

(A−1
j e)φ(i,j) is equal to n − 1.

(b) ‖A−1
j ‖∞ � n − 1, for all j = 1, . . . , n, if and only if ‖A−1

j ‖∞ = n − 1, j = 1, . . . , n.

Proof. (a) Suppose that T is doubly stochastic and that ‖A−1
j ‖∞ � n − 1, for each j = 1, . . . , n.

As in the proof of Theorem 2, those conditions imply that equality holds in (1.3). The conclusion
now follows from condition (iii) of Theorem 1.

(b) Suppose that T is doubly stochastic. If ‖A−1
j ‖∞ � n − 1, for each j = 1, . . . , n, then

equality holds in (1.3), so that ‖A−1
j ‖∞ = n − 1, for each j = 1, . . . , n, by condition (ii) of

Theorem 1. The converse implication is immediate. �

Theorems 2 and 3 lead us to the following recasting of Theorem 1.

Theorem 4. Let T ∈ Rn×n be an irreducible stochastic matrix and put A = I − T . Let π =
[π1, . . . , πn]T be the stationary distribution vector for T . Then

max
1�j�n

πj‖A−1
j ‖∞ � (n − 1)

n
. (2.9)
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Equality holds in (2.9) (equivalently, in (1.3)) if and only if

(i) T is a doubly stochastic matrix
and

(ii) ‖A−1
j ‖∞ = n − 1, for each j = 1, . . . , n.

In addition, conditions (i) and (ii) yield that:
(iii) T has a zero diagonal

and
(iv) for any i /= j, tj,i > 0 implies that m

(j)

φ(i,j) = (A−1
j e)φ(i,j) = n − 1.

Our next two results discuss equality in (1.3) under certain pattern restrictions on T .

Theorem 5. Let T = [ti,j ] ∈ Rn×n be an irreducible, stochastic matrix that yields equality in
(1.3). Suppose that for some 1 � j � n, the off-diagonal entries in the j th column of T are all
positive. Then T = 1

n−1 (J − I ).

Proof. By Theorem 3 we know that all the off-diagonal entries in the j th row of M are equal
to n − 1 and that further, as T is doubly stochastic, the j th diagonal entry of M is equal to n. It
follows that

∑n
k=1 mj,k = n + (n − 1)2. Using Lemma 2.3 concerning the Kemeny constant K ,

we conclude that for any 1 � i � n,

n∑
k=1

mi,k = n + (n − 1)2. (2.10)

Since, for any index i we have that mi,i = n and mi,j � n − 1, j /= i, it follows from (2.10) that
we must have that mi,j = n − 1 whenever i /= j . Hence the mean first passage matrix of T is
given by M = (n − 1)J + I , which, according to (2.1), leads to T = 1

n−1 (J − I ). �

Theorem 6. Let T = [ti,j ] ∈ Rn×n be an irreducible, stochastic matrix that yields equality in
(1.3). Suppose that for some 1 � i � n, the off-diagonal entries in the ith row of T are all
positive. Then T = 1

n−1 (J − I ).

Proof. By part (iv) of Theorem 4, mj,i = n − 1, for all j /= i. Moreover, from (2.2) we have for
any index j /= i,

mj,i = 1 +
∑

1�k�n;k /=i

tj,kmk,i ,

from which it follows that

n − 1 = 1 + (n − 1)
∑

1�k�n;k /=i

tj,k = 1 + (n − 1)(1 − tj,i ).

Thus

tj,i = 1

n − 1
,

for any j /= i, so that all off-diagonal entries in the ith column of T are positive. By Theorem 5,
we conclude that T = 1

n−1 (J − I ). �
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We note that Theorems 5 and 6 generalize a result in [12], which asserts that if the stochastic
matrix T of order n has all off-diagonal entries positive and yields equality in (1.3), then necessarily
T = 1

n−1 (J − I ).
Next, we characterize the irreducible symmetric stochastic matrices that yield equality in (1.3).

