
Theoretical Computer Science 101 (1992) 59-98

Elsevier

59

A linear speed-up theorem for
cellular automata

Mazoyer, J. and N. Reimen, A linear speed-up theorem for cellular automata, Theoretical Computer

Science 101 (1992) 59-98.

Ibarra et al. (1985) showed that. given a cellular automaton of range 1 recognizing some language in

time u + 1 + R(!l), we can obtain another CA of range 1 recognizing exactly the same language but in
time n + I + R(n),!k (k 2 2 arbitrary). Their proof proceeds indirectly (through the simulation of CAs

by a special kind of sequential machines. the STMs) and we think it misses that way some of the deep

intuition of the problem. We. therefore, provide here a direct proof of this result (extended to the case
of CAs of arbitrary range) involving the explicit construction of a CA working in time n + 1 + R(n)/k.

This speeded-up automaton first gathers the cells of the line k by k in n + I steps which then enables it

to start computing by “leaps” of k steps. thus completing the R(n) remaining steps in time R(n)/k. The
major problem arising from the obligation to pass from one phase to the other synchronously is

solved using a synchronization process derived from the solutions of the well-known “firing-squad

synchronization problem” (FSSP).

1. Introduction

The idea of using cellular automata for computation dates back to their origin,

since Von Neumann’s self-reproducing patterns [131 were also capable of universal

computation. This ability relied on the embedding of a simulated Turing machine, but

it was soon discovered that the use of CAs for their own sake allowed very fast

computation, strictly faster, indeed, than with TMs. The multiplication of two integers

Cl] and primality testing [S] were thus shown to be computable by a one-dimensional

*Supported by PRC Mathbmatiques et Informatique and Esprit Basic Research Action Working
Group: Algebraic and Syntactical Methods in Computer Science (ASMICS).

**Supported by PRC Mathbmatiques et Informatique. This work was conducted while the author was

a student at the Ecole Normale Supkrieure de Paris.

03043975/92/$05.00 1: 1992L Elsevier Science Publishers B.V. All rights reserved

CA in real time. Smith [1 1] obtained the same result for a large sample of language

recognition problems, among which some were not real-time TM-computable, thus

proving the inherent superiority of CAs.

AS soon as CAs were used as computing devices, it was natural to attempt to adapt

to them the complexity-theoretic theorems known for TMs and, among them, the

most basic, the linear speed-up theorem. Cole [3] and Ibarra et al. [6] proved two

versions of this theorem in the case of CAs taken as language recognizers. The proof of

such a result, as in the case of TMs, involves the working out of an automaton k times

faster, for some k, than another one previously given, i.e. one which would do in one

step what the latter did in k. Each cell of the accelerated automaton must, therefore, be

provided with k times more information than one of the original automaton.

Cole [3] achieved this by grouping the cells k by k, as in the usual proof of the

theorem for TMs, obtaining a recognition time of rt(n)/kl, where t(n) is the recogni-

tion time of the initial automaton. But he required the grouping to be effected “by the

user” so as to provide the accelerated machine with an initial configuration already

grouped. In this way he obtained what we will refer to as the “weak form” of the linear

speed-up theorem for CAs, allowing the recognition not exactly of the initial language

but of that obtained by grouping the letters of its words k by k. On the contrary, the

“strong form” corresponds to the ability to recognize the initial language exactly. One

way to obtain this strong form is through an increase by a factor k of the range’ of the

transition function, thus providing the same improvement in information availability

without requiring any modification of the alphabet and, hence, of the language

recognized. However, this is not completely satisfactory, since there are many cases

where the range is precisely required to remain fixed notably when only CAs of range

1 are desired (all papers mentioned here deal with this common kind of CA).

Ibarra et al. [6] proved the strong form in the case where all automata considered

are of range 1, but they did this through indirect arguments. They showed that CAs of

range 1 are equivalent, in time, to a special class of sequential machines, the STMs

(sweep Turing machines), which proceed through a sequence of “sweeps”, i.e. of passes

of the read/write head from the left to the right of the nonblank part of the tape, each

counted as one time step. They subsequently proved a speed-up theorem in strong

form for STMs yielding a recognition time of n + 1 +r[t(n)-n- l]/kl and, thus,

obtained the same result for CAs of range I.

The main result presented in this paper is a direct proof of the result of Ibarra et al.

extended to the case of CAs of arbitrary range. It is direct in the sense that it involves

the explicit construction of a cellular automaton fulfilling the time requirements of the

theorem. To do this we develop a general composition technique for cellular automata

involving as its key component a synchronization process derived from the solutions

of the FSSP (see e.g. [9, 71). In addition, we obtain new results for the variant of the

FSSP in which the synchronization process begins at both ends of the segment (in the

’ In a cellular automaton, the state of each cell at time I + 1 1s determined as a function of the state at time

r of itself and of that of its neighbours lying within range p on both sides. This number p is called the runge of
the cellular automaton.

A linear speed-up theorem fir cellulur uulomala 61

classical FSSP, it only begins at the left end). We show here that in that case the

minimal synchronization time is r for a segment of length T (it is 22- 1 in the case of

the classical FSSP) and provide a solution which works in minimal time. We use this

synchronization process to compose the automaton corresponding to the weak form

of the theorem-which we restate in passing-with a grouping automaton which

enables the resulting device to be fed with ungrouped data. This approach shows that

our result may be obtained without resorting to anything outside the cellular auto-

mata theory, thus preserving its “self-containedness”. Moreover, our construction is

much more efficient in terms of the number of states of the speeded-up automaton

than that of Ibarra et al. from a CA of range 1 with s states, we obtain a speeded-up

automaton with O(sk) states, where k is the speed-up factor, whereas the one obtained

through the method of lbarra et al. has O(S’~~) states. Observe that O(sk) is most

probably optimal. In addition, we feel that providing solutions stated in cellular-

automata-theoretic terms allows a better understanding of the problems involved. We

were also able to take advantage of this opportunity to develop several useful

techniques of cellular automata construction which are interesting in themselves.

2. Definitions

A one-dimensionul cellulur automaton (CA) of ranye p is a TM-ribbon-like structure,

that is a bi-infinite line of squares (called here cells) each containing a symbol taken in

a finite alphabet Q, together with a local transition,functionf: Qzp’ ‘-Q. Performing

one step of the automaton is achieved by computing a new content for each cell, using

f; as a function of the value of the neighbouring cells lying within range p on both

sides. A =(Q, p,f) will denote a CA with these attributes. A conjguration of A is an

element of QZ which maps the integers (understood as cell numbers) to the contents of

the cells at a given time. On QZ, the set of all possible configurationsfinduces a global

map G,: QZ+QZ such that for all c in Q ‘, if cl= G,(c), then for all iEZ we have

c’(i)=f(c(i-p), c(i-p+ l), c(i- l), c(i), c(i+ 1) ,..., c(i+p)).

A recognizer CA is a structure xZ=(U,L,qo,Q,, Qr, A) where A=(Q,p, f’) is a l-d

CA (henceforth we shall simply say CA for one-dimensional CA). As is usual, when

using CAs as computing machines, we shall use semi-infinite lines instead of the

bi-infinite ones defined above. The reasons for such a choice being numerous and

somewhat vague, it would take too much space to give them here. If we were to adhere

strictly to this semi-infinitism, we would have to consider two classes of cells: “normal

cells” and “end cells”, those close to the finite end of the line, which would have

a different number of neighbours and, hence, whose behaviour would have to be

handled by different transition functions. Nevertheless, to be able to use the formalism

developed above, we shall replace semi-infinite lines by bi-infinite ones with all

negative cells “forbidden” by a special border state, ~EQ. A cell once in state 3. will

remain in that state forever, i.e. ,f(x _ p,. , x _ 1, 2, s, , . . , xp) = i, whatever the xi. We

also require that no positive cell will ever be in state 3.. One single transition function is

thus sufficient to describe the behaviour of all cells, the “end cells” being those with at

least one i lying within range p on the left. The leftmost cell, bearing number 0, is

called the distinyuisheli cell. Another special state is the quiescent state, qoEQ, with the

following property: .f(q,,, qO,. , yo) = qo. It plays a role similar to that of the blank

symbol of TMs. U, a subset of Q which must not contain i. or q,, is called the input

alphabet of .d. To any input word u = uoul . . . u,, _ l~U * corresponds an initial conjig-

uration, denoted c,d[u], which assigns to negative cells the state I., to cell i, for

iE(O, 1, lul- l), the letter ui and to all the following cells the state qo. We have

c,,[u]=...E.~uoul...u,_,q,qo

with u. in position 0. The computation of .d on u yields the following sequence of

configurations2

cc/ Cul, Gf(c.ri Cul), G’f2’b lul I,. , G)%d Cul), . . .

Qa and Qr are, respectively, the sets of accepting and rejecting states. They are disjoint

subsets of Q and must not have any intersection with Uu{q,, 2). We shall say that

.d recognizes language LC U * in time t(n) if, for a word UEL ($L), the distinguished

cell (cell 0) enters an accepting (rejecting) state at time t(1 ui), i.e. if

C~~‘““krG4)l WQa(Qr).

To deal with a sequence of configurations (c[)~~N such as those produced by the

execution of a CA, we shall often use the application of N x Z+Q induced by (c,)

which maps the pairs (t, k) to the contents of cell k at time t, i.e. c,(k). The pairs (t, k)

will be called the sites of the space-time diagram (STD) associated to the sequence (c,).

If we denote by (t, k) the state of the site (t, k) of the diagram associated with the

sequence (c,), we have the relation (t, k)=c,(k), which shows that the space-time

diagram is simply the decurryfied3 form of (c,). We shall henceforth say “the site

(t, k)” instead of “the site (t, k) of the diagram associated to the sequence (c,)“. If the

sequence (c,) is related to a CA of range p, we may define a notion of “visibility” on the

sites of the STD associated with it. We shall say that site (t, k) sees site (t - 1, k’) if, to

compute the former, a transition function of range p takes the latter into account, that

is to say if 1 k- k’l <p. We use this notion extensively when, given a certain behaviour

expressed in terms of a sequence of configurations or a STD, we want to prove that

there is a CA with such a behaviour and many of our proofs proceed more or less.

It is natural, and indeed usual, to translate this notion of STD graphically.

Sometimes, sites will be seen as dots linked by lines dividing the space-time plane into

z we write Gj”’ for G, G,- ... G,.

‘[/ ,/:A x B-C then the curryfied form of f is the function cur.f:A-t(B+C), such that

C(cur.f)(z)l(~)=,f’(r,~).

A linear sped-up theorem.for cellular automata 63

accepting or
rejecting stale

ive Part All cells m slates

Forbidden part
all sites in state h

Quiescent part
all sites m

0

01234567 cells
input word

Fig. 1.

zones of common behaviour, thus giving a “continuous approximation” of the discrete

structure of STDs. This enables us to give a rough but meaningful representation of

the global features of the diagrams studied. As an example, Fig. 1 shows the structure

of the STD of a recognizer CA. However, when a more detailed picture is sought, it is

convenient to come back to a discrete space and display the content of each individual

cell as, for example, in Fig. 5.

