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Abstract 

Pultr, A., On Sabidussi-Fawcett subdirect representation, Discrete Mathematics 109 (1992) 
239-253. 

Sabidussi’s representation theorem for symmetric graphs is generalized to fairly general 
concrete categories. As applicatrons, the lists of the irreoucible objects in several cases (for 
instance, symmetric or directed graphs with or without loops, n-partite graphs, posets) are 
presented. 

Iutroduction 

The classical subdirect representation of an algebra A by means of algebras Bi 
as defined by Birkhoff [1] is a one-one homomorphism p :A + n Bi such that for 
all the projections we have pi(p(A)) = Bi. Categories of algebras have the special 
feature that ali one-ooze homomorphisms are embeddings of subobjects and all 
homomorphisms onto are quotient maps. This property is typically not shared by 
more general categories, notably not by categories of combinatorial objects 
(graphs, digraphs, special graphs, poets, etc.). Therefore, when extending the 
notion of subdirect representation 3 ene has to make clear that, first, it is 
necessary to require something of the monomorphism p. It has to be a subobject 
embedding or else the A wouki not bc represented in the product in any 
reasonable sense (one could, of course, require more, as, e.g., in [2] where Hell 
studies the representation of bipartite graphs as isometric embeddings; here we 
restrict ourselves to the basic requirement). Secondly, one has to decide on the 
onto morphisms pi/L. Here, the decision as to whether one should really require 
anything more depends on what one wants to have: already with plain onto 
morphisms (provided it is an embedding) one has a reasonable representation; 
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one may, however, wish to have the representation particularly nice in some 

other sense. 
In the pioneering works by Fawcett [3] and Sabidussi [lo]-concerning subdirect 

representations of symmetric graphs without loops-the requirement of pip being 
quotients was adopted. Later on [6-g], the subdirect representation was discussed 
in some generality with pip just onto. Although this latter approach has some 
arguments in its favour (it concerns the representation in the most basic form, 
one has the nice fact that an object is subdirectly irreducible iff prohibiting it as a 
subobject yields a complete category), the importance of Fawcett’s and 
Sabidussi’s approach is not diminished. In fact, nowadays the interest in 
particularly nice representations (sometimes with even stronger types of epi- 
morphisms, notably retractions) has increased. 

In this paper we present a generalization of Sabidussi’s representation theorem 
to fairly general categories. First (in Section 2) we restrict ourselves to a case 
where the analogy with Sabidussi’s theorem is quite immediately apparent, 
namely to that where the structures of the given type on a set form a complete 
lattice. Even so, we obtain various concrete examples. Those of categories of 
G-coloured graphs, being perhaps of a special interest, are treated separately in 
Section 3. Then, in Section 4, the general theorem is presented, and a few more 
examples are added. The last section, Section 5, contains a few remarks and open 
problems. 

1. Preliminaries 

1.1. A concrete category ((e, U) consists of a category % and a faithful funitor 
U : % ---, Set (the category of all sets and mappings). A monomorphism ,u : A ---, B 
is called subobject morphism if for each f : U(C)-+ U(A) such that there is a 
q:C-, B with Upof = Uq?, we have f = L/(q) for a QI: C-A. A quotient is a 
morphism E :A + B such that UE is onto, and for tact f : U(B)- U(C) such that 
thereisa~:A+CwithfW&=U~,wehavef=U(&fora~:B--,C. 

The cardinality of an object A is that of U(A) and is denoted by IAI. 

1.2. The class {A 1 U(A) = X} preordered by the relation 

AGB iff 3t:A+B, Ul=id, 

will be denoted by Z(X) (more exactly, Z,(X)), and we abbreviate %(U(A)) to 
%(A). 