Theorem 7. Let T ∈ Rn×n be a symmetric, irreducible, and stochastic matrix yielding equality
in (1.3). Then T = 1

n−1 (J − I ).

Proof. Put A = I − T . Clearly A is positive semidefinite. As mentioned earlier, A† = A# and
the orthogonal projection P of Rn×n onto R(A) is given by I − J/n. By Lemma 2.4, we have
that

A ◦ A# � (I − J/n) ◦ (I − J/n), (2.11)

where the inequality is in the ordering of the cone of positive semidefinite matrices.
Since the matrix formed from the difference between the left and right sides of (2.11) is

positive semidefinite, its diagonal entries are necessarily nonnegative. Thus, by inspection, for all
1 � j � n, we have that:

a#
j,j � (n − 1)2

n2
,

which implies the Kemeny constant

K = 1 + tr(A#) � 1 + (n − 1)2

n
.

On the other hand, the condition that ‖A−1
j ‖∞ � n − 1, for all 1 � j � n, implies that

K � 1 + (n − 1)2

n
.

Thus K must be exactly 1 + (n−1)2

n
. The conclusion now follows from an argument similar to

that in the proof of Theorem 5. �

Next, we investigate the structure of an (n − 1) × (n − 1) reducible submatrix of A = I − T

when T ∈ Rn×n yields equality in (1.3).

Theorem 8. Let T ∈ Rn×n be an irreducible stochastic matrix yielding equality in (1.3). Suppose
that Tn is reducible and, without loss of generality, assume that Tn has the form

Tn =
⎡⎣ B1,1 B1,2

0(n−k−1,k) B2,2

⎤⎦ , (2.12)

where B1,1 ∈ Rk×k, for some k, 1 � k < n − 1, and B2,2 ∈ R(n−k−1)×(n−k−1). Then T has the
following form:

T =

⎡⎢⎢⎢⎢⎣
B1,1 B1,2 0(k,1)

0(n−k−1,k) B2,2 B2,3

B3,1 0(1,n−k−1) 0(1,1)

⎤⎥⎥⎥⎥⎦ , (2.13)

where for any two positive integers μ and ν, 0(μ,ν) denotes the zero matrix in Rμ×ν .



S.J. Kirkland et al. / Linear Algebra and its Applications 424 (2007) 118–131 125

Proof. Let A = I − T . From (2.12) we know that A−1
n is of the form

A−1
n =

[ ∗ ∗
0(n−k−1,k) ∗

]
Hence, by (2.7) and (2.8),

mi,n + mn,j − mi,j = 0, for i = k + 1, . . . , n − 1, and for j = 1, . . . , k. (2.14)

But then, as 0 < mi,j � n − 1, it follows that

n − 1 >

{
mi,n, for k + 1 � i � n − 1,

mn,j , for 1 � j � k.

We find from Theorem 3 that

0 =
{
tn,i , for k + 1 � i � n − 1,

tj,n, for 1 � j � k.

The conclusion now follows. �

3. Constructions for optimally-conditioned Markov chains

Theorems 5 and 6 show that if the irreducible stochastic matrix T /= 1
n−1 (J − I ) is to yield

equality in (1.3), then necessarily T must have at least one off-diagonal zero entry in each row and
column. Our next result characterizes those matrices yielding equality in (1.3) that have exactly
one off-diagonal zero entry in each row and column.

Theorem 9. T is an n × n irreducible stochastic matrix having one off-diagonal zero entry in
each row and each column and yielding equality in (1.3) if and only if

T = 1

n − 1 + x
J + I − n(n − 1)2

(n − 1)3 + x3

[
I − x

n − 1
P + x2

(n − 1)2
P 2

]
, (3.1)

where P is permutationally similar to a direct sum of 3 × 3 cyclic permutation matrices, and
where x is the positive root of the equation x3 + nx2 − (n − 1)2 = 0.