3. Doing k steps in one

We show here that, given a cellular automaton and a constant k<2, we can build

another CA which performs in one step, on grouped configurations, what the initial

one did in k on the corresponding ungrouped configurations. From this lemma one

can obtain, with little extra work, the automaton fulfilling the requirements of the

weak form of the speed-up theorem and that will, in turn, be used in the proof of the

strong form.

In the following, A = (Q, p,f) will denote the initial automaton and B = (R, q, g) the

automaton we intend to build with in all cases R = Q’ for a given integer c(3 2. This

means that we want each cell of B to contain x cells of A. On the other hand, we want

B to do in one step what A does in k. If c and c’=G,(c) are two consecutive

configurations of B, we want d’, the ungrouped configuration corresponding to c’, to

be obtained from d, the ungrouped configuration corresponding to c, through k steps

of the transition function of A. We want

d’ = Gy’(d).

Let us say that d’ corresponds to the instant r and d to the instant t-k. Computing the

state of one cell of c’ means computing the state of CI consecutive cells of A at time t. To

compute them, it is necessary to know the states of our z cells and those of the

neighbouring cells lying within range p on both sides at time t- 1. It is then, in turn,

necessary, in order to compute the states of these 2p+r cells at time t - 1, to know

their states plus again those of their p neighbours on each side at time t-2, and so

on.. If we go back until time t-k, we see that we have to know, at that moment, the

states of kp cells on each side of the r initial cells (see Fig. 2). To compute the states of

c(consecutive cells in d’, we must therefore know their states in d and those of kp cells

of d on each side. Our r cells of d’ corresponds to one cell of c’ whose value is

determined by g, the transition function of B, according to its state in c and the states

of q cells of c on each side. These q cells contain qcx cells of d. Since we need at least kp

of them, we must have the following relation:

We shall now formalize the idea developed above.

Let l/M be the bijective function from QZ to (Q”)Z, which associates to the ungrouped

configuration c on Q the corresponding grouped configuration y,(c) on Q”. We have

I;‘Jc)](i)=(c(cxi), c(cxi+ l),...,c((z+ l)i- 1)).

We shall use it to go back and forth between the configurations of A and those of B.

Lemma 3.1. Let A =(Q. p,,f) he N cellular automaton. [fr, q und k are three nonnegative

integers such that qx > kp then there exists another CA B=(Q”, q, g) such that
-1,

7% >G g ‘;I, = Gjk’ (B does in one transition byhut A does in k).

In order to prove this lemma we first need a preliminary result.

Proposition 3.2. Let c1 und c2 he two configurations on Q which ure equal on ull cells

i such that --qr < i < qr + sl- 1. If’qx > kp then the con$gurations G,F’(c,) and Gy’(cZ)

are equal on all cells j such that 0 <j < r - 1.

Proof. Gf(c,)andGI(cZ)areequalonallcellsisuchthat -qa+p<id(q+l)r-l-p

(see Fig. 3). So Gj”(cr) and G.~‘(c~) are equal on all cells .i such that -qr+ kp 6

,a, 1

P ,a, P
L-l

P , P ,a, P (
I L-2

P , P , I p ,a, p I ’ p 0 p (1-h

4 + 4 +

hp hp

Fig. 2.

A linear speed-up theorrmfir cellular automata 65

Fig. 3.

jG(q+ I)@-- 1 -kp. Since qa>kp, we have -qcc+kp<O and (q+ I)@- 1 -kpaa.- 1.

SO, G?‘(cI) and G:~‘(c,) are equal on all cells j such that O<j< cI. q

We have thus shown that, if qz 3 kp holds, then the states of cells 0 to c1- 1 (and,

hence, of any group of x consecutive cells) at time t may be determined if we know

their states and those of q consecutive groups of c(cells on each side at time t-k. We

may now give a proof of Lemma 3.1.

Proof of Lemma 3.1. Let us assume that the condition qu 3 kp is fulfilled. We shall

define B’s transition function in the following way. Let

v=(w_,)...) M’_~,W~,U’~ ,..., WJ

be an element of (Q”)2q+ ’ of which we want to determine the image by g. Let c, be an

arbitrary configuration on Q” such that c,(i) = U’i for all i such that -q <i < q, We let

g(L)) = Cr.(Gj%, ‘&)))I (0).

Figure 4 gives a more readable interpretation of the above formula. Due to the way in

which we defined c,., we know that the choice of one o assigns a value to all cells - qa

Fig. 4.

7a(Gy)(?o’(C”)))

GCk)(7-‘(c)) I 0 ”

l,‘(G)

C”

”

66 J. hfu:o!w, N. Reimen

toqx+x-1 ofy,’ (c,.). In these conditions, Proposition 3.2 tells us that the states of

the cells 0 to s(- 1 of G).“‘(7; ’ (c,,)) are uniquely determined since we have qr 3 kp. We

are, therefore, allowed to define y that way and it is clear that we have

4. The speed-up theorem-weak form

Let.d=(U,q,,j.,Q,,Q,,A)withA=(Q,p,f)b e a recognizer CA which recognizes

the language L c U * in time t(n). From A and for any a 3 2, q 3 1 and k > 1 such that

qa > kp, Lemma 3.1 provides an automaton B = (Q”, q, g), whose transition function

does in one step on a grouped configuration what f does in k on the corresponding

ungrouped configuration. We shall build from B another recognizer CA W which will

start from grouped configurations and will tell, within time rt(n)/kl, if the word of

length n contained in the initial grouped configuration belongs to L or not. For

a word u = uOul.. u,,_ l~U * the initial configuration for XI is a configuration c.~[u] of

the form

. . .
. ..AnAuou.u,...u,~,u,~,q,q,q,

with u0 in position 0. The corresponding initial configuration for J9 will be y,(c,d[u])

(we assume for this example that n is not a multiple of x):

. ..(i “,..., ;_)(A ,..., i)(uo ,..., u,_l)(u, ,..., u2a_l)...

--
r 5(

. ..(uLn!zJa...., u,~,,q,,...,q,)(q,,...,q,)...,

r-llvmoda - r

with (uO,. . , u,_ 1) in position 0. This configuration must be, according to the defini-

tion of recognizer CAs, a c,~[v], where c depends on u. To do this, we shall let4

(i., . . .) A), be the border state of g and (q,,, . . . , q,,)a its quiescent state. We shall also

generalize 1/z to the words and languages in the following way: Let u be a word of U *,

y=(u) is the word on ((Uu(q. 1)n)* obtained by grouping r by c(the letters of u and by

padding with q. the space left in the last letter if IuI is not a multiple of x. With the u of

the above example we obtain

‘i,(u)=(uo ,..., u,-r)...(Ut,:,j. 1..., u,,?,,q,,...,q,).
\ I

r-nmodx

This way we have G= y,(u) and, thus, L.,~[~~(u)] = Y~(c,~ [u]). The generalization of ya to

languages is straightforward: y,(L) = { yn(u), UE L}. The language recognized by the

4 We write (x. y,. . . z), for (x. y.. . . :)

A linear spred-up thuorrm$v cellular automafa 61

28 we shall build will, therefore, be y,(L). The “weak” aspect of the version of the

theorem we develop here comes from the fact that it is y%(L) and not L which is

recognized by B.

Theorem 4.1. Let J&’ =(U, qO, 2, Qa, Qr, A) with A =(Q,p,f) be u recognizer CA which

recognizes the language L c U * in time t(n). Let CI, q, k be three positive integers such

that qcx 3 kp. There exists a recognizer CA 3 = (((Uu(q. })“)*, (qO,. . , qO)a, (2,. . . , A),,

R,, R,, B*) with B* =(Q’, q,g*) which recognizes the language ye(L) in time rt(n)/kl.

Proof. If we take B* = B, where B is the automaton whose existence is given by

Lemma 3.1, R, = Qa x Q”- ’ and R, = Qr x Q”- ‘, we obtain the behaviour desired, but

only if t(n) is a multiple of k, in which case the configuration

G(f(n’~k’(~2(C,“j[U]))
Y

corresponds to

G:“““(c,~ [u])

and, therefore, contains the end state (accepting or rejecting) in cell 0. But if t(n) is not

a multiple of k then the end state will appear between two of the configurations

computed by B and, therefore, be lost. To avoid this problem we shall modify g*, the

transition function of B*, so that if an end state appears in cell 0 (if it appears in

another cell we do not care since end states “count” only if they appear in cell 0) at

time tl k + t2 in the computation of d with tl 2 0 and 1 < t2 < k - 1 then it also appears

as the rightmost letter of the a-uple

CG$:’ + “(?/a(c.ci Cul))l(Q

that is the state of the cell 0 at time tl + 1 in the computation of B*. This means that if

an end cell appears between two instants of B* then it is “saved” by g* and, thus,

appears at the next instant of B*. We showed in the proof of Lemma 3.1 that if the

relation qcc 3 kp holds then g can obtain from the configuration of B at time tl enough

information about the configuration of .d at time t,cx to compute the state at time

(t, + 1)cx of the c(cells of .d contained in one cell of B at time tl + 1. It has, therefore,

also enough information to compute the states of these cx cells of d at time tl CI + t2 for

any tzG { 1,. . , k - 1) and check if the leftmost of them is an end state. g* may also

check if it is dealing with cell 0 by checking if its left neighbour contains a I. state. g*

may, therefore, be arranged so as to yield an cc-uple with the appropriate end state

(found at time t,z+r2) as its leftmost letter if these two conditions are fulfilled.

Keeping R, = Qr x Q”- ’ and R, = Qa x Q”- ’ we obtain the desired result. 0

Corollary 4.2. If the language L is recognized by a recognizer CA of range p in time t(n)

then L is also recognized by another recognizer CA of range kp in time rt(n)/kl.

68 J. Mazoyer, N. Reimen

Proof. To enable the recognition of L. there must not be any grouping; so, CI = 1. If we

take 4 = kp, we have obviously qr 3 kp; so, Theorem 4.1 provides us with a CA which

fulfils the requirements of the corollary. 0

This way we obtain the strong form of the speed-up theorem but at the price of

a significant increase in the range. We explained in the introduction why we were not

ready to pay such a price.

Corollary 4.3. [f thr language L is recognized in time t(n) by a recognizer CA of range

p then ykp(L) is recognized b?l a recognizer CA of’ range 1 in time rt(n)/ql.

This shows that we may accelerate the computations of automata of arbitrary range

by only relying on automata of range 1. However, in that case, the price to pay is the

inflation of the number of states.