1.3. A concrete category (Ce, U) is said to be regular (cf. [9]) if: 
(i) U preserves limits, 

(ii) each q : A + B has a decomposition 
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with q1 a subobject and U(& onto, 
(iii) Z(X) are sets, and are finite for finite X, 
(iv) subcategories closed with respect to products and subobjects are reflective, 
(v) if UQ.J = id for an isomorphism up :A ---, A then q = lA, 

(vi) for each invertible f :X + U(A) there is an isomorphism v:B+A such 
that U(Q)) =fi 

A weakly regular category is allowed to fail in (iv). 

Remark. Everyday concrete categories (graphs or special graphs, posets, spaces, 
relational systems, algebras) are typically regular. There is a distinction in the 
conditions: while (i)-(iv) (resp. (i)-(iii)) are essential, (v) and (vi) merely serve 
technical convenience: (v) makes the preorders in Z(X) orders, and (vi) allows to 
transfer a structure from an underlying set onto another. 

1.4. A congruence (more exactly. (%, U)-congruence, but the specification will 
always be obvious) on an object A is an equivalence E on U(A) obtained from a 
fixed quotient E :A + B by putting 

x Ey iff E(X) = E(Y). 

Recalling the definition of quotient we see that if E is obtained this way from 
E : A * B and also from E’ : A * B’, then there is an isomorphism p : B - B’ such 
that PE = E’. This justifies speaking of the ‘ccngruence E’ where convenient, 
rather then E. 

The following is a trivial observation: 
The intersection n Ei is trivial iff the respective system of quotients (E~)~,, is 

collectionwise monomorphic (that is, if (Vi eia = Eip) + CY = p). 
An object A is said to be congruence trivial (CT) if whenever for a system of 

congruences (Ei)iEJ the intersection n Ei is trivial then at least one of the Ei is 
trivial. (In other words, if a system (Ei :A+ Bi)i of quotients is collectionwise 
monomorphic then some of the Ei is monomorphic-and hence an isomorphism). 

1.5. A congruence E : A + B is critical if there is no E’ : A’+ B with A < A’ and 
UE = UE’. (In more intuitive words: whenever the respective equivalence is a 
congruence also with respect to a strictly stronger structure, the resulting quotient 
object is strictly stronger than in the original situation). 

1.6. A subdirect representation of an object A is a subobject morphism 

such that all the pip : A + Bi, where pi : n Bj * Bi are the projections, are onto. 

Thus, in other words, a subdirect representation is given by a collectionwise 
monomorphic system (pi : A + Bi)i of onto morphisms, such that the /L : A * II Bi 

given b;r pip = pi is a subobject morphism. 
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An object A is said to be subdirectly rrreducible (abbreviated, Si) if in each 
subdirect representation (pi : A + Bi)i some of the pi is an isomorphism. 

Remark. In general, one should distinguish between the subdirect irreducibility 
with respect to finite and general representations. Since we are mainly concerned 
with finite objects, and since for those (due to the condition (iii)) a nontrivial 
representation can be replaced by a nontrivial finite representation (see [9], cf. 
also Remark 2.1 below), we do not really need to make the distinction here. 

1.7. It is an easy well-known observation (see [l]) that in varieties of algebras the 
subdirectly irreducible objects are exactly the congruence trivial ones. In our 
more general case the situation is not so simple. We have (see [8,9]) the 
following. 

TheoEm. Let (%, U) be a regular category with finite products. Then a finite 
object A is Aubdirectly irreducible iff either it is maximal (in %(A)) and CT, or it is 
nonmaximal meet-irreducible in %(A) and admits no critical congruence. 

The relation of the conditions SI and CT will be discussed below in connection 
with a further irreducibility condition (which is, in fact, the main concern of this 

paper). 

2. Sabidussi-Fawcett representation, and the respective irreducibles 

2.1. A Sabidussi-Fawcett representation ([3, lo], briefly, SF-representation) is a 
subdirect representation (recall 1.6) in which all the pip are quotients. 

The objects with no nontrivial SF-representation will be called Sabidussi- 
Fawcett irreducibles (briefly, SFI). 

Thus, each SI is an SFI. Of course one can expect that there are often more 
SFI’s. This indeed is the case, as we will see below. 

