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Cells are entities in space and time. Systems biology strives to understand their composition, struc-
tural organization as well as dynamic behavior under different conditions. Here, measures for
dynamic properties such as characteristic times, time hierarchy and time-dependent response are
reviewed. Using a number of examples from yeast and micro-organism systems biology, the impor-
tance of considering the timing in experimental and theoretical research is discussed.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Systems biology is based on at least two different scientific
strategies: on one hand collecting comprehensive information
about various aspects of cell biology, e.g. cataloging or counting
all proteins [1], all genes [2], all protein–protein interactions (e.g.
[3,4]), all metabolic reactions [5], the expression of all genes under
certain circumstances, and so on, and, on the other hand, combin-
ing experimental research with mathematical modeling. Model
development and simulation becomes more and more important.
The reason is that mechanisms and phenomena in biology are of-
ten very complex and that model formulation can help to bring dif-
ferent observations into one concept and to phrase stringent
hypothesis. When observations cannot be understood by pure
intuition, for example the occurrence of oscillations or the effect
of negative or positive feedback loops, comparison with phenom-
ena from physics and engineering may help to enlighten the under-
lying mechanism. Especially, if the observed phenomenon strongly
depends on the specific parameter values, explanations profit a lot
from sound and carefully parameterized mathematical models.

Cells are individuals in space and time. To decode their organi-
zational principles, many general properties and details have to be
measured. While levels of different compounds or changes thereof
can be detected with increasing precision, it is often hard to quan-
tify the impact of different processes on timing. In order to fully
understand not only the composition of cells, but also regulation,
development, adaptation, or reproduction it is necessary while
not sufficient to accumulate static data. Instead, we will more
chemical Societies. Published by E
and more observe the changes either inherent during development
or induced by external stimuli. At least for small or simple systems
we can even today use those observations to quantify the impact of
regulatory processes on timing as will be demonstrated for a few
selected examples below.

Time scales of biological processes vary. Molecular state transi-
tions occur within femtoseconds or nanoseconds, protein–DNA
binding in the order of microseconds, transcription and translation
steps are in the order of milliseconds to seconds, cell cycle of
Escherichia coli takes about 20 min, cell cycle of yeast about 2 h, cir-
cadian oscillations last about a day, evolutionary processes can
take a few hundred generations (in case of microorganisms) or
million to billion years considering life on earth.

It is common in biological model formulation (both verbally and
with equations) to neglect or simplify processes that are much
slower or faster than the processes under consideration. When,
for example, studying transcription we usually neglect the details
of molecular dynamics, since they are assumed to be fast enough.
We also typically disregard cell growth and development, since we
have chosen a time window small compared to the time necessary
for the cell to considerably change in time. Metabolic research and
modeling, at least traditionally, considered enzyme concentrations
as constant despite changing metabolite levels (e.g. [6]). Global
gene expression studies such as the analysis of expression changes
of virtually all yeast genes during a metabolic shift from fermenta-
tion to respiration [7] have revealed a temporal program of gene
expression and, thereby, most likely enzyme availability.

Neglecting temporal aspects in biology can lead to a number of
problems that, in the best case, can be referred to as producing
many false positive data. For example, reconstruction of biochem-
ical networks is frequently based on detection of interaction
lsevier B.V. All rights reserved.
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between proteins. The experimental procedures, such as yeast
two-hybrid analysis, require artificial conditions. Thus, it remains
an open question whether the potential interaction partners are
expressed in vivo at the same time, such that they have the chance
to meet at all.

2. Characteristic times

An important feature of cell processes is the wide range of time
scales in which changes may occur. Some modifications may hap-
pen within milliseconds, other processes take minutes, hours or
even longer. Even on the level of enzymatic reactions we may find
large differences in the time they need to respond to changes. In
the frame of ordinary differential equation (ODE) systems, the time
regime for the metabolic reactions is characterized by the kinetic
constants. It has been a long-standing challenge in theoretical biol-
ogy to correctly describe the timing of cellular or biochemical
events. A major obstacle is the fact that many changes do not occur
abruptly, but smoothly. So, what is the time to consider relevant?
Below are reviewed different quantitative measures for the tempo-
ral characterization of dynamic processes in biochemical networks.