5. Grouping

To be able to prove the strong form of the speed-up theorem using the ideas

developed so far, we need an “adapter” to turn the initial ungrouped configuration

into a grouped one from which the accelerated computation may start. Our starting

point is a recognizer CA .d = (U, 2, qO, Qa, Qr, A), with A = (Q, p, f) which recognizes

a certain language Lc U * in time t(n). We intend to build another recognizer CA

% which recognizes the same language in accelerated time. We shall achieve speed-up

in G4 through re-use of the automaton B* of the weak form. Since we do not want to

impose an increase in the range, we must rely on grouping to obtain speed-up. So, B*

will need to work on grouped configurations. But the initial configuration of Q? cannot

be fully grouped since the input word u must not be such as to enable % to recognize

L and not ;‘% (L). This is why we need a grouping adapter. We shall take the border

state of K equal to” (j., . . . , i.), and its quiescent state equal to (qO, qO,. , qO), (for some

x > 2). This way, the initial configuration’ of +? for a word u = u,, ui . . . u,_ l~U * is

c<d[cu]=...(i .)...) i)(E, ,..., 3.)ulJu,u~...u,_l(q())..., qo)(qrJ ,..., 40) . ..)

v- --
Y 1 TX I

with u0 assigned to cell 0. This configuration is “almost grouped” since only a finite

number of its positions are not. We shall build a grouping automaton BG which will

turn cc6 [u] into a fully grouped configuration (i.e. the image by yZ of a configuration of

G!‘) from which the accelerated computation of B* may start. +Z will then be the result

of the composition of BG and B*.

‘We write (.Y,.Y .__.,. u), for (z. .x ,.._,. Y)

’ We recall here that the initial configuration of a recognizer CA for a word u assigns a border state to the
negative cells, and to the positive cells the letters of u followed by the quiescent states.

A linear speed-up theorrm for cellular automata 69

To formalize this notion of “almost grouped configurations” we introduce the

family of functions 7:: Q”+(Q”uQ)~ for any kcN. Intuitively, the configuration y:(c) is

that obtained by grouping the configuration c everywhere except on cells 0 to k- 1.

Formally, for any configuration CEQ’ we have

I 4) if Odi< k,

Cr341 (i) =
(c(Z),c(l+l))...) c(l+cc-1))

with I=k+(i-k)a if i>k, (1)

[(c(icc),c(icc+l),...,c(iz+a-1)) if i<O.

Thus defined, the functions 7: are also bijective, like yZ, and we have y,” = ya. cK[u], the

initial configuration for %, is equal to ~:(c.~[cu]). We shall say that a configuration is

yi-yvouped if it may be obtained through 7; from a configuration on Q, in that sense,

cy [u] is r: -grouped.

For technical reasons, which will appear soon, we cannot obtain BG directly. We

show here first that there exists an automaton Bg, of range q 3p, (p is the range of &)

which, starting from the configuration cK [u], yields a vi mod ¶-grouped configuration at

time /-n/q J. To obtain the final $-grouped configuration of BG we shall have to

compute the value of n mod q, and communicate it to all cells 0 to n + q - n mod q - 1

(all nonquiescent cells of the final configuration of BG; see the end of this section) and

to synchronize all these cells at time Ln/q J + 1 (see Section 7). All this being done, we

shall finally build BG in Section 8.

Let us now begin the construction of Bp. We are given a recognizer CA SZ! which, fed

with the initial configuration cd [u] corresponding to a word u = u0 u1 . u, _ 1, yields

the sequence of configurations

c, = G~‘(c.~ Cul)

for all r 3 1. To this sequence of configurations is associated a space-time diagram the

sites of which we shall denote by (t, k) for LEN and kEZ. For t =0 we have (0, k) =3. if

k<O, (O,i)=ui if O<i<n-1 and (O,j)=q,, ifj3n. For t>l and kEZ we have

(t, k) = c,(k). The idea of building Bg is to obtain a succession of “more and more”

grouped configurations. cx[u] the initial configuration is yi-grouped. We then

proceed through a kind of backward induction requiring the next configurations

to be ~~P4,1/~-24 ,..., y::-‘q-grouped. At time Ln/ql, we then have a ~“-q~‘qJ, that is

Ya nmad q-grouped configuration. Besides that, in order to lose less time, we require Bg to

compute in the same time it groups. Formally, we want Bg to yield the sequence (cf)

for t~{O,l,...,Ln/qJ} f o configurations defined as follows:

a,=r::-‘q(G:f)(C.dCUI)), (2)

where’ o. =CY, [u] =$(c.~[u]) is the initial configuration. With (a,) is associated

a spaceetime diagram the sites of which we shall denote by [t, k]. For t~(0, 1,. . . , Ln/q J >
and keZ we have [t, k] = o,(k). Figure 5 shows an example of such a diagram with

’ We assume that G$"l = Id

70

A linear sped-up tkrorem.for cellular automata 71

cx = 3, q = 2 and n = 15. To complete what is said above, some remarks have to be

made.

(1) Our desire to compute while grouping takes place forces Bg to behave exactly

like .d in the part of the diagram where sites are not yet “grouped” (for 0 <k < n - tq).

The transition function of Bg must, therefore, “do” exactly the same thing as JZZ”S one

in that area and, thus, must be provided with at least as much information. This is the

reason why we have to require q the range of Bg to be greater or equal to ~~2’s one: p.

(2) From instant 1 to Ln/q j, we pass, at each step, from a y:-grouped configuration

to a $4-grouped one. At time L n/q 1 we obtain a rl mod 4-grouped configuration. If we

continue the same way up to time Ln/q J + 1, we shall obtain a ~~m”d4-q-grouped

configuration. But since nmodq<q, then nmodq-q<O, and ?;i is not defined for

k < 0. This is why we have to stop at time Ln/q 1, thus only achieving a ri mod 4-grouping

and leaving the first IZ mod q cells ungrouped.

(3) The backward induction described above induces a kind of grouping “wave”

which appears clearly on Fig. 5. In our construction, this wave propagates leftwards,

but we could very well imagine the opposite situation in which it would start from the

left end of the word u and propagate rightwards. By the way, we would be rid, in such

a case, of the problem of the n mod q ungrouped cells at time Ln/q]. However, there is

a good reason why we did not choose that option. Since we require to compute while

grouping takes place, we increase the nonquiescent part of the successive configura-

tions of .d by p cells on the right at each time step. If the grouping wave was going in

the same direction, it would never be able to catch up with the right end of the

nonquiescent part of the line if q was equal to p (if we had q > p then the grouping wave

would be able to catch up with it but only at time Ln/(q-p) J). And it is important to

allow such an equality, since we want to be able to obtain a speeded-up automaton

without any increase of the range (cf. Introduction). By having the grouping wave go

leftwards we cause all the increase of the nonquiescent part to occur in the grouped

part of each configuration, thus avoiding the problem and allowing p=q.

(4) A striking feature of our grouping process is that Ln/q J, the grouping time, is

independent of p and 3. Remarks (1) and (3) give some insight into the reason why it is

independent of p. However, giving a synthetic and intuitive reason for its cc-indepen-

dence is much harder. The proof of the existence of P which we give below contains

all the elements needed to explain it but they are hidden and scattered among the

calculations. The best intuitive approach we can provide is to look at the example of

Fig. 5 and see that the size of the groups of states we construct is somehow orthogonal

to the core of the grouping process (we hint at this by representing these groups as

vertical piles). If we change the value of c(, the overall shape of the figure will not

change significantly; simply the configurations will become a bit more or a bit less

thick but the succession of leaps of q cells done by the grouping “wave” will not be

altered and this is what determines the grouping time Ln/q].
To prove the existence of Bg we might have listed in detail its alphabet and

transition function and then proved (by induction on r for instance) that the global

map thus induced fulfilled the requirements embodied by the sequence (0,). However,

we feel that such an approach does not provide a good understanding of the key

aspects of the construction. We shall rather proceed in the opposite way. The sequence

(a,) may be seen as the specification of a global map. Of course, it is not a complete

specification but any global map fulfilling it would do. If we prove that such a global

map may be computed by fully local means, that is exactly as a local map would do,

but without necessarily giving such a function explicitly, the existence of Bg will be

proven. We shall base our argument on space-time-diagram considerations, showing

that the state of any site [t, k] may be computed from only the data contained in the

sites [t - 1, k-q] to [t - 1, k+q] (LP is of range q) and possibly from constants. As

defined in equation (2) the sequence (0,) yields an STD with the following structure:

for any t such that 0 <r < Ln/qJ and any kg Z we have

(2,. . , i)m if k<O,

Cf9k’=
(f, k) if O<k<n-tq,

((t,I),(t.I+l) ,..., (r,I+cc-1))

with I=n-tq+(k-(n-tq))r if kan-tq.

In fact, for k30 (we do not care about negative cells since it is clear that we can

arrange LP so as to put them all in state (&. . ., I.),), the state of each site [t, k] is

a sequence of site (t, i) for i such that Min(t, k)b i < Max(t, k) with Min and Max

defined as follows:

Min(t, k) =
k if O<k<n-tq,

n-tq+(k-(n-tq))r if k 3 n - tq,
(3)

Max(t, k) =
k if 0 < k < n ~ tq,

n-tq+(k-(n-tq))z+sc- 1 if kan-tq.

To be able to compute [t, k], that is the sequence of sites (t,i) for all i such that

Max(t, k) < i < Min(t, k), the following three conditions must be fulfilled:

(1) We have to be able to decide if [t, k] is to contain one or x sites of &, i.e. whether

we are in the case O<k<n-tq or k>n-tq.

(2) We have to be provided with all the necessary information to compute each of

the (t, i) throughf, i.e. all sites (t - 1, i +j) for all j such that --p < j< p. The union of

the sets of sites of .d contained in the sites [t - 1, k-q] to [t - 1, k + q] must, therefore,

contain the set

{(t-l, i+.j), Min(t,k)di~Mu.~(t,k), -p<j<p)

={(t-l,i), Min(t,k)-p~i~Max(t,k)+pf

This union is simply the set

A lineur sprrd-up theorem,for cellular automata 73

our condition thus boils down to:

Min(t-l,k-q)<Min(t,k)-p,

Max(t,k)+pdMas(t-l,k+q).

In many cases (see the example of Fig. 5) the above inequalities are strict inequalities.

In other words, the sites [t - 1, k-q] to [t- 1, k+q] contain more sites of d than

needed in order to compute the content of [t, k]; therefore,

(3) We have to be able to choose the relevant sites of .d among those contained in

the sites [t- 1, k-q] to [r- 1, k fq]. By chance (!!), we have the following relation:

Mux(t-l,k+q)-(Mux(t,k)+p)=q-p,

whatever k>O and r> 1. If condition (2) is fulfilled then we will know that the

sequence of sites we “need” is contained in the sequence we “have”. This last result

tells us that the end of the sequence we “need” is situated q-p positions before the end

of the sequence we “have”. Since we know the length of the sequence we “need”, (2p + 1

or 2p + r depending on the answer to the question of condition (1)) we may, therefore,

localize and extract its elements from those of the sequence we “have”.

The solution of condition one is the following: If all sites [t- 1, k-q] to

[t- 1, k +q] contain only one site of .o/ each then [r, k] contains also one site. If at

least one of the sites [t- 1, k-q] to [t- 1, k + q] contains x elements of .r9 then [t, k]

contain also x sites of .d. In effect, if all sites [t - 1, k-q] to [t - 1, k + q] contain only

one site each that means that they are in the ungrouped part of the diagram and

specifically [t - 1, k + q] is. That means that k + q < n - q(t - 1); so, k < n - tq, and [t, k]

is also in the ungrouped part of the diagram and, therefore, contains only one site. The

second part of the above statement is obtained the same way. The solution of

conditions (2) and (3) rely on the following proposition.