Remark. If A is finite, and (pi :A + Bi)iE, is an SF-represerrtation, we have, if 
(iii) holds. a finite K c J, a correspondence (i w i) : J+ K and isomorphisms 
pi: B;* B, such that pip;= pi. It is easy to check that (pi :A-+ Bi)iEK is then again 
an SF-representation. Thus, our concern being mostly with finite objects, we do 
not need to go into distinguishing the finite and general irreducibiiity. 

2.2. A concrete category (%, U) is said to be latticed if each diagram (Li : A s 
Ai)i,, has a colimit (Ii: A; sA)i,,. Then of course, A = ViE/Ai in %(A). 

Unlike the conditions in the definition of regular category the condition to be 
latticed is rather restrictive (e.g., the category of posets is not latticed). Although 
we will be able to be more general later, we will prove a characterization theorem 
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for this special case first, mainly to enable the reader acquainted with the paper 
[lo] to see how our proof follows the lines of Sabidussi’s theorem on the special 
case of symmetric graphs without loops. Even so we will be able to discuss a 
variety of examples substantially differring from this case. In Section 4 we will get 
rid of the restriction. 

2.3. Let E :A + B be a congruence in a latticed category. Consider the system of 
all the Ei : Ai+ B with -4i 2 A and U&i = UE, and put 

AE = V Ai. 

By definition of latticed category we have a morphism 

such that UZ = UE. 

Remarks. (1) Thus, for each decomposition 

( 
AcA’--%B 

> ( 
= A&B 

> 

we have A’sA& and (A’ MAE %B) = E. 
(2) It is easy to check that 6 : A&+ B is a quotient. 
(3) Note that in a latticed category, E is a critical congruence iff E = Z. 

The following is an immediate generalization of the above mentioned theorem 
by Sabidussi. 

Theorem 2.4. Let (E, U) be a latticed weakly regular category with products. A 
family (Ei :A * Bi)iEJ of quotients induces an SF-representation of A in (%, U) iff: 

(l) C&iJid is collectionwise monomorphic, and 
(2) Ais, A&i =A. 

Proof. Define E : A + n Bi by pi& = &is 
(I) Let (1) and (2) hold. By (l), E is a monomorphism. Decompose it as 

A++&& 

with E’ a subobject. Considering pi&‘& we see that A’ SAci and hence, by (2), 
A’~/\A&i=AaA’. Thus, &is asubobject. 

(II) Let (Ei)i b e an SF-representation. Thus, (1) holds true and E is a subobject. 

Put A’ = A A&i, LI:A’dA&i and define Et :A’+nBi by pi&‘= EibI. Since 

U(E’) = U(E), we have A’sA. Trivially, A GA’. Cl 

Corollary 2.5. Thus, A is SFI iff for each nontrivial system of congruences (Ei)iel 
with trivial meet, l\iez A&i #A. In other words, ifl either there is no nontrivial 
system of congruences with trivial intersection, or 

(A E 1 E nontrivial) # A. 
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Observation 2.6. AN the A’s with IAl d 2 are WI. 

Nota%on 2.7. The congruence identifying a with 6 will be denoted by [ab], that 
identifying ai with bi, i = 1,2, by [albl, a&] etc. 

Example 2.8. We will use the symbol K,* for the complete graph without 10%~~ (in 
the directed case interpret it as having between a and 6 both the edges a6 and 
g, in the symmetric case we have the unoriented edge a6). 

Consider first the Sabidussi and Fawcett case of symmetric graphs without 
loops. By [9] we have here that 

SI’sare exactly the K,, n = 1, 2,. . . 

Now let us use 2.5. The congruences are exactly thrse equivalences which do not 
identify vertices joined by edges. We easily see that in case of more than one 
edge missing in A, A = A {Afab] 1 a, b no t j oined}, while in case of at most one 
missing edge there is no nontrivial system of congruences with trivia1 intersection. 
Thus, we have that 

SFI’s are exactly the K, and K,,\ (ab}, n = 1,2, . . . , a Z 6. 