Proof. First, suppose that (3.1) is satisfied. From the fact that x3 + nx2 − (n − 1)2 = 0, it follows

that 1
n−1+x

+ 1 − n
n−1

(n−1)3

(n−1)3+x3 = 0, and that 1
n−1+x

− n
n−1

(n−1)3

(n−1)3+x3
x2

(n−1)2 = 0, so that T has

off-diagonal zeros precisely in the positions corresponding to the non-zero entries of P 2. In
particular, T is irreducible and nonnegative, and a straightforward computation shows that its row
and column sums are all 1.

Further, it is readily checked that the matrix M = (n − 1)J + I − xP is the (unique) matrix
satisfying (2.1), and thus M is the mean first passage matrix for T . Since T is doubly stochastic,
and the maximum off-diagonal entry in each row of M is n − 1, we see from Theorem 4 that T

yields equality in (1.3).
Now suppose that T is an irreducible stochastic matrix with one off-diagonal zero in each row

and column, and that T yields equality in (1.3). Necessarily T is doubly stochastic. Let QT denote
the permutation matrix with ones in the positions where T has off-diagonal zeros. Let M be the
mean first passage matrix for T . Since equality holds in (1.3), the only off-diagonal positions where
an entry of M can be less than n − 1 correspond to positions where Q has ones. Further, since
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M has constant row sums, it follows that M is of the form M = (n − 1)J + I − yQ, for some
n − 1 > y > 0. Substituting that expression into (2.1) and solving for T , we find that necessarily
T = ((n − 1)I + yQ)−1(J − I + yQ) = 1

n−1+y
J + I − n

n−1 (I + y
n−1Q)−1 (observe that the

appropriate inverses exist since |y|
n−1 < 1).

Consider an index i that is on a cycle of length l in the directed graph of Q. We find (by
expanding the inverse as a geometric series) that the ith diagonal entry of (I + y

n−1Q)−1 is given

by (n−1)l

(n−1)l−(−y)l
. Since T has constant diagonal, it follows that for some integer k, each vertex in

the directed graph of Q is on a cycle of length k. We now deduce that the permutation matrix Q

is permutationally similar to a direct sum of k × k cyclic permutation matrices.
Since Qk = I , a straightforward computation now yields the fact that

T = 1

n − 1 + y
J + I − n

n − 1

(n − 1)k

(n − 1)k − (−y)k

×
[
I − y

n − 1
Q + y2

(n − 1)2
Q2 + · · · + (−1)k−1 yk−1

(n − 1)k−1
Qk−1

]
. (3.2)

Note that because Q is permutationally similar to a direct sum of k-cyclic permutation matrices,
no pair of the powers I , Q, Q2, . . . , Qk−1 contains a 1 in a common position.

Recall that the off-diagonal zeros of T correspond to the nonzero entries of QT = Qk−1. From
(3.2), we see that the off-diagonal entries of T of smallest size correspond to the positions where
Q2 has nonzero entries. Thus we find that in fact k − 1 = 2, i.e. k = 3. Further, in order for T to
have zero entries in those positions, we must also have

1

n − 1 + y
= n

n − 1

(n − 1)3

(n − 1)k − (−y)3

y2

(n − 1)2
. (3.3)

This last is readily seen to simplify as (n − 1)2 = ny2 + y3. Eq. (3.1) is now easily estab-
lished. �

Remark 3.1. Note that in Theorem 9, necessarily n must be divisible by 3 if there is to be a matrix
T satisfying (3.1).

Our next two examples provide primitive circulant matrices yielding equality in (1.3).

Example 1. Consider the 5 × 5 circulant, doubly stochastic matrix

T =

⎡⎢⎢⎢⎢⎣
0 0 0 a 1 − a

1 − a 0 0 0 a

a 1 − a 0 0 0
0 a 1 − a 0 0
0 0 a 1 − a 0

⎤⎥⎥⎥⎥⎦ , (3.4)

where 0 < a < 1. Put A = I − T and note that A is also a circulant matrix. Consequently,
‖A−1