A time constant s for a decay process, such as S!k is given by
s ¼ 1=k, denoting the time when concentration S has reached the
1/e-fold of its original value (Fig. 1).

A time constant s for the isolated reversible first order reaction

S1 �! �kþ

K�

S2 ð1Þ

is given by

1
s
¼ kþ þ k�; ð2Þ

determining s as the relaxation time for the decrease of perturbation
x of the original equilibrium of S1 and S2 from its initial value to the
Fig. 1. Characteristic times. For different processes, temporal measures have been
defined. (a) Decay of substance S, (b) temporal behavior of S with its characteristic
time t denoting the time when S reached 1/e-fold of its original value, (c) signaling
pathway motif with activator (A), inhibitor (I) and two states of S (S0 and S1), (d)
dynamics of S1 with different temporal measures indicated (for notions see text).
Used equations: dA=dt ¼ A; Að0Þ ¼ 1, dI=dt ¼ 0; Ið0Þ ¼ 1, dS1=dt ¼ �dS0=dt ¼ kþS0�
k�S1; S0ð0Þ ¼ 1; S1ð0Þ ¼ 0. Parameters: kþ ¼ k� ¼ 5.
1/e-fold value. This relaxation time refers to concentration changes.
In general, one can distinguish between time constants for reaction
rates and time constants for the change of concentrations.

While these definitions are suited for isolated reactions, it is
also interesting to consider what happens if a system of biochem-
ical reactions is perturbed. If the system is described with a set of
ordinary differential equations, dSi=dt ¼ fiðS1; . . . ; SnÞwith i ¼ 1; . . . ;

r, then close to steady state its dynamics can be approximated by
the Jacobian J ¼ f@fi=@Sjg, which has the eigenvalues ki. If, more-
over, the system is stable ðReðkiÞ < 0Þ, then a sensible measure
for the time necessary to respond to perturbations are the charac-
teristic times

si ¼
1

jReðkiÞj
: ð3Þ

A general definition of a time constant for reactions was given
by Higgins [8]. The response time is defined as

sj ¼
X

i

nij
@v j

@Si

 !�1

; ð4Þ

where v j is the rate of reaction j, Si is the concentration of the ith
compound and nij is the stoichiometric coefficient of compound i
in reaction j. This definition can be applied to reactions with more
than one substrate or product and even with non-linear rate expres-
sions. For example the response time for the reaction

S1 þ S2 ¢ S3 þ S4 ð5Þ

is given by

s ¼ ðkþðS1 þ S2Þ þ k�ðS3 þ S4ÞÞ�1
; ð6Þ

when we consider mass action kinetics. Time constants for
metabolite concentrations have been defined in different ways.
The so-called turnover time was introduced by Reich and Sel’kov
[9], describing the time necessary to convert a metabolite pool
once:

sturn
i ¼ SiPr

j¼1ðn�ij vþj þ nþij v�j Þ
; ð7Þ

vþj and v�j are the forward and backward part of every reaction rate
with v j ¼ vþj � v�j . Accordingly, nþij ;n

�
ij are the stoichiometric coeffi-

cients of substance Si in the individual reaction directions.
Easterby [10,11] has defined a transition time. Considering that

an empty pathway, i.e. a pathway defined by a set of enzymes
but without metabolites available, is supplied with the initial sub-
strate, the transition time describes the time necessary to build up
the intermediate pools. Steady state is reached only asymptotically
and the transition time is a handy temporal measure. For each
intermediate holds

si ¼
SSS

i

J
; ð8Þ

where SSS
i and J denote intermediate concentration and flux in the

final steady state. The transition time of the complete pathway is
the sum of the transition time of all intermediates,

s ¼
Xn

i¼1

si: ð9Þ

Another measure for the time necessary to return to a steady
state after a small perturbation is the transition time introduced
by Heinrich and Rapoport [12]. If dðtÞ ¼ SðtÞ � �S denotes the devia-
tion from the steady state concentrations, then the transition time
is defined as

s ¼
R1

0 t � dðtÞdtR1
0 dðtÞdt

: ð10Þ
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This definition is applicable, if dðtÞ vanishes asymptotically for
large t. A generalization of this measure was introduced by Llorens
et al. [13]. Be f a function such as flux or a concentration subject to
perturbation. The characteristic time can be calculated in analogy
to center of mass as

T ¼
R1

0 t � j df
dt jdtR1

0 j
df
dt jdt

: ð11Þ

This definition may be applied even for oscillating response to
the perturbation.