In the case of dilected graphs without loops we have, by [9], 

SI’s: K, and K, \ {z}, 

while the SF1 are very many, including, e.g., all tournaments, all K,,\ {&, G}, 

and many others. It is not a very lucid system. We shall do better in other 
examples. 

2.9. The category of all directed graphs (loops allowed): In this and the next 
examples in this section we deal with systems where all equivalences are 
congruences. Observe, first, that in such a case, the SF1 have at most three 
points. Indeed, A[ab] can differ from A only in the edges meeting {a, b} and 
hence, if a, 6, c, d are distinct vertices in A, A = A[ab] A A[cd]. Thus, according 
also to 2.6, it suffices to discuss the case of IAl = 3. 

Thus, let a, 6, c, be the vertices of A. Our task is to decide when 
A’ = A[ab] A A[ac] A A[bc] equals A and when not. First, we easily check that if 
there are arrows between at most two of the vertices, or ex. tly z and Z, or 
exactly z and Ei, or exactly cli, z, z or finally if there are all of the arrows, 
we have A = A’ no matter what loops are present. On the other hand, if the 
system of arr ws is not complete but contains a circuit, obviously A #A’. Thus 
the only case to discuss is that of arrows i%, 2 and perhaps more, but none 
between b and c. Then we see that A #A’ iff there is a loop on either b or c. 
Thus, the complete list of SF1 is as indicated in Fig. 1 (the list of SI from [9]). 
Hence, we have here 54 SF-irreducibles, out of which 6 are subdirectly 
irreducible. 
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I 
; other SF1 

. . . . . 
l . ..- . \ A , * , : * .- 

‘. 
-. 

-*..- 
. . 
-...’ 

Fig. 1. The dotted loops and arrows indicate free choice, the half-dotted loop stands for one of the 
couple of loops out of which at least one has to be present. 

2.10. The category of all symmetric graphs: Analogous to 2.9, only much 
simpler. We find that if there are 0, 1 or 3 edges, A = A’, and if there are just two 
edges, the answer depends on the presence of a loop at the free end. We end up 
with the list as indicated in Fig. 2 (SI, again, from [9]). Thus we have here 10 SF 
irreducibles, out of which 6 are subdirectly irreducible. 

2.11. Graphs with all loops: The checking is now easy, after the practice from 
the two preceding cases. The list for the oriented case is indicated in Fig. 3(a), 
that for the symmetric case in Fig. 3(b). 

3. An important case: G-coloured graphs 

3.1. Let G be a graph. A graph A is said to be G-coloured if there is a morphism 
A-, G (see [5]). The G-coloured graphs form a latticed complete regular 
category, which will be denoted by --j G (cf. [6], to be more exact, to achieve the 
completeness one must add a formal singleton object, as in the case of graphs 
without loops). Thus. e.g., + K2 is the category r cf bip;o;rtik graphs, + K,, is that 
of n-partite ones. 

We will be concerned with finite G only. Taking into account the fact that a 
one-one morphism ~1: G + G is then an isomorphism, we easily see that 

(i) if G designates the smallest retract of G, then + G = + H iff G is 
isomorphic to fi, and 

SI other SF1 I 
.- *. nn 1 

Fig. 2. 

Q-w---- 

0,2 
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-. _ ._. . . -_ - - -_ i - _._ --- -- - --. _ 

other SF1 : 
I 

; 

l l S-‘-c,‘-’ f 
es- ! NONE 

(loops present but not indicated) 

(8) (b) 
Fig. 3. 

(ii) it suffices to consider the G such that each endomorphism is an auto- 
morphism (which we will, from now on, do). 

Consider a graph A from --, G and a fixed morphism f : A ---, G. 