Proposition 5.1. Let Min and Max he two functions defined as in equation (3) and p an
integer such that p<q then.for all t such that 1 <t <Ln/qJ and all k>O we haue

Min(t-l,k-q)<Min(t,k)-p,

Max(t,k)+p~Max(t-l,k+q), (4)

Mux(t-l,k+q)-_(Max(t,k)+p)=q-pp.

Proof. (1) IfO<k<n-tq then Min(t,k)=kand Max(t,k)=k. We have k-q<n-(t- 1)q

and k+q<n-(t-1)q; so, Min(t-l,k-q)=k-q and Max(t-l,k+q)=k+q.
Equations (4) are obviously fulfilled.

(2) If n-tq<k<n-tq+2q, we have n-tqdk; so, Min(t,k)=I and Max(t,k)=
I+r-1, with I=n-tq+(k-(n-tq))a. k>n-tq entails k+q>n-(t-1)q; so,

Max(t-l,k+q)=n-(t-l)q+(k+q-(n-(t-l)q))cc+cc-1

=n-tq+q+(k-(n-tq))cc+a-1

=I+q+z- 1.

We then have

Mu.u(t.k)+pdMLfX(t- l,k+q).

Mux(t- l,k+q)-(M~rs(t,k)+p)=q-p.

Since, on the other hand, k<n-tq+2q, we have k-q<n-(t- 1)q; so, Min(t- 1, k-q)=

k-q. So. Min(t.k)-p-Min(t- l,k-q)=n-tq+(k-(n-tq))r-p-k++. Sinceccal

and q>p, this is positive; so,

Min(t- l.k-q<Min(t,k)-p.

(3) If k>n-tq+2q then we have k>n-tq; so, the computations for the function

Mcr.u are the same as above. However, we have k-q>n-(t- l)q; so, Min(t-1,

k-q)=n-(t- l)q+(k-q-((n-(t- l)q))cc=n-tq+(k-(n-tq))r+q+2qc(=I+q(l

-2%). Since cx> 1, q>p and Min(t,k)=I, we have

Min(t-l,k-q),<Min(t,k)-p. 0

We have thus shown that there exists a i+ fulfilling our requirements. In fact, we

have simply proved the following proposition.

Proposition 5.2. There is u cellular uutomaton ofrange q 3 p whose global mup turns in

ant’ step an!, configuration ;lc(c), rtlith s >q and c a cor$gurution of .d, into the

cY~r$iguration 7: _“(G ,-(c)).

The proof of this proposition is exactly the same as that of the existence of B” since,

in that case. the fact that X=/I- TV is irrelevant. We may generalize this result in the

following way.

Proposition 5.3. For any z sut~h thut -q < z < q there is an automaton of range gap

bvhose ~~lohul mtrp turns in one step any configuration yi (c),,for any .Y 3 z and c a config-

uration of‘&. into the cor$igurcrtion $‘(G,-(c)), p rovided thut ut leust ~111 the uctir:e cells
(?f;%$~= (G,((L.)) (those nlhich ure not in state (iv,...,/.), or (qO,...,qO),) cun know locally

that they ure the uctirr ~11s und cun compute the value of 2.

To prove the existence of B” (alias Proposition 5.2) we showed that, to pass from

Y:(C) to ~~-Y(G~(~)) the kind of sh$-and-compute (shift: $j-$q, compute: c’-+Gs(c))

procedure that has to be done may be done locally, i.e. such that each cell is provided

with all the necessary information to perform it. In that case, the index of the shift (the

,_ of Proposition 5.3) is a constant (4) and may, therefore, be provided to all cells by

embedding it implicitly in the transition function. On the contrary, if we want z not to

be a constant, i.e. if we want it to depend on informations contained in c or in

a configuration prior to c (we shall see an application of that below), then we will

almost certainly be unable to provide all cells with the necessary information to

compute 2. However, since we are working with configurations of .d, we know that

almost all cells of y:-‘(G,(c)) are in state (j., . , E.), or (qO, . . . , qo), except only a finite

number lying between cell 0 and a certain cell y. Only the cells belonging to this

“active part” really need to do the shift-and-compute work, while the others only have

to know that they have nothing to do. By doing the following:

l provide at least all active cells with the message “you are active”,

l provide all cells which have been told they were active with the necessary informa-

tion to compute z.

we put all cells which are told they are active in the same situation as all cells in the

case of the proof of Proposition 5.2. We can then prove that these cells may

accomplish the shift-and-compute work in these conditions exactly in the same way as

in the proof of the existence of B” with the three conditions and an equivalent of

Proposition 5.1 for the calculations. If more cells than those which are really active

receive the message “you are active”, it does no harm since for these cells the

shift-and-compute procedure will simply result in the production of a (yo,. , qo),. On

the other hand, all cells which do not receive this message will, therefore, know that

they just have to be in state (;.. . , i), or (cl,,, , qo), (they can decide which one from

the context).

We shall use the result of the Proposition 5.3 in order to obtain the last configura-

tion of B”. At time Ltr/qJ, Bg yields the configuration

“Leq’ -is
- .,‘f mod “(G:.t”~qJ’(,,.[LI])).

and, at the next instant, we want B” to yield the configuration

ai,l,‘qJ+l =;'i)(G)k"'+ “(c&l)).

Since 7: = ;1=, we shall have achieved our goal and obtained a fully grouped configura-

tion. Proposition 5.3 tells us that we can pass from OLn/rl to atn/ql+ 1 with a z = n mod q

(we have -q < II mod q <q) but only if at least all active cells of (T inIql + 1 are provided

with the value of n mod q and told they are active in some way. The configuration

G f +“‘+ “(c.&]) he ds at most n +p(Ln/qJ + 1) nonquiescent cells. Since pdq, we have

n+dL4q1+ 1) <n+q(Ln/q] + 1)=2n-nmodq+q. The number of cells of

atnIqJ+ 1 which are not in state (& , i), or (q,, . , qo), (the active cells of CJ ~~;~l+ 1), is,

therefore, at most

1

2n-nmodq+q

x 1

Since r>2 we have

1

2n-nmodq+q 11 d n+q-“modq
r z! 1 <n+q-nmodq.

We have, therefore, to provide all cells 0 to n + q - n mod q - 1 at time Ln/qJ + 1 with

l the value of n mod q, and

l a message that will tell them that they are active.

The first of these two conditions will be treated in Section 6. The second, which

amounts to synchronizing all cells 0 to n + q - n mod q - 1 at time L n/q I+ 1, will be

treated in Section 7. In Section 8 we shall gather together all the components worked

out in Sections 557 to build B” and then compose it with the B* of Section 4 (the weak

form) in order to obtain the strong form of the speed-up theorem. This composition

operation will also rely on the synchronization process whose role is, therefore,

twofold.

6. Computing n mod q

We said, at the end of the preceding section, that, in order to compute the last

configuration of BG, we needed to provide all its active cells, i.e. all cells 0 to

n + q - II mod q - 1, with the value of n mod q at time L n/q] + 1. We shall show here

how to do that.

Proposition 6.1. There exists a cellulur autonzaton B” = (Q”, q, y”) wirh Uu{ (A,. . . , A),,

(qO ,..., qo)a)~Qm and (I,2 ,..., q-l)-cQ” (we assume that {1,2,...,q-l)nU=@)

which, whenfiud with the initial conjiguration cf/: [u],for a word of lrnyth n 3 q, yields after

L n/q J time steps a conjyuration in which cells n mod q, n mod q + 1,. , n-n mod q - 1

are in state n mod q.

Remark. The state at time Ln/qI + 1 of each of the cells 0 to n + q-nmod q - 1

depends on the state of at least one of cells n mod q to n ~ n mod q - 1 at time L n/q J

which is n mod q. In that sense we may say that cells 0 to n+ q-nmod q- 1 are

provided with the value of n mod q at time Ln/qj + 1. On the other hand, we limit our

scope here to words of length n > q since, if n < q, then we have Ln/q I= 0; B” does not

have enough time to perform even one step. We shall treat the case n < q in Section

8 when considering the final solution to the grouping problem.

Proof. We shall only give a brief sketch of the proof of the above result and leave the

details to the reader since it is straightforward. Let us denote [t,k]” the sites of the

diagram associated with the computation of I?” on the initial configuration cx[u].

Figure 6 shows a “continuous approximation” of the kind of diagram we wish to

obtain. We have two signals G and D starting from both ends of the word u and

heading towards the middle at the fastest possible speed. They are composed of sites

[t. tq- I]” and [t. n- tq]“, respectively, for tE(O, 1,2 ,..., Ln/2ql}, which may be

marked with a special state for instance. The distance between the points of G and D at

time Lr2/2qJ is

IZ -q Ln/ZqJ -(q Ln/2ql- 1) = n -(n -n mod 2q) + I

=nmod2q+ 1.

A linear speed-up theorem_for cehhr automata

Ln/q J

LnmJ

Ln/zqJ

-I,lrlP
with all
sites in

This distance is less than or equal to 2q but still positive at time Ln/2qJ. Since G and

D proceed by leaps of q cells at each time step this implies that the lines which are the

extensions of the two signal cross between instant Ln/2q J and the next. The points

A=IILn/24J+1,n-q(Ln/2q1+1)lm
and

B=CLn/2q_l+ 1,4(!_42q1+ I)- 11”

prolong D and G, respectively, at time L n/2q A+ 1. All sites between A and B (included)

see the two extremities of G and D at time Ln/2qj and may, therefore, evaluate the

distance between them. They obtain this way the value of n mod 2q, from which they

can deduce that of nmodq (if nmod 2q>q then nmod q=nmod 2q-q, else

n mod q = II mod 2q). We can, therefore, arrange y” so as to put them in state n mod q.
This state then diffuses to the largest possible number of sites, i.e. to those inside the

trapezoid marked by the extension of signal D and G (these two lines crossed between

instant Ln/2q] and Ln/2q J + 1). At time Ln/q] all cells between site

A’=CLn/ql,n-qLnlqIlm=CLn/qJ, nmodd”
and

B’=[Ln/qJ, qLn/qJ-l]“=[Ln/q1,n-nmodq-11”

(included) are in state n mod q. The desired result is, therefore, obtained.

Note: In the degenerate case q < II < Zq we have jn/2qj =O. The points of G and

D at that time are the two extremities of II that is to say the last i. before the first letter

of II and the first q0 after the last letter of ~1, respectively. We also have

Ln;2q J + 1 =Ln;y 1 = 1. Points A and A’ are the same and so are B and B’. 0

7. Synchronization

We shall need synchronization for two purposes. First, to finish grouping and to

enable Bo to yield a completely (i.e. ;s,”) grouped configuration, we saw that at least all

the active cells’ of its last configuration must be synchronized at time Lrt/ql + 1 (see

Section 5). Second. to compose go, the grouping automaton. and B*, the speeded-up

automaton. i.e. to build an automaton which will work like B” until a certain time and

then like B*, we must be able to tell cells to “change mode of operating” at that time.

But we shall see in Section 8, when finally building B”, that only the active cells of the

common configuration (the last of B” and the first of B*) need to be given that order.