Specific quantitative measures have been introduced for signal-
ing pathways [14]. Let SiðtÞ be the time-dependent concentration
of compound i, e.g. an active kinase. The quantity

Ii ¼
Z 1

0
SiðtÞdt ð12Þ

is the time integrated concentration of Si, which can be considered
as a combined measure for the amount and life time of active kinase
i generated during the signaling period, i.e. of the compound able to
transmit the signal further down the cascade. The signaling time

si ¼ Ti=Ii with Ti ¼
Z 1

0
t � SiðtÞdt; ð13Þ

describes the average time to activate the kinase i, similar to the
transition time introduced above. The signal duration defined as

#i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q i=Ii � s2

i

q
with Q i ¼

Z 1

0
t2 � SiðtÞdt; ð14Þ

gives the average time during which the kinase i remains activated,
which also corresponds to a standard deviation of a statistical distri-
bution. The signal amplitude Ai ¼ Ii=ð2#iÞ is a measure for the aver-
age concentration of activated kinase i. Note that the amplitude
expressed this way might be different from the maximal value
Smax

i that SiðtÞ assumes during the time course (Fig. 1).
Discussing measures for the timing of events, leads to another

notion, the time hierarchy in cellular systems [15,16]. The follow-
ing measure for time hierarchy was introduced

Hs ¼
r

r � 1

Pr
i¼1ðss � siÞPr

i¼1si
; ð15Þ

where ss is the maximum characteristic time among all si. Hs be-
comes maximum when one reaction is slow and all other reactions
are as fast as possible.

The measures introduced above provide information about how
fast or slow a system responds to perturbations. In the frame of
metabolic control analysis [17–19], a type of sensitivity analysis
which is also applicable to other regulatory networks, it has been
shown that fast sub-systems hardly contribute to the control of
the full system, since they adapt immediately to changes, while
slow sub-systems severely determine the impact of a perturbation
on the system’s behavior [20].

Time-dependent response coefficients are a specific type of sen-
sitivity coefficients, which have been introduced by Ingalls and
Sauro [21] and defined as

RSiðtÞ
pk
¼ pk

SiðtÞ
@SiðtÞ
@pk

; ð16Þ

where SiðtÞ are time-dependent concentrations and pk are parame-
ter values. The calculation requires information about the network
stoichiometry, about the functional dependence of the individual
reaction rates on substrate concentrations and parameters, and
about parameter values. Given this information, they express the
sensitivity of concentrations or rates to parameter values over time.
They are global quantities, meaning that not only the sensitivity to
parameters directly affecting a substrate or reaction are considered,
but the sensitivity with respect to all, even very remote, parameters
in system are determined. As for all quantitative measures that em-
ploy derivatives, all conclusions hold only strictly for infinitesimally
small perturbations. Still, one gets inside into the impact of certain
parameters on certain concentrations at different periods of time.
An example for the yeast osmostress response is discussed below.

Example 1. Different time scales of metabolic changes and gene
expression effects in metabolic regulation.

Why are we interested in the timing of a process? Does it mat-
ter whether transcription and translation are slower or faster than
enzyme modifications or changes in metabolite concentrations due
to changing substrate levels? What is the impact of such different
regulation mechanisms on the temporal behavior of a metabolic
network?

