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1. INTRODUCTION

In this paper we study the coefficient-lo-solution mapping a — u(a),
where w(a)=u is a solution of

—div(agradu)=1 n £, (1.1)

with € a bounded domain and f a known function. Conditions will be
given that guarantee injectivity of the mapping a — u(a) at a rzference coef-
ficient @, i.c., u(d)= u(a) implies d@ = a provided that u(a) or alternatively f
satisfies appropriate conditions. Moreover a priori estimates for the coef-
ficient a in terms of u will be derived. We also investigate the linearization
T of the coefficient-to-solution mapping, and exhibit topologies for the
coeflicient—as well as for the solution space such that T is continuously
invertible on its range.

Several authors have obtained results on the injectivity of a — u(a) and
we briefly discuss some of them. In [R] Richter considers (1.1) as a hyper-
bolic equation for ¢ and, using method of characteristics, he derives a
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bound on |a| ;= in terms of u and f and from knowledge of a on the “inflow
boundary,” provided that

ing [max |Vu(x)|, du(x)]>0. (1.2)

Chicone and Gerlach in [CG] also use the method of characteristics, to
obtain a subset of 2 over which the coefficient a is uniquely determined by
knowledge of u(a). In [F] Falk obtains error estimates for Galerkin
approximations to the least squares formulation of estimating the coef-
ficient a from the state u, under the assumption that there exists a constant
unit vector v and a constant ¢ such that Vu(x)-v=a>0 for all xe Q.
In [KL], Kohn and Lowe introduce a numerical technique based on a
variational formulation for the estimation of a form u and discuss its
approximation by means of Galerkin discretization. One of their rate of
convergence results assumes condition (1.2). Its proof can be modified to
obtain an a priori estimate on a in the L>-norm in terms of u in the H%(Q)-
norm, in dimensions 2 and 3. In [K], a priori estimates on the coefficient
a in terms of the solution u are obtained, where the coefficient space is
endowed with the weighted seminorm |a Vu| .1, which realizes the fact that,
without further assumptions, a cannot be determined from u over the
singular set S= {xeQ:Vu(x)=0}.

From these results it follows that injectivity of a — u(a) is an exceptional
situation and moreover that a can be bounded by u(a) only if a coarser
topology is used for the coefficient than for the solution space. The latter
is referred to as ill-posedness of the inverse problem of identifying a from u(a).

In this paper we concentrate on special situations which guarantee
injectivity of a — u(a) at a reference coefficient. This is part of our project
of devising optimal input functions f which maximize the robustness of
estimating a from u(a) [1K2]. We distinguish between the smooth and the
rough case. In the rough case (Sections 2 and 3), ue H'(2) and [Vu(x)| is
assumed to be different from O a.e. on 2, which may typically hold, if f is
a sum of point source functions in case n=1 or line sources if n=2. In
the smooth case (Section 4), u is assumed to be in H*(Q) and Q is the
countable union of subdomains Q,, for each of which a condition of the
type (1.2) is assumed to hold. Our analysis uses techniques developed in
[KL]. In the rough case we obtain a priori estimates on the L*-norm of
the coefficients involving the W' ?-norm of the solutions, whereas in the
smooth case, the a priori estimates of the coefficients in the L?-norm
require the H?*(2)-norm of the solutions. We also investigate the lineariza-
tion of the coefficient-to-solution mapping T at a reference coefficient a.
Besides being of interest in its own right, this analysis is motivated by our
study of devising optimal inputs. In [CK ], for example, it was shown that
for the stability of the least squares formulation of estimating a from
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data z (corresponding to the solution u(a*) at the “true” coefficient a*),
given by

min |u(a) —zl3,

ae s

where .o/ is the space of admissible parameters, and Y denotes rhe output
norm, it is essential that 7= u'(a*) satisfies a lower bound of the type

| Thly 2k |kl x (1.3)