For these two purposes. it is therefore sufhcient to have cells 0 to II + y - n mod q - 1,

the active cells of the last configuration of B”, synchronized at time [n/q] + 1.

We shall achieve this goal in the following way: We shall prove that there exists an

automaton B” = (Q’. q_ y’) (we take B’ of range q. i.e. of the same range as B”) such that,

when starting from the initial configuration (‘rc [u]. a certain group of cells are at time

Lt~;q J in a special synchronizing state never taken before by any cell. These cells are

spread along the line so that at least one of them is situated within range q to any of

the cells 0 to II + q- II mod q ~ 1. This way, when determining the state at time

Lkr;q 1-t I of any of our cells 0 to II + q - II mod q - 1, the transition function is provided

with something it was never provided before (we shall call it the s~~~hroni~iny

irrfi~~rnrrrior~) and thus “knows” that we are passing from instant Ln/q] to instant

LR.‘yj + I. This way, our initial synchronization problem is reduced to synchronizing

this special group of cells at time Ltr;y J in the classical sense of “having them all enter

at time Ln.‘q] a special state that they never took before”.

This classical sense is that of the FSSP (see e.g. [9,7]) of which we use the solutions

to build B’. Let us review it briefly. We arc given a finite segment of r cells (r > 2) whose

behaviour is governed by a local transition function of range 1: cp. The two end cells

(since r 3 2, we have two distinct end cells) arc particular cells since the left one has no

left neighbour and the right one has no right neighbour. Their behaviour is, therefore.

given by two special (2-ary) transition functions: q, and cpl-. At time I the left end cell is

set by an intervention fr?m the “user” in a special state G (called the General state by

analogy with a General commanding to a line of soldiers to shoot) whereas all other

cells, including the rightmost one, are in the quiescent state R. A sequence of finite

configurations is then computed by the global map induced by cp, cp, and cpr. The key

aspect of the problem is that we require all cells to enter together and for the first time

in another special state F (for fire) at a certain instant 1,. It has been shown [9] that t,

cannot be less than 2r- 1 for a segment of length 7 and that there exist solutions

working in minimum time [2, 7, 141. We assume that we have such a solution, i.e.

a 4-tuple S=(S,cp,cp,,cp,), with S=(sO,s, ,..., sm), so=R, sl=G, s2=F, (p:S3+S,
cp,:s2+s, cp,:s ‘-+S such that cp(R, R, R)=cp,(R, R)=cp,(R, R)= R (R is a quiescent

state) and such that starting with the configuration

GRR . . R.
C J

with ~3 2, at time 1, we obtain, through the application of cp, cp,, cpr, at time 2r- 1, the

configuration

FF . . FF.
k J

Figure 7 shows an example of the kind of space-time diagram associated with such

a process, the Ys represent any state other than G, R or F, the Xs represent any state

other than F or R. All known solutions to the FSSP which work in minimum time

have, as shown in Fig. 7, a,first M;uce represented here by the sequence of Y, which

starts from the General cell and reaches the right-cell soldier within the smallest

possible time. It is this feature which puts in the space-time diagram of the solutions

to the FSSP this characteristic figure (the trapezoid IJKL) shaped as a Guillotine

blade.

To generalize the range 1 FSSP to the range 4 (4 arbitrary) context of B” we shall

give a privileged role to cells q- 1,2q- 1, . . . , qLn/q] - 1. Since they are placed at

123456=~

Fig. 7

11=27- 1

10

9

8

7

6=,x

5

4

3

2

1

n+q-n mod 4 -1

0 q-1 2q-I 9 Ln/ql-1
=n-nmodq-1

Fig. 8.

a distance q from one another, the “mutual-visibility conditions” of these cells in the

context of an automaton of range q are exactly the same as those of a sequence of

consecutive cells in an automaton of range 1: each cell “sees” one and only one

neighbour on each side. We can, therefore, define the transition function of B” so as to

simulate the execution of an automaton of range 1 on these cells while the others

(those lying between them) remain idle. Moreover, if we are able to synchronize all

these cells at time Ln/yj (in the sense of having them all enter state F at that time and

for the first time). Then we shall have achieved our goal. Since qLn/q J - I=

n -II mod q - 1 it is clear (see Fig. 8) that the state of all cells 0 to II + q - n mod q - 1 at

time L n/q I+ 1 depend on the state of at least one cell of the sequence y - 1,2q - 1,. . .

q Ln/q J - 1 and that, therefore, all cells 0 to II + q - 11 mod q - 1 are “irrigated” by the

synchronizing information at time Ln/~1] + 1.

We want, therefore, to simulate on cells q - 1,2q - I,. . . , qL n/q I- 1 the synchroniz-

ation process of a segment of r =LnjqJ cells. The initiation of the synchronization

process takes place at instant 1 of B” which, therefore, corresponds to the instant 1 of

the simulated process. Since we want the synchronization to occur at time Ln/q J it

means that we want to synchronize in time T a segment of length T, which seems

impossible with the solutions of the classical FSSP described above (which work at

best in time 2r- 1). However, in the classical FSSP, the initiation of the synchroniz-

ation process takes place at only one end of the segment, whereas we shall see that in

our case we can start it from both ends. We shall see below that we can put both end

cells of our simulated segment in state G since they each “see” at that time one end of

the word u and that tells them that they are at time 1. To build B” we shall, therefore,

use the variant of the FSSP in which both ends of the segment are in state G at time

1 (we shall call it the 2E-FSSP for two-C&VFSSP) and for which there exist solutions

which synchronize a segment of length r in time T.

7.2. The ZE-FSSP

The specifications of our problem now becomes: At time 1 we have a segment of

length T 3 2 (it is necessary to have 5 32 to have two separate end cells) in the

configuration

GRR...RG.
I I Y

A linear speed-up theorem,for cellular automatu 81

By applying to it the global map induced by three local functions of range 1: $, I++, and

$r we want to obtain at a certain time &(T) the configuration

FFF . . FF
I v ,

so that, at any time before t,(s), no cell was ever in state F. Minsky [9] showed that the

synchronization time of a solution to the classical FSSP may not be under 2t- 1 for

a segment of length T. We show here that, in the case of the 2E-FSSP, this lower bound

is T for a segment of length t.

Theorem 7.1. All solutions to the 2E-FSSP synchronize in time t,(T.)aTfor all 232.

Proof. The proof we give here is very similar to that of Minsky. Let us suppose that

we have a solution to the 2E-FSSP such that t,(zo) < TV for some TV 3 2. We know that

at time t,(ro) cell 1 is in state F. The state of cell 1 at time ts(zo) depends on the states of

cells 1 to t,(to) at time 1 and only on them (see Fig. 9). Since ts(r,)<r,, the states of

these cells are G for cell 1 and R for all others. So, if we start from a segment of length

T > T,,, the state of cells 1 to t,(s,) at time 1 will not be changed. Cell 1 is, therefore, also

in state F at time t,(s,,) in the case of the synchronization of a segment of length 7 > 70.

This means that we have t,(r) < t,(r,,) for all 7 > 7. since if we had t,(r) > t,(so) for some

7>70 then we would have a cell in state F before synchronization time (cell 1 at time

t,(ro)) and, hence, this would not be a proper synchronization. If we now take

7 = 2so + 1 then we know that cell T + 1 is in state R at any time between 1 and TV since

R is a quiescent state (see Fig. IO). But, since 2so + 1 > zo, we have t,(t) < t,(r,) < 70. So,

cell 7. + 1 must be in state F at some time t,(r) < 70. A contradiction. So, there is no

solution to the 2E-FSSP such that there is a to32 such that t,(to)<z,. 0

We shall now show that there is a solution in minimal time to the ZE-FSSP. The

basic idea is to cut the line in two halves of length approximately r/2 and synchronize

them with two copies of a solution to the classical FSSP propagating symmetrically

I

I cells

Fig. 9

82

I 70 + I 270 +I

Fig. IO.

p!+ Initial

z Waves

7

Fig. I I.

from the G at the two ends of the segment (see Fig. 11). The synchronization time of

the total segment is, therefore, reduced to the time taken by a solution to the classical

FSSP to synchronize a half segment, i.e. approximately 2(~/2)= 7. Our goal is to

obtain a solution ?J=(T,$,$,,tj,) with T=jz,,z, ,..., zs), zo=R, z,=G, z,=F,

$1 T3+T, $,: T2-T, $r-: T2 -+T, such that $(R,R,R)=$,(R,R)=$,(R,R)=R (R is

a quiescent state) and which fulfills the requirements of the 2E-FSSP (see the begin-

ning of this subsection). We shall obtain 9 from J. our solution to the classical FSSP,

through a kind of approximation process yielding a sequence %‘, Y2,. , Y5 of solu-

tions which will come gradually closer to what we want and whose last element will be

9. To each Y’ is associated an alphabet T’ and three transition functions $‘, if and $i.

We shall first concentrate on the left half of the segment and provide a solution only

adequate for the case where the length of the segment T is an odd number. However,

we shall take care that this solution does not put any cell into state F before time 5 in

the case T even. This way, we shall be able to complete it later in order to obtain

synchronization in time r also in that case.

Proposition 7.2. There exists a 9’ which

(1) synchronizes cells 1 to L T/2 j + 1 at time 5 if fr is odd and 7 > 3 (the smallest tialue

,for T odd and 732);

(2) does not put any cell in state F before time 5 tf T is even and T > 2.

A linear speed-up theorem for cellulur automata 83

Fig. 12.

Proof. We build 9’ from 3 in the following way (see Fig. 12). From the G in the

left-end cell starts a synchronization process identical to that of 9. From the G in the

right-end cell comes a signal d which propagates leftwards as fast as possible (of one

cell to the left at each time step). When the first wave of the synchronization process

meets with d, at approximately the middle of the segment, the cell belonging to the

first wave at that instant and involved in the meeting is marked and then treated as if it

was the right end of the segment at the next instants. This way, we cause the

synchronization process to be contained in the left part of the segment. It is already

clear, at that point, that we will manage to synchronize this way at time z only if t is

odd since the length of the segment [IL] (which is equal to 2[LK]- 1 since the

synchronization process we use is a minimal-time solution to the classical FSSP) is

necessarily an odd number. Let us prove that we indeed obtain that way, the

announced behaviour.