To tackle such questions, Bruggeman and collegues have intro-
duced the time-dependent hierarchical regulation coefficients. For
defining hierarchical regulation coefficients, the property of most
enzymatic rate laws is used that they can be split into two factors:
one factor is dependent on the enzyme concentration, the other
factor on substrate concentrations and parameter values:

v i ¼ v iðEi; S1; . . . ; SnÞ ¼ fiðEiÞ � gðS1; . . . ; SnÞ: ð17Þ

Taking the difference of the logarithmic values leads after a few
steps to the following expression:

1 ¼ D ln fi

D ln v i
þ D ln gi

D ln v i
¼ qh þ qm; ð18Þ

where qh and qm are denoted as hierarchical and metabolic regula-
tion, respectively. The time-dependent version

1 ¼ @ ln v i

@ ln Ei

d ln Ei=dt
d ln v i=dt

þ
Xn

j¼1

@ ln v i

@ ln Sj

d ln Sj=dt
d ln v i=dt

¼ phðtÞ þ pmðtÞ; ð19Þ

then quantifies the relative contribution of enzyme concentration
changes – through gene expression or protein degradation – and di-
rect metabolic changes. This concept has been applied to regulation
of yeast metabolism under different conditions [22,23].

Example 2 . Regulation of glycerol accumulation in osmostress
response – fast and long-term contributions.

With yeast osmoresponse we denote all processes contributing
to the adaptation of the budding yeast Saccharomyces cerevisiae to
osmotic stress, usually induced in experimental settings by adding
an osmotically active substance such as NaCl, KCl, or sorbitol to the
medium. The identified regulatory network comprises the high
osmolarity glycerol (HOG) signaling pathway with membrane-
bound receptors, interacting proteins, and a highly conserved
stress-activated (or mitogen-activated) protein kinase (SAPK or
MAPK) cascade as well as a number of genes regulated depending
on the activity of the most down-stream kinase (Hog1), the pro-
duction and accumulation of glycerol in metabolic pathways and,
finally, the membrane-bound glycerol channel, Fps1. It is impor-
tant to note that among the osmostress-regulated genes are several
which code for enzymes in glycolysis and the glycerol production
pathway. For a long time, research on osmoresponse focused on
the HOG pathway and the gene expression changes induced by
osmostress via Hog1 phosphorylation and nuclear accumulation.
Only careful quantitative studies combined with mathematical
modeling [24] have revealed that glycerol accumulation – a
short-term response which is mainly characterized by metabolic
adaptations including the closure of the glycerol channel Fps1,
which prevents export of produced glycerol, and a long-term adap-
tation process which requires the production of new enzymes for
metabolic pathways.

The effect of different parameters on the temporal profile of
glycerol accumulation can be visualized using the time-dependent
control coefficients (Eq. (16)) as shown in Fig. 2. A slightly simpli-
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fied model based on the model presented in [24] has been used to
calculate the coefficients. This model is formulated as set of ordin-
ary differential equations. It considers the effect of the external os-
motic pressure changes on the receptor Sln1 and the glycerol
transporter Fps1. This effect is mediated via turgor changes, where
turgor is the pressure that cell membrane or cell wall subtends cell
swelling due to differences in internal and external osmotic pres-
sure. Dephosphorylation of Sln1 induces the signaling cascade
including transitory dephosphorylation of Ssk1 and phosphoryla-
tion of Hog1. Active Hog1 enters the nucleus to activate transcrip-
tion, among others of genes coding for metabolic enzymes. The
enzymes catalyze reactions leading to glycerol production. With-
out stress, glycerol may leak out of the cell through the Fps1 chan-
nel, which closes upon stress. Hyper-osmotic stress induces water
outflow and volume shrinkage. Glycerol is osmotically active and
its accumulation balances the osmotic pressure differences, thus
leading to cell re-swelling.

Fig. 2b shows the time course for glycerol and selected time-
dependent response coefficients with respect to glycerol. It can
be seen that the parameter for Fps1 closure has the highest posi-
tive response, at least one order higher than mRNA synthesis or
protein synthesis (for enzymes in the glycerol production path-
way), but only for the first about 20 min. Hog1 nuclear accumula-
tion and Hog1 regulated transcription and translation become
important only at later stages. Some parameters have also negative
response coefficients, such as Hog1 nuclear export or mRNA degra-
dation, indicating that their increase would slow down glycerol
accumulation in the respective periods.

The general finding that yeast osmoresponse operates on at
least two times scales has been further supported and elaborated.
Mettetal et al. [25] stimulated yeast with different frequencies of
osmotic stress. Using a simpler model in the frame of linear sys-
tems-theory, they found a fast-acting negative feedback through
the Hog1 kinase and a slower negative feedback through gene
expression. An interpretation of the slow mode is that cells can
prepare to respond faster to future stimuli.