1 ‖∞ = ‖A−1
j ‖∞, j = 2, . . . , 5, so it suffices to consider ‖A−1

1 ‖∞. On computing A−1
1 we

find that

A−1
1 e = 1

d

⎡⎢⎢⎣
1 + 3a − 2a2 + a3

2 + a − 4a2 + 2a3

3 − a − a2 + 3a3

4 − 3a + 2a2 − a3

⎤⎥⎥⎦ ,
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where d = 1 − a + a2 − a3 + a4. Taking

a = 1

4

[
1 − 52/3

(27 + 12
√

6)1/3
+ (45 + 20

√
6)1/3

32/3

]
≈ 0.6058,

we obtain that

A−1
1 e =

⎡⎢⎢⎣
3.42332
2.34937
4.00000
4.00000

⎤⎥⎥⎦ ⇒ ‖A−1
1 ‖∞ = 4.

It now follows from Theorem 4 that T yields equality in (1.3).

Example 2. Consider a 7 × 7 circulant doubly stochastic matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 a b c

c 0 0 0 0 a b

b c 0 0 0 0 a

a b c 0 0 0 0
0 a b c 0 0 0
0 0 a b c 0 0
0 0 0 a b c 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 0 < a < 1, 0 < b < 1, a + b < 1, and c = 1 − a − b. Put A = I − T . Again, it suffices
to consider ‖A−1

1 ‖∞. It can be checked that the vector A−1
1 e ∈ R6 is given by

1

d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 3a5 + a4(10 − 11b) + 5b − 4b2 + 3b3 − 2b4 + b5 + a3(−4 + 13b − 11b2)

− 2a2(1 − 4b + 3b2 + b3) + a(3 − 9b + 11b2 − 9b3 + 3b4)

2 + a5 + 3b − 8b2 + 6b3 − 4b4 + 2b5 − a4(1 + b) − a3(−6 + 2b + b2)

+ a2(−11 + 23b − 19b2 + 3b3) + a(6 − 18b + 22b2 − 18b3 + 6b4)

3 − 2a5 + a4(2 − 5b) + b − 5b2 + 9b3 − 6b4 + 3b5 + a3(9 − 10b + 2b2)

+ a2(−13 + 38b − 32b2 + 8b3) + a(2 − 20b + 33b2 − 27b3 + 9b4)

4 + 2a5 − b − 2b2 + 5b3 − 8b4 + 4b5 − 2a4(1 + b) + a3(12 − 18b + 5b2)

+ a2(−8 + 39b − 45b2 + 13b3) + 2a(−1 − 4b + 15b2 − 18b3 + 6b4)

5 − a5 − 3b + b2 + b3 − 3b4 + 5b5 + a4(1 + b) + a3(1 − 12b + 8b2)

+ 2a2(2 + 6b − 15b2 + 9b3) + a(−6 + 4b + 6b2 − 24b3 + 15b4)

6 − 4a5 + a4(18 − 17b) − 5b + 4b2 − 3b3 + 2b4 − b5 + a3(−24 + 50b − 31b2)

+ a2(16 − 36b + 48b2 − 26b3) − 2a(5 − 8b + 9b2 − 8b3 + 5b4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

d = 1 + a6 − b + b2 − b3 + b4 − b5 + b6 + a5(−4 + 3b) + a4(9 − 17b + 9b2)

+ a3(−8 + 25b − 31b2 + 13b3) + a2(4 − 12b + 24b2 − 26b3 + 11b4)

+ a(−2 + 4b − 6b2 + 8b3 − 10b4 + 5b5).
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Table 1
Coefficients ci

c0 = −223,598,525,562,865,964 c11 = 480,792,853,550,130,281,169
c1 = 857,421,319,719,767,996 c12 = −171,613,060,237,094,290,698
c2 = −1,598,231,725,315,339,706 c13 = 3,846,178,988,995,107,181
c3 = 178,549,507,128,775,107 c14 = 53,373,135,248,089,147,589
c4 = 5,515,703,520,210,685,479 c15 = −32,867,818,557,984,624,140
c5 = −10,988,929,087,694,835,990 c16 = −176,616,259,260,589,708,410
c6 = 28,255,588,903,918,568,435 c17 = 525,655,742,514,692,341,968
c7 = −53,149,536,722,526,281,625 c18 = −486,308,557,070,340,966,648
c8 = 32,010,397,238,264,856,144 c19 = 182,601,989,324,789,126,688
c9 = 178,214,490,985,905,048,116 c20 = −32,101,767,892,913,675,616
c10 = −525,834,292,021,821,117,075