At time t 3 1, the first wave of the synchronization process has reached cell t. At time

1, the signal d is materialized by the G in the right-end cell (cell number 5). At any of

the following instants t 22, it may be embodied by the presence in cell z-t+ 1 of

a special state 0 added to the alphabet of 9’ for that purpose. At time Lr/Z] + 1 the

first wave is in cell Lr/2] + 1. At the previous instant, d was in cell t -Lr/2 J + 1. We

have (5--r/2] + l)-(Lr/2] + l)=r-2Lr/2] =rmod2=0 or 1. So, whatever the

parity of T, the cell of the first wave at time Lr/2] + 1 (cell /_r/2] + 1) “sees” the cell of

d at time Lt/2 j (cell 7 -L7/2] + 1). The “marking of the right end” operation, alluded

to above, therefore takes place in cell L s/2 I+ 1 at time L t/2] + 1. It is conducted in the

following way: To T’, the alphabet of Y1, we add a subset s= {S,SES} disjoint of S,

the alphabet of 3, but in bijection with it. The overbar on the state of a cell will mean

that this cell plays the role of the right-end cell. At time Lr/2] (the instant preceding

the marking) cell Lr/2] IS in a certain state JIGS. According to the above “visibility”

result, we know that one of the cells L7/2] + 1 or Lr/2] + 2 contains a state materializ-

ing the presence of d (0 or G if Lr/2] = 1). To reflect the fact that cell Lr/2] + 1 is now

the right-end cell, we use cpr to compute its state and we add an overbar to it so as to

mark it as the right-end cell. We arrange the transition function of G’ so as to put cell

Lr/2] + 1 at time Lr/2] + 1 in state qr(y, Y). All the possible situations appear in

Fig. 13. This way, we have at time L7/2] on cells 1 to L7/2 J + 1 a segment of length

84 J. Mazoyr, N. Reimrn

cell

1
5 G G

2 (=LTizJ+l)

\

t
.+,(G.R)

cell E A cell E A

2=2 2=3 z odd

Fig. 13.

T even

Lt/2J + 1 in the state in which it would be (if we except the overbar on the state of the

right-end cell) after L r/2 A+ 1 steps of the execution of F. We continue the execution

of the synchronization process on this reduced segment by making the transition

function of 9’ treat the cell which is in a marked state as if it was the right-end cell.

For any .x, y, ZES, we let

l+b l (x, y, Z) = cp(x, y, 4,

Ic/: (x, 7) = cp,(.x, II); this is useful if T = 2 or 3,

$ l (x, y, z) = q&(x, y),

rl/: (x, J)) = (P~(.x, 4’); this is useful if T = 2.

Besides that, we ensure that all cells beyond cell Lt/2] + 1 are in state R and we

make an exception to the above rules for the state F: if ever F had to appear

according to them, then just F appears instead. In these conditions, our segment of

LT/~] + 1 cells will synchronize (all its cells will enter state F for the first time) at time

2(LT/2J+1)-1=;1_tj21+1. If T is odd then we have T= 2L2/2] + 1; we have de-

finitely achieved in that case the synchronization of cells 1 to Lz/2] + 1 at time T. If z is

even then 2 L t/2 A+ 1 = 7 + 1; the synchronization occurs strictly after time T, so we are

guaranteed that no cell will ever enter state F before time T in that case. The second

point of Proposition 7.2 is therefore fulfilled. 0

Two examples corresponding to the execution of 9’ in the two cases of the parity of

T appear in Fig. 14, together with the two special cases r=2 and t=3. We now deal

with the case T even.

Proposition 7.3. There is (I Y2 which

(1) synchronizes cells 1 to L r/2 1 at time T if T is even and T 3 2;

(2) does not put any cell in state F before time T if T is odd (5 3 3).

A linear speed-up theorem for cellular automata 85

i i i i i G 12345678

6

123456789

Fig. 14.

Proof. 2J2 is built exactly as 9’ except that the start of the synchronization process is

delayed by one instant. This way, in the case t even, i.e. when the synchronization is

achieved in time 7, the duration of the synchronization will be t- 1, hence an odd

number since 5 is even. We can also see this the other way around. Since z is even, that

means that we will be able to cut the segment at time Lz/2 J + 1 in two halves of length

Lz/2]. To synchronize one of these halves with a minimal-time solution to the classical

FSSP, it takes 2Lr/2 j - 1 time steps that is to say z- 1 steps (T evenaz =2Lr/2j). If

we want synchronization to occur at time z we must therefore launch the synchroniz-

ation process at time 2 instead of 1. To do that we arrange the transition function of

99’so as to put cell 1 at time 2 in a special new state G’ which will play the same role as

G at the next instants. The signal d and the right-end cell marking mechanism remain

the same as in 9’. This modification has the following consequences.

(1) If T is even and z 34 (the case z = 2 needs a special treatment, see below) then the

right-end cell marking takes place in cell LX/~] at time Lr/2 J + 1 (we leave the details

of the proof of this fact to the reader), thus delimiting a segment of length LT/~]. The

cells of this segment will be synchronized at time 2Lz/2] - 1 + 1 (this last + 1 is due to

the fact that the synchronization process began at instant 2 instead of l), thus at time

2Lz/2] =T since T is even. The first point of the proposition is thus fulfilled. Figure 15

gives an example of that situation.

(2) If T is odd then the right-end cell marking takes place in cell LT/~] + 1 at time

LT/~] + 2. The segment of length LT/~] + 1 thus created synchronizes at time

2(Lt/2 I+ 1) - 1 + 1 = 2Lr/2 J + 2 = T + 1 since T is odd. We are, therefore, sure that no

cell ever enter state F before time T in that case. This fulfils the second point of the

proposition. Figure 16 shows an example of the execution of Y2 in the case T is odd.

We now treat the case r=2. We then have LT/~ J = 1 so, to be consistent with the

first point of Proposition 7.3, cell 1 should be in state Fat time 2 and we should obtain

what appears in Fig. 17. This means that cell 1 has to be put in state F if T = 2 and in

state G’ as it is said above only in the case T 3 3. This is possible since, if 5 = 2 then

86

i i i m i I

I 214.5678

Fig. 15.

2 3 3 s 6 7 8 9

Fig. 16.

Fig. 17.

cell 1 at time 2 “sees” the G in the right-end cell at time 1, whereas it is not the case if

~3 3. Cell 1 at time 2 can, therefore, “know” locally in what case we are and thus

choose the appropriate state. 3

We can now obtain the synchronization at time T of the left half of the segment

whatever the parity of r. We shall obtain it by running !9’ and Y* “in parallel” and

A linear speed-up theorenzjbr cellular automatu 87

synchronizing when the first of the two synchronizes. This will work since we saw that,

if 7 is odd, then 9’ is the first to synchronize, at time z, whereas 99’ waits until z + 1 and

that it is the contrary if r is even.

Proposition 1.4. There exists u 3’ which

(1) synchronizes the cells 1 to L5/2J + 1 at rime z ift is odd;

(2) synchronizes the cells 1 to LT/%J ut time 7 ifs is even.

Proof. We may obtain such a Y3 through the superposition of 9” and 9’. The set of

states of <?J3 will be T3 = {G, R, F)u T’ x T*. At instant 1, the initial configuration

remains as

that is why G and RE T3. At any instant t 3 2, the state of each cell is a pair (x, y) where

x (y) is the state in which that cell would be at that time if 9’ (9’) had been executed

alone. To this rule we make two exceptions:

l If a cell had to be in state (R, R) according to the above rule then it is put in state

R instead. This way, the state R remains a quiescent state.

l If a cell should be in state (F, . .) or (. , F) then it is put in state F instead (that is

why F belongs to T3).

In these conditions, Propositions 7.2 and 7.3 imply that if r is even then cells 1 to

Lr/2 J will enter state F at time r (due to 9’) whereas if r is odd then cells 1 to

Lr/2 J + 1 will enter state F at time T (due to 9*). On the other hand, we know that in

the “wrong case” (T even for 9’ and 5 odd for 9*) no cell enters state F before time r in

the execution of 9’ and Y2, so it will also be the case for Y3. We are, therefore, entitled

to say that cells 1 to Ls/2] if T is even or 1 to L5/2 J + 1 if r is odd are synchronized at

time T by Y3. 0

Figure 18 shows what happens when 9’ is executed in the case T even and t odd. We

may now extend our result to the other half of the segment.

Proposition 7.5. There is a g4 which

(1) synchronizes cells T -L t/2 1 + 1 to t in time T if r is even;

(2) synchronizes cells T -Lt/2] to T in time T ifs is odd.

Proof. 9Y4 may be obtained from ie3 simply by permutating the roles of the two ends

of the segment. To do this, we let T4 = T3 and for all x, y and ZE T4:

$4(-u, y, z) = ti3(z, I’, XL

KkY)=qG(Y,Xl

ti3.‘(,4’)=tif(y,x). q

We now have everything we need to obtain the minimal-time solution to the

2E-FSSP we were seeking.

88

“I
9

8

GZ

8

I

6

5

4

3

2

1

1 2345678

T odd

Fig. 18.

T even

Theorem 1.6. There is a solution 9’ to the 2E-FSSP which works in minimal time.

Proof. We obtain 3 from the superposition of Y3 and %J4 exactly as we obtained Y3

from 3’ and 9’. Propositions 7.4 and 7.5 imply that if T is even, then cells 1 to

LT/~] and T-LT/~] + 1 to T are synchronized at time t. But, since T is even, we have

T=2LT/2], SO LT/2] =T-LT/2] and Ls/2j + 1 =r-jr/Z] + 1. This means that cells

1 to L 5/2 1 plus T-L T/Z I+ 1 to T cover all cells from 1 to T. All cells are synchronized

at time t. If T is odd then cells 1 to L r/2 1 + 1 and T-L t/2 1 are synchronized at time T.

Since T is odd, it means that r=2Lr/2] + 1; so, T-LT/~J =LT/~] + 1. The groups of

cells 1 to LT/~] + 1 and T -LT/~] cover, therefore, all cells 0 to T (they are even

overlapping). All cells are also synchronized in that case. 0

Figure 19 shows the final aspect of the space-time diagram of our solution to the

2E-FSSP in the case T is even and odd.

7.3. Building B”

Using our minimal-time solution to the 2E-FSSP we shall build a B” which puts

cells q - 1,2q - 1,. , qL n/q J - 1 in state F at time L n/q] and, hence, provides all cells

0 to n+q--nmodq-1 (we remember that qLn/qJ-l=n--_nmodq-1) with the

synchronizing information at time Ln/ql + 1 as desired. As for the B” of the preceding

section, we only take here into account the cases of words u of length n 3 q since in the

case n <q we have L n/q1 = 0 and so the synchronization process has not even the time

to perform one step. Again, we shall treat the case n <q in Section 8.

Proposition 7.7. There is an automaton B‘ = (Q”, q, y”) which puts cells q - 1,2q - 1,. . . ,

qLn/qJ - 1 in state F at time Ln/qJ und does not put any other cell in state F before that

time, when given the initial cor$yuration cc6 [u] correspondiny to a word u qf lenyth n 3 q.

A linear speed-up theoremjiv cellular automata 89

123456189

zodd

6

12345618

z even

Fig. 19.

Proof. Basically, if n 3 2q, then B” simulates the execution of $9, our solution to the

2E-FSSP, on cells q - 1,2q - 1,. , q L n/q A- 1 (since n 3 2q, we have at least two cells

in the simulated segment as required for the 2E-FSSP). We shall deal with the special

case q d n < 2q at the end of the proof.