Quantitative single cell measurements[26] revealed that osmo-
tic stress induces cellular processes at different time scales: loss of
Fig. 2. Time-dependent response in yeast osmoresponse. Using an established model d
signaling, gene expression and metabolism, the time-dependent response coefficients f
schema of the network relevant for yeast osmoresponse. (b) Time courses of glycerol
coefficient for Fps1 closure is by far the largest, but only for the first 20 min. Processe
coefficients.
turgor pressure (and volume) within 20 s, Hog1 nuclear transition
between 20 s and 5 min, turgor (and volume) recovery between 5
and 25 min and resuming of cell growth after 25 min.

Example 3. Optimality of regulation – cellular response to chang-
ing nutrients.

Theoretical biology has often formulated the question whether
biological structure or function can be explained with optimization
principles. Are enzymes designed to allow for a maximal reaction
rate? Are steady state fluxes in metabolic networks maximized
or minimized [27,28]? Are regulatory systems designed to be frag-
ile, to be robust, to use the least resources, or to respond as quickly
as possible to perturbations?

Assuming that cells have experienced various pressures during
evolution, we can learn from applying optimization principles to
models of biological processes, whether the actual design comes
close to an optimized design.

An example case is the response of cells to nutrient changes. For
micro-organisms, levels of nutrients may vary and, in some cases,
desired but non-essential nutrients might become available
suddenly.

Bacterial amino acid production pathways are interesting
example cases for such a scenario: Zaslaver et al. [29] studied
experimentally the biosynthesis of several amino acids in E. coli
and identified the expression pattern in time. The promoter activ-
ities of about 100 genes were monitored in parallel using appropri-
ate reporter libraries. The time course of pathway activation was
analyzed by diluting cells in a defined medium in which all amino
acids except one (e.g. arginine, methionine, or serine) were pres-
ent. The different promoters were found to become activated suc-
cessively with delays of the order of 10 min. This temporal order is
in accordance with the enzyme sequence in the various un-
branched reaction chains of amino acid biosynthesis. Thus, a hier-
archy of expression was observed that matched the enzyme order
predicted earlier for unbranched pathways [29]. The phenomenon
was termed ‘‘just-in time expression” because the enzymatic genes
investigated were expressed just in time when needed.

Using mathematical modeling and optimization, the experimen-
tally observed behavior had been predicted previously through
escribing yeast response to osmotic stress including volume and turgor dynamics,
or glycerol with respect to various parameters have been calculated. (a) Simplified
accumulation and time-dependent response coefficients. Strikingly, the response
s relevant for gene expression regulation show later and smaller rise of response
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the study of the dynamics of the enzyme levels in a metabolic path-
way after immediate supply of substrate S0, specifically asking for
the timing of presence of the enzymes [30]. The model reveals
interesting results under a set of assumptions: (i) when no sub-
strate is available, the pathway is at rest, i.e. no enzymes are synthe-
sized for sake of economy, (ii) when S0 becomes available, it will be
converted to an end product Sn with maximal rate. This is motivated
by considering that Sn be important, but not essential for the cell’s
survival and reproduction and that the faster Sn is formed from S0,
the faster the cell can reproduce itself and out-compete other
organisms. The simple set of system equations describing the path-
way dynamics is

dS0

dt
¼ �k1 � E1 � S0; ð20aÞ

dSi

dt
¼ ki � Ei � Si�1 � kiþ1 � Eiþ1 � Si ði ¼ 1; . . . ; n� 1Þ; ð20bÞ

dSn

dt
¼ kn � En � Sn�1: ð20cÞ

The modeling concerned the question of how the cell can con-
vert S0 into Sn as fast as possible after S0 has become available to
the cell. To this end, conditions for the enzymes must be specified:
it was assumed (i) that the cell can produce the enzymes immedi-
ately when needed, thus neglecting the time span necessary for
transcription and translation, and (ii) that the total amount of en-
zyme protein is bounded due to limited capacity of producing and
storing proteins in a cell. Otherwise, one could achieve a mathe-
matical solution with infinite rates by infinite enzyme concentra-
tions. The time necessary to convert S0 into Sn was quantified by
the transition time