Lemma 3.2. In the following three capes, A is necessarily SF reducible: 
\a) 1 f -‘(x)1 3 3 for some x E G, 
(b) If -‘(xi)1 = 2 for th ree distinct x1, x2, x3 E @, 

(c) If -‘(xi)1 = 2 for two distinct x1, x2 E G and no vertex from f -‘(x1) is joined 
with one off -l(x2). 

mf. (a) Let a, 6, c be distinct in f -‘lx). Obviously 

A = A[ab] A A[bc] A A[ac]. 

(b) Let ai, bi be distinct in f -‘(xi)- Then 

A = f& A[aibiI 

(c) Again, A =A[a,b,] A A[a,b,]. Cl 

Corollary 3.3. If G is finite, + G has only finitely many SFI, and all of them are 
finite. Consequently, the same holds for the SI. 

Notation 3.4. f+ is the path with n edges, D is the discrete graph with two 
vertices, Cn is the cycle of length n. If A, B are graphs, A * B is obtained from the 
disjoint union of A and B by adding all the edges between the vertices of A and 
the vertices of f?. 
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Lemma 3.2. Let n 3 2. Then I&_,* P2 is SF representable in K,, x K,,+,, and 
K,,_2 * P3 ii SF representable in K,, x (K,,-l * P,). 

Proof. Denote by 1, . . . , n the vertices of K,, similarly for K,,_ 1 and K,,__*, and 
by i, 2,3 resp. i, 2,3,4 the subsequent vertices of P2 resp. P3. In both cases send 
kto(k,k)forkGn - 2. Then, in the former case send i to (n - 1, n - l), 2 to 
(n, n) and 5 to (n + 1, n - 1). In the latter cx send i to (n - 1, i), 2 to (n, ?), 3 
to (n - 1, n - 1) and 4 to (n, 3). Cl 

Theorem 3.6. Let n 2 2. Then the SF1 in the category of n-partite graphs are 

D, K,,, with m 6 n, K,,_z* PL and K,_i * P3. 

With the exception of D, ti@ of them are also SI. 

Proof. Since K,,, are obviously irreducible, it suffices to show that the SF1 (resp. 
SI) which are not (n - 1) colourable are exactly K,, K, __* * P2 and Kn_-2 * P3. 
Consider such an A and a homomorphism f :A + K,. Since A is not (n - l)- 
colourable, there are edges between any f-‘(r), f-‘(y) with x # y. 

Use Lemma 3.2. Iffis one-one, we are left with K,. Let f-l@,) = {a,, b,} and 
If-‘(x)/ = 1 for th e other X. Let, say, a, be not connected with an a EJ -l(x), 
x #xl. Then obviously [ala] is a congruence and we have 

A =A[albl] A A {A[a,a] 1 a if-l(x), x #x1, a, al not connected} 

Thus the only candidate for an SF1 in this case is K, with one point redoubled, 
that is, K,,_-2 * P2. Since there is only one nontrivial congruence, and since it is 
maximal n-colourable, it is SI. 

NOW let f -‘(xi) = (ai, bi) for i = 1,2, and If-‘(x)1 = 1 otherwise. Again we see 
that each of the ai, bi is connected with any of the remaining points so that it 
suffices to show these four points form, as an induced subgraph of A, the path P3. 

By 3.2 (c), say, al is connected with a2. Thus we have to discuss the cases 
depicted in Fig. 4. In the cases (a), (b) and (f), A = A[albl] A A[a2b2], in the case 
(c), [a, b2] is also a congruence and we have A = A[a, b,] ,\ A[a, b2]. The cases (d) 
and (e) are SF1 and both lead to a graph isomorphic to K,,-2* P3. This graph, 
moreover, is meet-irreducible, and the only two congruences, [aibi], are both 
noncritical. Thus, it is also SI. Cl 

lb) 

Fig. 4. 
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r---- 
? 
I 

i 

I 
I 

: 

! . D 
.--a-- 

Al 82 A3 A4 

Fig. 5. 

Corollary 3.7. Consequently, each n-partite graph A is an induced subgraph of 
(K,,_z * P$ for a suficiently large k. Moreover, if A is connected, the embedding 
,u can be constructed so that each pip yields a quotient mapping onto pip(A). 