Table 2
Coefficients si

s0 = −19,343,511,880,075,782
s7 = 19,343,511,880,075,782

We use Mathematica’s symbolic manipulation capability to search for feasible values of the
parameters a and b for which ‖A−1

1 ‖∞ � 6 will hold. We set the last three entries of A−1
1 e

to 6, thus obtaining three equations in the variables a and b. We then first used Mathemat-
ica to reduce these three equations to two and subsequently solve them with Mathematica’s
root-finding mechanism. Mathematica produced pseudo-closed formulas for a and b. Specif-
ically, a can be expressed as the smaller of the two real roots of the 10th degree polyno-
mial

p(x) = 1 − 3x + 3x2 + 6x3 − 21x4 + 21x5 − 91x6 + 132x7 + 108x8 − 864x9 + 1296x10

which gives that a ≈ 0.46624659695529764516590349787468590700884086202551, while b

can be expressed as a rational function in a of the form

b = c0 + c1a + c2a
2 + · · · + c20a

20

s0 + s7a7

≈ 0.28514380149522220421751774962379305227592250250294,

with the coefficients ci and si determined by Mathematica to be the (large) integers given in Tables
1 and 2. In particular, s0 = −s7. With these formulas for a and b, we computed A−1

1 and obtained
that

A−1
1 e =

⎡⎢⎢⎢⎢⎢⎢⎣
5.5083423907031190963005274849908737557085801871707
5.1669063886825992254734110674952835259386647772896
3.8552122277562123117465388167308468315107207509651
6.0000000000000000000000000000000000000000000000000
6.0000000000000000000000000000000000000000000000000
6.0000000000000000000000000000000000000000000000000

⎤⎥⎥⎥⎥⎥⎥⎦ .

Notice that the first three entries of A−1
1 e are strictly less than 6. It now follows that T yields

equality in (1.3).
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Next, we provide constructions of irreducible, periodic matrices yielding equality in (1.3). We
begin with a result of Kirkland [11, Theorem 5] on the mean first passage matrix arising from a
periodic Markov chain.

Lemma 3.2. Let T ∈ Rn×n be irreducible, stochastic, and r-periodic, r � 2, in the form

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 T1 0 · · · · · · 0
0 0 T2 0 · · · 0
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0

0 0 · · · · · · . . . Tr−1
Tr 0 · · · · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.5)

where the diagonal blocks are square. Let

P1 = T1 · · · Tr ∈ Rn1×n1 (3.6)

and

Pj = Tj · · · TrT1 · · · Tj−1 ∈ Rnj ×nj , j = 2, . . . , r. (3.7)

Denote the mean first passage matrix for T by M, partitioned in conformity with T , and denote
the (i, j)th block of M by M(i,j), 1 � i, j � r. Let M(Pj ) be the mean first passage matrix for
Pj . Then:

(i) For 1 � j � r,

M(j,j) = rM(Pj ). (3.8)

(ii) For 1 � i < j � r,

M(i,j) = rTi · · · Tj−1

[
M(Pj ) − (M(Pj ))diag

]
+ (j − i)J. (3.9)

(iii) For 1 � j < i � r,

M(i,j) = rTi · · · TrT1 · · · Tj−1

[
M(Pj ) − (M(Pj ))diag

]
+ (r + j − i)J. (3.10)

Observe that if T is doubly stochastic, then T1, . . . , Tr are all doubly stochastic matrices of
the same size. Suppose that Tj ∈ Rk×k , j = 1, . . . , r . Note too that each Pj ∈ Rk×k is doubly
stochastic and primitive.