We let Q”=Uu{(q,, ,..., qo)=, (i “,..., l.),}uT, the set Uu{(q, ,..., qO)=, (A ,..., A),}

being the alphabet of the initial configuration cr6 [u] and T, the set of states of 9. Let us

suppose that we have n 3 29. At instant 0, the cells of the line contain the letters of the

initial configuration cc6 [u]. At time 1, the cells 0 to n - 1 will be put in states belonging

to T according to an initialization process described below. At any time, the negative

cells remain in state (2,. . . , i), and the cells n, n + 1,. . in state (qo, . , qo)a. After time 1,

we must simulate the behaviour of the transition function of $3 on cells q- 1,

2q- 1, . . . , qtnjq J - 1. We shall do it in the following way.

l Two consecutive cells of the sequence q- 1,2q- 1,. ., qLn/q J - 1 are distant of

q positions. Since we want to simulate on them the behaviour of an automaton of

range 1, it means that the state of the nonend cells (cells 2q- l,..., q(Ln/q] - l)- 1)

must be determined according to that of themselves and that of their two neigh-

bours lying on both sides at distance q: We let, for all a, b, CE T

@(a ,..., b ,..., ~)=$(a, b,c),
-ii
q ele- q ele-
ments ments

where $ is the transition function of 3.

l Since n 3 2q, we have two distinct end cells: q - 1 and q Ln/q A- 1. Cell q - 1 always

sees one cell in state (& . . . , 4, on its left and cell qLn/q] - 1 (=n-nmodq- 1) sees

at least one cell in state (qO, . . ., qo)z on its right. These facts, therefore, allow these

cells to be identified locally. We let, for all (1, hi T:

$((i ,..., A),).... u ,..., h)=ll/,(a,b)

-+--
qelements q elements

and

g”(a)..., h,x,,s* ,...,_ Y4)=ljI,(a, h),
ii

yelements

if one of the xi at least is a (qo,...rqO)a.

This way, we obtain the desired result on cells q- 1,2q- 1,qLn/q] - 1. We now

deal with the initialization of cells I to II- 1 at time 1. Ideally, we would like to put

cells q- 1 and qLn:q J ~ 1 in state G, while putting all the other cells in state R. This

way, the synchronizing process would take place on cells q- I, 2q- 1,. ., qLn/q] ~ 1.

synchronizing properly at time LII/~~, whereas the other cells would remain in state

R all the time. However, this is not exactly possible, since. unlike cell q- 1 (which may

be locally identified as being the rightmost cell to see the left extremity of the word u),

the cell qLn,‘q] - 1 (=)I- II mod q - 1) cannot be identified locally at time 1 since we

do not know II mod y at that time. To overcome this problem we shall do the following

things:

We put cell q- 1 in state G at time 1. We may do this since cell q - 1 is locally

identifiable as we said above.

We put ull cells n -q to II - 1 in state G at time 1. This is clearly possible since these

cells are those “which see the right end of the word u on their right”. We are sure

that one of these cells is cell qLn/q] - 1, which is, therefore, put in state G. On the

other hand, no other cell of the sequence q- 1,2q- 1, . . qLn/q] - 1 is put in state

G due to that operation since q(Ln,!q J - I)- 1 = II - n mod q- I -q is strictly in-

ferior to n-q and q ~ I <n-q (since II > 2q).
All the other cells in the range 0 to n- 1 are put in state R at time 1.

This way, B‘ simulates q synchronization processes which take place on q segments

contained in the interleaved sequences of cells s(i) = (n - qj + i), ,<j~ inrsi , with 1 < i < q.
The right-end cell of all these segments is in state G at time 1 but only one, the segment

contained in the sequence s(q-n mod q - 1) which corresponds to the cells q- 1,

Zq- I,...,qLn,iq] - 1, h as also its left-end cell in state G, whereas all others have their

left-end cells in state R. Therefore, only this segment will be synchronized at time

Lniqj, h y’ Id’ t us le mg the desired result, while the q- 1 others will only contain one half

of the synchronization process (since the half which should have appeared from the

left-end cell is missing) and will, therefore, not be synchronized at any time between

1 and Lniq J as shown in Fig. 20.

Let us now deal with case n<q<2q. We have Ln/qj = 1, so the sequence of cells

q- 1,2q - I,. ., qLn/q J - 1 is reduced to the unique cell q- I. In order to maintain

consistency with the case II >2q this cell must be put in state F at time 1. Cell q- 1

A linear speed-up theorem fir cellular automata 91

4L “& n-1

Fig. 20.

must, therefore, be able to choose at time 1 between state G, for the case n > 2q, and

state F for the case q < n < 2q. Fortunately, in the case q <n < 2q cell 4 - 1 sees at time

1 the right extremity of the word u, whereas this is not the case if n 3 2q. So, cell q - 1

can know locally at time 1 if we are in case n >q or q <n < 2q. We can, therefore,

arrange ys so as to choose the appropriate state. 0

8. The speed-up theorem--strong form

In the preceding four sections, we have accumulated all the necessary components

to build an automaton that will fulfil the requirements of the strong form of the linear

speed-up theorem for CAs:

(1) An automaton which computes k times faster on grouped configurations and

saves the end states: the B* of Section 4.

(2) An automaton which yields an “almost grouped” (?;zmod ¶-grouped) configura-

tion at time Lnlq J from the initial configuration c% [u]: the Bg of Section 5.

(3) An automaton which provides all cells 0 to n + q - n mod q - 1 with the value of

nmod q at time Ln/q] + 1 (n is the length of the input word u contained in the

initial configuration cH [u]): the B” of Section 6.

(4) An automaton which synchronizes all cells 0 to n +q- n mod q- 1 at time

Ln/q J + 1: the B” of Section 6.

From Bg, B” and B” we shall finally obtain the announced grouping automaton EC

which will yield at time Ln/qj + 1 the completely grouped ($‘-grouped) configuration

starting from the initial configuration cK [u] =~~(c~[cu]),

Lemma 8.1. Let .oJ =(U, I., q,, Qa, Qr, A) with A =(Q, p, .f) be a recognizer CA which

recognizes the language L c U * in time t(n). For all a>2 and all q>p there is an

automaton BG of range q which,,fed with the initial configuration cc6 [u] corresponding to

any word UE U *, yields the conjiguration

at time Ln/ql + 1.

Proof. For initial configurations cx [u] corresponding to words u of length naq, we

shall have BG simulating “in parallel” the execution of Bg, B” and B” (which are only

designed to work with input words of length n >q) from time 1 to time Ln/qj. At time

jn/qJ + 1, the configuration atn:41 + , will be obtained through a special procedure

described below. We shall treat the case n <q at the end of the proof. Let us first

suppose that we have n 2 q and, hence, L n/q] 2 1.

(A) We shall first deal with the behaviour of BG from time 1 to timeLn/qJ. The state

of any cell at any time in that period will be a triplet (x, I’, z), where x (y or z) is the state

in which this cell would have been at that time if B” (B” or B”) had been executed alone

on the initial configuration c<([u]. We have .xEQ~, ~EQ”’ and zcQS. From the

space-time diagram of Bg, B” and B” (see Figs. 5,6 and 20) we see that in all three

cases, all the negative cells remain in state (j_. . , i), all the time, while the positive cells

after cell n remain in state (q,, , yo), all the time. Instead of putting these cells in BG

in states ((k...,j-),, (j- ,I.),, (j- ,... ,i),) or ((q0,...,40)a, (qO,...,qO)a, (qO,...,qOM,
respectively, as we should do according to the above superposition principle, we shall

simply put them in states (j_, . , A), and (q,, . . , qo)a instead. This way, (& ., I.), will

still have the properties of a border state and (q,,, . . ., qO), that of a quiescent state

which is important since they will play these roles in our speeded-up automaton %‘.

Intuitively, all this gives to the space-time diagram of BG the “layered structure”,

which appears in Fig. 21. It is clear that we can arrange gG, the transition function of

BG, so as to yield such a diagram.

(B) At time [n/q] + I we want to obtain the configuration

A linrur speed-up theorem for crllular automuta 93

At time Ln/y] we have, contained in the layer of Bg, the configuration

We showed at the end of Section 5 that there exists an automaton which can pass in

one step between these two configurations, provided that at least all the active cells

(those which are not in state (i., . . . , I.), or (qO,. . . , qO)LI) of CJ t+j + 1 are provided with the

value of nmodq and with information which indicates to them that they are active.

We also saw that the active cells of the configuration at,,,~+~ are the cells 0 to

n+q - n mod q- 1. Due to the presence of a layer containing B”, these cells are

synchronized at time Ln/q J + 1. This means that they see something (the F contained

in the cells q-1,2q-l,..., qLn/q] - 1 at time Ln/qJ) that no other cells saw at any

time before. We are, therefore, free to give them any behaviour we want. Besides that,

the synchronization information may be seen as the information “you are active” and

these cells are also provided with the value of n mod q through the layer of B”. We can,

therefore, arrange B” so as to behave on cells 0 to n + q-n mod q - 1 as the transition

function of the automaton alluded to above and which passes from aL,+rJ to atn,qi+ 1.

All the negative cells and those after cell n + q - n mod q - 1 do not see the synchroniz-

ation, so they do not know that they are at time Ln/q] + 1. gG will, therefore, act on

them as at the previous instants, putting them in states (I .,..., /1), and (qO ,..., qO)n,

respectively. Since we showed that these cells are not active cells of UI~,~J+ 1, these

values are adequate. In this way, we indeed obtain the configuration at+rl+ 1 at time

L&l+ 1.
Let us now deal with case n < q. We have Ln/q J = 0, so L n/q 1 + 1 = 1. We have to

yield the configuration atniVj+ 1 at time 1, in one step. In case n < q, we have

nmodq=n, so n+q-nmodq-1 =q-1 and, hence, all cells 0 to n+q-nmodq-1

(the active cells of a~~,~, + r) see both ends of the word u at time 1 and, therefore, know

that it is of length n < q. It is clear that in the case n > q, no cell is ever in that situation.

The cells 0 to n + q - n mod q - 1 can, therefore, decide locally if they are in the case

n<q or n >q. Since they all see the whole of U, they can clearly be put in the

appropriate state to yield the letters of a~,,,~,+ 1 corresponding to their positions. On

the other hand, the negative cells and those after cell n + q-n mod q- 1 are in the

same situation in the case n <q as in any other case. qG puts them, therefore, in states

(i., . . , A), and (qO,. . . , qO)#, which are adequate since we know that they are not active

cells of 0 tn,4J + 1. 0

We have represented in Fig. 22 the aspect of the layer of Bg in the diagram of BG

plus the configuration o~,,,~J+ 1 in the same situation as the example of Fig. 5. We can

now state a first version of the strong form of the linear speed-up theorem for CAs.

Theorem 8.2. Let .d =(U, 2, q,,, Qa, Qr, A), with A =(Q, p, f), be a recognizer CA which

recognizes the lunguage L c U * in time t(n). For any k 2 1 and any q 3 p there is another

CM_

; 1 ; ”
d”” 3

A linear speed-up theorrm for wllular automata 95

recognizer CA V = (U, (i, . . . , A),, (q. ,..., qO)@, R,, R,, C), with C=(R,q,h), which recog-

nizes the language L in time

Lnlql+l+ k 1 t(n)-LnlqJ - 1 1
f t(n) > Ln/q 1 + 1 und t(n) in the opposite case.