s ¼ 1
S0ð0Þ

Z 1

t¼0
ðS0ð0Þ � SnðtÞÞdt: ð21Þ

The optimization problem under study can be written as

Minimize s subject to Etot ¼
Xn

i¼1

EiðtÞ ¼ const: ð22Þ

where the time-dependent enzyme levels, EiðtÞ, are to be deter-
mined The optimal enzyme profiles can be derived by variational
calculus or Pontryagin’s maximum principle (Oyarzún et al.,
2007). The optimal time course of enzymes is shown in Fig. 3 indi-
cating that, within successive time periods and except from the last
period, only a single enzyme is operative whereas all others in the
pathway are shut off. At the beginning, the whole amount of avail-
able protein is allocated exclusively to the first enzyme in the path-
way, since the intermediates S1, S2,. . . are still not available for the
later enzymes. In the following phases, the total amount of protein
is shifted to the enzyme catalyzing the following reaction. The last
switch allocates a certain fraction of protein to all enzymes accord-
S1 S2 S3 S4 S5S0 k1 k2 k3 k4 k5

S1 S2 S3 S4 S5S0 k1 k2 k3 k4 k5

E1 E2 E3 E4 E5

Without substrate

With substrate

a b

Fig. 3. Optimal temporal enzyme distribution for a linear metabolic pathway with sudde
enzymes are not produced for sake of resources. When the first substrate becomes availa
profile of enzyme concentrations: each enzyme is present at a limited period to convert it
metabolite amounts.
ing to a series that is monotonic increasing from the first enzyme to
the last. This scenario guarantees that each enzyme is active when
its respective substrate is present.

3. Discussion

While the composition of cellular networks, their stoichiome-
try, interaction motifs are progressively deciphered, quantification
of the dynamic properties of cellular processes becomes increas-
ingly important. Here, a number of examples have been discussed,
where the temporal organization of cell processes has been
studied.

Why do we care? Are components and structure not sufficient?
– The example osmostress shows, that pure network reconstruc-
tion according to classical molecular biology would have over-
looked the different time scales of immediate adaptation and
gene expression of metabolic enzymes. When considering the
interplay of signaling pathways with cell cycle progression it oc-
curs that a signal has different effects if hitting the cell at different
stages, therefore with different concentrations of relevant players.
Moreover, the coordination of different regulatory and develop-
mental processes in time is extremely challenging.

Careful study of the timing of processes requires careful quanti-
fication. While many basic principle of regulation can be studied
with simplified models and with methods from classical engineer-
ing, analysis of time-dependent processes is only possible with de-
tailed determination of kinetics.

Further in-depth analysis requires precise time-resolved quan-
titative data. It has been discussed frequently that measurements
with cell populations – although in many cases hard to avoid or re-
place – hide many dynamic aspects since they average out: for
example, if cells respond to a stimulus in a step-wise fashion, but
some earlier, some later, then data will often show a gradual
change for the whole population. One way to deal with this type
of problem is to synchronize cells. The drawback of synchroniza-
tion is an artificial interference with the system before the actual
experiment.

New approaches as quantitative time-lapsed fluorescence
microscopy in single cells (for a recent review see [31]) can provide
data that allow careful studies of the timing of individual events
and thereby allow dissecting the contribution of different pro-
cesses to cell cycle, cellular development, or stress response.

The development of mathematical models describing the
dynamics of cell processes accurately can crucially improve the
understanding of regulation in time and highlight interrelations
that are not immediately obvious from experimental data. The fur-
ther development of theoretical concepts to extract and quantify
dynamic properties from data is therefore a future challenge. This
way of research will also go together with the development of
0 2 4 6 8 10

0
0.5
1 0
0.5
1 0
0.5
1 0
0.5
1 0
0.5
1

E1

E2

E3

E4

E5

Time, a.u.

n substrate supply. (a) The experimental scenario: when no substrate is present, the
ble, enzymes are expressed to convert it into the final product. (b) Optimal temporal
s substrate. Only in the final phase all enzymes are at hand to convert the remaining
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experimental scenarios that allow tracing temporal changes of cel-
lular components in the appropriate time scale.
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