Lemma 3.2 leads to the following result.

Theorem 10. Let T ∈ Rn×n be irreducible, doubly stochastic, and r-periodic, r � 2, as in (3.5),

and with Tj ∈ Rk×k, where k � 2, for j = 1, . . . , r. Suppose that for j = 1, . . . , r, and for
β = 1, . . . , k,

‖(I − (Pj )(β))
−1‖∞ � k − 1, (3.11)

where (Pj )(β) is the principal submatrix obtained from Pj by deleting its βth row and column.

Then ‖A−1
j ‖∞ = n − 1, for all j = 1, . . . , n.

Proof. Let M be the mean first passage matrix for T given by (3.5) and partitioned in conformity
with T ; denote the (i, j)th block of M by M(i,j), 1 � i, j � r . Also denote the mean first passage
matrix of Pj by M(Pj ), j = 1, . . . , r .
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We proceed by considering three possible cases for the indices i and j .

Case (i) 1 � i = j � r . By Lemma 3.2, we have that M(i,i) = rM(Pi), and hence

rM(Pi) � r((k − 1)J + I ) � (n − 1)J + I.

Case (ii) 1 � i < j � r . This time by Lemma 3.2 we have that

M(i,j) = rTi · · · Tj−1

(
M(Pj ) − (M(Pj ))diag

)
+ (j − i)J.

Note that 0 � M(Pj ) − (M(Pj ))diag � (k − 1)J , Ti · · · Tj−1J = J , and j − i � r − 1. Thus we
obtain that

M(i,j) � r(k − 1)J + (r − 1)J = (n − 1)J.

Case (iii) 1 � j < i � r . Again using Lemma 3.2, we have that

M(i,j) = rTi · · · TrT1 · · · Tj−1(M
(Pj ) − (M(Pj ))diag) + (r + j − i)J.

Similar to part (ii) we arrive at

M(i,j) � r(k − 1)J + (r − 1)J = (n − 1)J.

Combining parts (i)–(iii) we conclude that the off-diagonal entries of M are all bounded above
by n − 1. The conclusion now follows from Theorem 3. �

Theorem 10 suggests a method for constructing periodic matrices yielding equality in (1.3)
by ensuring that each of the products Pj satisfies (3.11). The following examples illustrate that
method.

Example 3. Fix natural numbers k � 3 and r � 2, and let

T =

⎡⎢⎢⎢⎢⎢⎣
0 B 0 · · · 0
0 0 I · · · 0
...

. . .
. . .

...

0 0 · · · 0 I

I 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦ ∈ Rrk×rk,

where B is any k × k primitive stochastic matrix that yields equality in (1.3). (In particular, B can
be 1

k−1 (J − I ) with J , I ∈ Rk×k , or the matrix of Example 1 if k = 5, or the matrix of Example
2 if k = 7, or the matrix of (3.1) if k is divisible by 3.) From the construction of T , each of the
cyclic products Pj , j = 1, . . . , r of Theorem 10 is equal to B, and since B satisfies (3.11), we
see that T yields equality in (1.3).

Remark 3.3. From Example 3, we see that if n � 5 is not a prime number, then there is an n × n

periodic stochastic matrix that yields equality in (1.3).

Example 4. Fix a natural number k, and suppose that k − 1 is not prime, with k − 1 factored as
k − 1 = qr , q, r � 2, say. Let C be the k × k circulant permutation matrix

C =

⎡⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

...

1 0 · · · 0 0

⎤⎥⎥⎥⎦ .
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Let T1 = 1
r
(C + C2 + · · · + Cr) and T2 = 1

q
(I + Cr + C2r + · · · + C(q−1)r ), and consider the

periodic doubly stochastic matrix T =
[

0 T1
T2 0

]
.

It is straightforward to see thatT1T2 = T2T1 = 1
qr

(C + C2 + · · · + Cqr) = 1
k−1 (J − I ). Hence

the matrices P1 and P2 satisfy (3.11), from which we conclude that T yields equality in (1.3).
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