We will discuss one mar 2 simple case of +G. 

Theorem 3.8. In + C an+ I 9 the SI are 6, P, , Pz , Ps, &,, + , , A,, AZ. There are 
three more SFI, namely D, AS and A4 (for Ai see Fig. 5). 

Proof. First realize that if a graph from -*C2n+l is not bipartite, its cardinality is 
at least 5. Consequently, a bipartite graph is irreducible in +Ctifl iff it is such in 
-.*K*. Thus, it suffices to check the objects A of *Czn+, which are not bipartite. 

Represent C2n+1 as the set (0, 1, . . . ,2n} with i connected with i + 1 (addition 
mod2n + 1). Let f :A+Cz,+l be a fixed homomorphism. If A is not bipartite, 
we obviousfy have to have f-‘(i) # 0 and f-‘(i) interconnected with f -‘(i + 1). 

If If-‘(i)] = 1 for all i, we are left with Czn+,. If exactly one of the f-‘(i) 
consists of two points, rename the elements so as to have f-‘(O) = (0, O} and 
f-‘(i) = {i} otherwise. Since A is not bipartite, one of 0, 6, say 0, is joined with 
both 2n and 1. But also 6 has to be joined with both of them if A is an SFI. If, 
say, it is not joined with 2n, we have also the congruence [a21 and 

A= A[O6] A A[O2] or A@] A A[631 

according to whether 6 is joined with 1 or not. Since the only object left, A I, is 
maximal and has only one nontrivial congruence, it is SI. 

Now let two of the f-‘(i) have two elements. If A is irreducible, they have to 
be neighbours by 3.2(c). Taking into account the fact that A is not bipartite, we 
easily see that we can rename the elements of A to have f-‘(i) = {i, i} for 
i = 0, 1, f-‘(i) = {i} otherwise, and that (0, 1, . . . ,2n} induces C2,,+1 in A. 

First, let us deal with the case of ii not joined with i. By the same argument as 
above on the point redoubled, we obtain that if A is irreducible, 0 is joined with 
2n and 1, and i with 0 and 2. This is a graph isomorphic to AZ, obviously 
meet-irreducible, and with all the possible congruences noncritical. Hence it is an 
SI. 
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Let 0 be joined with 1. In the case of both Oi and 01 present, A =A[361 A 
A[li] whatever the situation otherwise is. 

Now, let us have Oi but not 01. If also 21 fails, A is easrly seen to be reducible. 
If it is present, we obtain A3 in the absence and A._. irr the presence of 2no. 
Whatever nontrivial congruence E one takes ir: any of these cases, AE contains lb. 
AS, being meet-reducible, is not SI, though. 

Finally let us have neither Oi nor 16. We easily check ?V the absence of any of 
2no or i2 allows congruences which make A reducible. If both these edges are 
present, however, all the congruences add Oi and 1-5. T:iJDys, we obtain the last 
SFI, namely A4. It is not SI, being meet-reducible. Cl 

4. The nonlatticed case: How to borrow the AE from a larger category 

As we have said above, it is often the case that a very reasonable category is 
not latticed so that 2.4 does not apply. Typically, however, such a category is 
nicely embedded into a larger one which is already latticed. We will show that 
this suffices. 

Lemma 4.1. Let %’ be an onto-reflective weakly regular subcategory of a weakly 
regular category %’ (i.e., the embedding preserves the underlying sets and 
mappings, and the reflection morphisms are onto). Let u : A * B be a subobject in 
%. Then it is one in %‘. 

Proof. Let 7&C --ir B in %’ and f: U(C)-, U(A) be such that Uuof = Uv. Let 
p : C-, c be the reflection morphism and let q : c* B be the morphism in % 
satisfying $5 0 p = W. 