Proof. Let us take an x 3 2 such that qcc 3 kp (the necessary condition for the existence

of a speeded-up automaton B*). Let us consider the grouping automaton BG and the

speeded-up automaton B* corresponding to that 2. We shall obtain % from the

composition of BG and B *, i.e. we are going to show that we can define C so as to

behave like BC from the initial configuration

cx[u]=...(i)...) i.),u,u,...u,_,(q,)..., qo),(q(j ,...) qo)#...

for any word LIEU*, until time Ln/q] + 1 and then like B* until an accepting or

rejecting state appears. The configurations on which C has to operate are of one of the

three following types:

(1) the configuration cH [u],

(2) the configurations of BG from time 1 to time Ln/qj,

(3) the configuration aLnjrl + 1 and the configurations of B* which are all yz-

grouped configurations belonging to (Q”)Z.

On types (1) and (2) C must behave like BG and as B* on type (3). All configurations of

the three types have the following common structure: (&...,A), states until cell - 1,

then a finite number of actitle cells in states belonging to a certain alphabet (depending

on the type), and then the (qO, . , qOh states. This alphabet is U for type (l), the set of

triplets of states of Bg, B” and B” for type (2) and Q” - {(i, , A),, (q,,, . . , qO)u 1 for type

(3). Whatever the type, when h, the transition function of C sees only (&. .., A), or

(q, ,..., qO)c, states, it has to (and may) behave the same way, yielding (A, j_)E

or (qO, . . , qo)or respectively. The key aspect of this proof is that the three alphabets of

the active parts of the configurations of the three types are disjoints; therefore, h

knows that

when it sees at least one letter of U or of the set of triplets then it is working on

a configuration of type (1) or (2) and, therefore, that it has to behave like gG, the

transition function of BG;

when it sees at least one letter of Q” - { (&. . . , A),, (qO,. .., qO)z} then it knows that it

is working on a configuration of type (3) and that it has, therefore, to behave like g*

the transition function of B*.

In that sense, we may say that the behaviour of BG and B* are independent and that

they can, therefore, be adopted by an unique CA, composition of BG and B*. This

property of independence is obtained thanks to the presence of the synchronizing

process of B”, which enables us to pass between instants Ln/q] and Ln/qJ + 1 from the

alphabet of triplets to Q” - {(I., . . . , A),, (q. ,..., qO),}: two disjoint alphabets.

96 .l. Mcorer. N. Rrimen

We now take R,=Q,xQ”-~uQ~xQ~xQ~ and R,=Q,xQ~-~uQ~xQ~xQ~. If

t(n)<Ln/q] + 1 then an accepting (rejecting) state appears in the process of BG. The

state in which cell 0 is at that moment is in Qa x Q” x Q” (Qr x Q” x Q”). The recogni-

tion time remains t(n). Iff(n)>Ln/qJ + 1 then t(n)-Ln/q] - 1 steps of the computation

of .d remain to be done after time Ln/q J + 1. This duration is reduced to

i

t(+LnlqJ - 1
k

by B*, thus yielding a total recognition time of

LnlqJ+l+ k
1

+4-LnlqJ - 1
1

At that instant, cell 0 will be in a

QrxQ”-‘. 0

state belonging to the set Qa x Q”-’ or

Remark. Let us suppose that the number of states of .d is s. The number of states of

Bg is sg = O(s’), that of B” is s, = O(q) (since Q” contains {O, 1,2,. . . , q - 1 }), that of B”

is a constant s, and that of B* is .s.+ =O(s’). Therefore, the number of state of %’ is

sg x s, x s, + .s* = O(qs”). If we work only with automata of range 1 then we have q = 1

and r = k since we must have qr 3 kp and q = p = 1. The number of states of V in these

conditions is, therefore, O(sk), as announced in the Introduction.

In the formulation of the above theorem, there still was the restriction q>p

inherited from Bg (see Section 5). We now propose a second version of the theorem, in

which we get rid of that condition but at the price of some loss in time efficiency.

Theorem 8.3. Let ,d he u recognizer CA of’range p which recognizes the language L in

time t(n). For any k> 1 and any q’> 1 there is unother recognizer CA W” of range q’

which recognizes the language L in time

LnldJ+l+
M’l t(n)-LWJ - 1

k

if rddl~(M.~h’J+~ and rp/q’l t(n) in the opposite case.

Proof. From an .d of range p we can build an .d’ of range q’ < p which simulates ~4 in

the following way: The state of each cell is communicated to as many neighbouring

cells as possible. After [p/q’] time steps of this process, each cell knows enough

information to perform on step of .d. .d’ will, therefore, recognize the same language

as &’ in time [p/q’1 t(n). If q’>p then we take .d’= .41, and this way we have also an ,01’

working in time [p/q’1 t(n) since in that case, rp/q'l = 1. If we now accelerate .d’ with

Theorem 8.2 we may obtain a %’ of range q’ which recognizes the language L in time

as stated above. 0

Remark. If q’> q we have rp/q’ I= 1 we obtain, with Theorem 8.3, the same result as

with Theorem 8.2.

A linear speed-up theorem,for cellular automata 91

9. Conclusion

In the proof of Theorem 8.2 we obtained +Z through a so-called composition of Bg

and B*. We may generalize this notion in the following way. Let us assume that we

want to compose two computing CAs ,t. and Jz’ which compute the recursive

functions cp : U *+ I/* and I+!I : I/*+ IV* in time t(n) and s(n), respectively. We mean by

this that .K (,t”) started with an initial configuration’ c.~~[cu] for UEU* (c.+ [II] for

VE V*) yields the configuration c.~,[~(u)] (c,, [$(u)]) after t(n) (s(n)) time steps. We

assume that ,4’ and . t. have the same border state and the same quiescent state, so

that c,~~[v] = c , ‘[u] for any UE V*: any output configuration of J?’ may be used as an

input configuration of “4”. Composing ~4 and _~lr means building an automaton

9 which will work like -4’ until time t(n) and then “switch” to work like ,V. To achieve

this we must render the computation of ,&’ and ,V independent, i.e. what we require of

the transition function of 9, in order to perform the computation of _4’, must not

come into conflict with what we require of it in order to perform the computation of

L~l . . A sufficient condition to achieve that goal is to represent the computation of

.z?’ and ,t. on two disjoint alphabets, shifting from one to the other from time t(n)- 1

to t(n). To make sure of that we may put a special marker on all (nonquiescent) cells

participating in the computation of .& until time t(n)- 1. At time t(n), the marking

must be removed from all the cells which should have borne it, had the computation of

I A! continued; i.e. from all cells containing the letters of q(u). In other words, all cells

0 to 1 q(u)1 - 1 must be synchronized at that time. If we are able to do that then we may

build 9 = I $” 0 ,Zl.

The problem of Composing two computing CAs is, therefore, reduced to something

we may call as space-time constructibility on cellular automata: A couple of functions

(z(n), x(n)) is said to be space-time constructible if there is a CA capable of synchroniz-

ing x(n) cells in time z(n) for all n. We shall be able to compose d and N if the couple

(t(n), l(n)) with I(n)=max{Icp(u)l, lul=n} is spaceetime constructible on CA.

Classical solutions to the FSSP provide the spaceetime constructibility of the

following couples of functions: (n, n) (minimal-time 2E-FSSP, used here), (2n- 1, n)

(minimal-time FSSP), (3n, n) (Minsky’s early solution to the FSSP). Two approaches

have been used to obtain new couples. One may try completely new ideas of

synchronization processes as Moore did in [lo] for the couple (n’,n). Some new

results in this direction will be presented in [S]. One may also use minimal-time

solutions to the FSSP (or 2E-FSSP) launched at an appropriate instant by a “trigger-

ing” signal. The Erathosthene sieve cellular automaton of Fisher in [S] contains

a signal which reaches cell k at time approximately k2. Using a similar signal we could

launch a minimal-time FSSP solution from cell n at time n’, propagating leftwards,

thus obtaining the space-time constructibility of the couple (n’ + 2n - 1, n). Signals of

9 We recall that the configuration C.Y [u] corresponding to the word u for the automaton 1‘is obtained by

assigning to negative cells the border state of T. to positive cells 0 to IuI - 1 the letters of u, and to all the
next ones the quiescent state of 5.

98 J. MUXJW. N. Reimen

various kinds and speeds may be found in many papers on CAs. Among them, Culik

and Choffrut in [4] provide an exponential signal, Terrier in [12] another exponen-

tial, a square root and a logarithmic one. However, these two problems-signal

building and space-time constructibility-have not yet received the complete and

detailed treatment they deserve.

In the future, it may be desirable to extend to computing CAs our result, which only

applies for the present to recognizer CAs. To achieve this will require a great deal more

work in the area of CA composition and space-time CA-constructible functions, since

such a result would involve the composition of an automaton similar to our %Z with an

ungrouping automaton. To do this we will have to be able to synchronize at the end of

the computation of a %? whose execution time is arbitrary. If we do not want to have to

reduce too much the class of admitted ‘Gs, it would be better to have a large number of

space-time CA-constructible functions at hand.

Acknowledgments

We thank Professor Serge Grigorieff for his indispensable help in revising the

manuscript of this paper. We are also indebted to Veronique Terrier who first had the

idea of the grouping process. The primitive version of Fig. 5 is due to her.

References

[I] A.J. Atrubin, An iterative one-dimensional real-time multiplier, IEEE Trans. El. Camp. EC-14 (1965)
3944399.

[2] R. Balzer, An R-state minimal time solution to the Firing Squad Synchronization Problem, In&m.

and Control 10 (1967) 22242.

[3] S.N. Cole, Real-time computations by n-dimensional iterative arrays of finite-state machines, IEEE
Trans. Comput. 18 (1969) 3499365.

[4] K. Culik II and Ch. Choffrut, On real-time cellular automata and treillis automata, Acta Inform. 21
(1984) 393-407.

[S] P.C. Fisher, Generation of primes by a real-time iterative array, J. ACM. 12 (1965) 3888394.

[6] O.H. Ibarra, SM. Kim and S. Moran, Sequential machine characterization of treillis and cellular
automata and application, SIAM J. Compur. 14 (1985) 426-447.

[7] J. Mazoyer. A six state minimal-time solution to the Firing Squad Synchronization Problem, Theoret.
Cornput. Sci. 50 (1987) 183-237.

[S] J. Mazoyer, Variable time FSSP. to appear.

[9] M. Minsky, Computation: Finite und Infinite Machines (Prentice Hall, Englewood Cliffs, NJ 1967).
[lo] E.F. Moore, Selected Pupers (Addison-Wesley. Reading, MA, 1964).

[ll] A.R. Smith, Real time recognition by one dimensional cellular automata, J. Compuf. System Sci.
6 (1972) 2033253.

[12] V. Terrier, Decidabilite en Arithmetiques FaiblessTemps Reel sur Automates Cellulaires, These de

troisieme cycle (Ph.D. dissertation) Ecole Normale Superieure de Lyon. 1991.

1131 J. Von Neumann, The theory ofsr!f reproduciny uutomatu, edited and complemented by A.W. Burks
(University of Illinois Press, Urbana, IL 1967).

[14] A. Waksman, An optimum solution to the Firing Squad Synchronization Problem, I@>rm. and
Control 8 (I 966) 66-78.