If P(X) = P(Y), we have V(x) = $p(x) = In and hence ~l(f(x)) = u(f (y)) 
and consequently f (x) = f (y). Thus, we can define a mapping g : U(c)- U(A) by 
putting g@(x)) = f (x) and we have go Up = f. Hence 

u/Pg4p=Uu”f =u~=u+4Jp 

and since Up is onto, Uuog = UT; and hence there is a y : C-A such that 

Uy=g. Put cp = yp. We have Uq =goUp =f Cl 

Theorem 4.2. Let % be en onto-reflective concrete weakly regular subcategory of a 
latticed weakly regular category %’ with products. Then a family of quotients in 55 
(Ei: A + Bi)i,z induces an SF-representation of A in % iff 

(1) (Ei)i is collectionwise monomorphic, and 
(2) Ai A&i = A in S”(X). 

Proof. We can repeat the proof of 2.4. I[n part (II) we use 4..1 to conclude that E’ 
is a subobject in E’. Cl 
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Fig. 6. 

Notation 4.3. L,, =({O, 1,. . . , n), <), L, = ((0, 1,. . . , n}, G), P, is the ori- 
ented path ((0, 1, . . . , n}, {(i, i + l)\i = 0, . . . , n - 1)). LIzsk is obtained from 
L, by redoubling the point k (see Fig. 6). 

4.4. Reflexive pose&: The maximal objects are exactly the linear orders E, and 
of those only &, and & satisfir CT. Each nonmaximal object is meet-reducible co 
that the 

SI are exactly &, and i;, (see also [9]). 

Now to the SFI: Obviously, if [ab] is a congruence the new couples in A[ab] are 
exactly the (x, y) with 

xsa&bsy or x<b&acy. 

Further, if a is an immediate successor of b, or if a, b are incomparable, [ab] is a 
congruence. We easily check that: 

(i) if a, b, c are immediate successors then A = A[ab] A A[bc], 
(ii) if a, b, c are mutually incomparable then 

A = A[ab] P\ Alat:] A A~5-~ 

This leaves us with checking the cases of IAl s 4 which is easily done and yields, 
besides the SI’s, only the 2-antichain. 

4.5. Antirejlexive posers: The maximal objects are exactly the L, and none of 
them admits a nontrivial congruence. The nonmaximal objects are meet-reducible 
and hence we have 

SI: exactly the L,, (n = 0, 1, . . .). 

If [ab] is a congruence, the new couples in A[ab] are the (x, y) satisfying 

(xsa&b<y or xsb&a<y)& {x,y}#{a, b}. 

If a, b are incomparable, [ab] is a congruence and in A[ab] 
incomparable again. No congruence identifies comparable elements 

a and b are 
. We have 

A = A {A[ab] 1 a, b distinct incomparable} 
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(if there are incomparable couples) and we obtain the list of 

SFI: L,, Ln,k (n =0, 1,. . . ;k<n). 

4.6. Partial unary algebras (with one unary operation): For %’ take the category 
of all oriented graphs. Since shrinking one or more components into a single 
point each is a congruence E such that in AE nothing is added into the remaining 
components, an irreducible object: 

(i) has at most two components, 
(ii) if it has two components, at least one of them consists of a single point, and 

if the other is larger, it cannot contain a loop. 
Furtiler, in an irreducible object (A, 0~) one cannot have distinct a, b, c with 

a(a) = cu(b) = c. Indeed let this be the case. At least one of a, b, say a, is not of 
the form &(c). Shrinking all the &(b) (k = 0, 1, . . .) is a congruence E and [ab] 
is also one. We have A =A[ab] A AE. 

Finally we easily see that a cycle is irreducible iff its length is a power of a 
prime. 

Thus, to the list of SI from [9] (there is an error: instead of ‘prime’ read ‘power 
of a prime’) we add only the obligatory two-element objects. 

4.7. Oriented graphs without cycles: The maximal objects are exactly the L,. The 
meet irreducibles are the L, \ { (a, b)} with a < b; if a is immediately succeeded 
by 6, [ab] is a critical congruence, otherwise there is no nontrivial congruence at 
all. Thus, we have the following list of 

SI: I,,, L,\((a, b)} (n =0, 1, . . . , 3x, a <x < b). 

There are plenty new SFI. In particular, any A such that p,* <A d L, since no 
such A admits a nontrivial congruence. On the other hand, an SF1 does not 
contain a 3-antichain, or two 2-antichains which are not connected with each 
other. 

4.8. Antisymmetric graphs without loops: One immediately checks that the SI 
are exactly the tournaments. Again, there are plenty new SFI’s, probably very 
hard to list. For instance any A with G - <A s tournament is such, where G is the 

product of L, and L2 with lexicographic order. 

5. Remarks and problems 

5.1. Since other conditions on the pip in the representation than ‘being quotients’ 
(notably, ‘being retractions’, as pointed out by I. Rival) may be of interest, let us 

note that the procedure from 2.4 resp. 4.2 can be substantially generalized. 
Let Z? be a class of epimorphisms in a concrete category (%, U) such that each 

E E %’ which is also a monomorphism is an isomorphism. Let us say that a 



2.52 A Pcltr 

subobject p : A - F 3, i ai, 8’-subdirect representation if 41 the p,~ are in 8. Let, 

moreover, (%, U) be latticed. For an E :A + 3 from % define 1. E % as the join 

VW E = ~‘0 (A d A’)) and let 55 : A&g---‘ B be the morphism obtained from 
the colimit condition. Quite analogously to Theorem 4.2 we obtain the following. 

Theorem. Let V be an onto-reflective concrete weakly regular subcategory of a 
iamced weakly regular category % ’ with products. Let % be a class of epimorph- 
lams of % such that each monomorphism in ZZ is ..I isomorphism. Then a family 
( Ei 1 a --, Bi)icl of morphisms of 8 induces an Ssubdirect representation of A in % 
ifi 

(1) (Ei)i is ,-olectionwise isomorphic, and 
(2) A AEi8 = A in Z’(X). 

CoroU~. In the situation above, A is Ssubdirectly irreducible iff for each 
collectionwise monomorphic system (EiZ A- Bi)i of morphisms from 8, 
Ai 4Ei8#A. 

5.2. Recall that for varieties of algebras, CT = SI = SFI. In the general case we 
obviously have 

CT 

SI 
SF1 

and nothing more. Already in the list of 2.9 we find counter-examples to all the 
other possible implications, and also to SF1 3 (SI or CT). 

5.3. It should be of interest to explain the situation in some of the examples 
where the SI coincide with the SF1 (symmetric graphs with loops) or almost do so 
(n-partite graphs, reflexive posets, where we have only the discrete two-point 
object in the difference, which does not play any role when representing 
connected objects). It is not as if a subdirect representation in the SI’s would be 
in these cases automatically an SF representation; only, the existence of 
one--somewhat surprisingly-implies the existence of the other. 

5.4. In the SI’s the general case differs from the algebraic one in the possible 
existence of the nonmaximal irreducible objects (with the condition differing from 
the CT). In several cases (symmetric graphs without loops, reflexive posets, 
antireflexive pose%, antisymmetric graphs) we have observed that the nonmaxi- 
ma1 Sl’s do not appear. None of the mentioned categories is close to categories of 
algebras in character. It would be of interest to have a characteristics, or 
nontrivial necessary or sufficient conditions for the lack of nonmaximal SI’s. 

5.5 Another intriguing question is that of heredity of subobject irreducibility. In 
all the examples of Section 2 (with the possible exception of the SFI in 2.8, where 
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we do not know the list), or in the categories of posets, subobjects df SI (SFI) are 
SI (SFI). Not so, however, for instance, in any ---, K,,. This deserves a closer 
examination. 

5.6. Observe that, although the classes of SF1 often considerably differred from 
those of the SI, in all our examples, if SI were finitely many, so were also SFI. Is 
this a fairly general law? 
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