for some £ > 0 independent of 4e X. Here (X, |-|4) and (7Y, |-|) denote the
coefficient and the solution space, respectively, and u'(a) stands for the
Fréchet derivative of a— u(a) at a. From the theory of clcsed linear
operators we recall that (1.3) implies continous invertibility of T on its
range R(T), which is known to be closed in this case. In a further study we
propose to maximize inf, .o | Th| v /lA| , be appropriate choice of f. Due to
the ill-posed nature of the problem of determining a from u, one cannot
take the same topology for X and Y in (1.3). The X-topology necessarily
has be coarser than the Y-topology, and it is desirable that the gap
between these two is as small as possible. In the rough case conditions will
be given which guarantee that modifications of (1.3) hold with Y= H'()
and X=L%*), and in the smooth case (1.3) can be ottained for
Y=H?*Q) and X=L*). These topologies imply that the linearized
coefficient-to-solution mapping is continuously invertible. The choice of
appropriate topologies for the output (in our case solution) space and for
the parameter space as a means of formulating inverse problems in a stable
way is also well known in the theory of linear inverse problems. We refer
to [L, Chap. 3.6] in this respect. While exhibiting topologies fo:r which the
inverse of an ill-posed problem is stable can be of help in understanding the
degree of ill-posedness, it is clearly not a technique which itself eliminates,
e.g., numerical difficulties that may arise due to ill-posedness.

II. ROUGH-CASE, ONE SPACE DIMENSION

1. Identifiability, Arbitrary Boundary Conditions
Let (a, 4, ) be functions related via

Lau,, 9,.>=<f, 0>, forall @eHj|. (2.1)

Here ¢ -, > denotes the inner product in L? as well as the duelity pairing
between Hjand H ', fe H ' is fixed throughout and all function spaces
are considered over the interval (0, 1). Observe that (2.1) is formally
equivalent to

—(au).=f on (0, 1)
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and boundary conditions on u are not specified. A pair (aq, u)e L*x H' is
called a solution of (2.1) if au, e L* and if (2.1) holds. Conditions will be
given which, for fixed u, imply uniqueness of the first coordinate in the
solution pair (a, u) of (2.1).

We require the hypothesis

u.(x)#0 ae. on (0, 1) (H1)

THEOREM 2.1.  Let (H1) hold, and let (a, u), (b, u) be solutions of (2.1).

(i) Ifa—beC, ueW" > u¢C', then a=b.
(i) If there exists s€(0, 1) such that lim, _  (a—b)(x) exists and
lim, , . u/(x)and im, _, - u.(x) exist and differ, then a=b a.e.

(i) If there exists s€ [0, 1] such that im, _  (a— b)(x) exists and

lim u x)=+o0, or lim,_, u{x)=0 then, a=b ae.

x—s

Proof. Observe that (2.1) implies
La—b)u,, ¢, >=0 forall ¢eH),

and hence
(a—b)u,=C, a.e. on (0, 1), (2.2)

for some constant C [B, p. 122].

To verify (i) assume that there exists x, € [0, 1] such that a(x,) # b(x,).
If a(x)#b(x) for all xe[0,1], then u, = C/(a—b), which contradicts
u ¢ C'. Otherwise there exists an open (relative to [0, 1]) interval /<= [0, 1]
such that x,e 7 and for at least one of the endpoints y of I, (a —b)(y)=0.
This contradicts u, € W' = and hence a=5b. The proofs of (i) and (iii)
follow from (2.2).

ExampPLE 2.2. Let f=3(1/2) be the Dirac delta function with weight at
1/2 and let
u(x)={x on [0, 1/2]
1—x on [1/2,1].

We further define the family of functions

_fl1—a on [0, 1/2)
a*(x)"{ma on [1/2,1].

Then (a,, u) is a solution of (2.1) for every 2 € R and u satisfies the assump-
tions of Theorem 2.1(i) and (ii). If the additional requirement of continuity
of a at x=1/2 is enforced, then a, is unique among all such L’-functions
for which (a, u) is a solution of (2.1).
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2. A Priori Estimate

Let (a, ) and (b, v) denote two solutions of (2.1). In this subsection we
derive a priori estimates on ¢—#b in terms of u—v. Two additional
hypotheses are required.

There exists x >0 such that |u (x)| =« for a.e. xe (0, 1). (H2)

1 1
There exists we L™ such that J wu ' dx #0 and j (a—b)wdx=0.
0 0
(H3)

Remark 2.3. While (H2) is a restrictive assumption, it is satified for a
wide class of solutions of two point boundary value problems, if the input
1 is sufficiently singular. A specific example is given in Example 2.2. More
generally one may observe that the weak solution ue H | of

!
U= Z ﬁi 5()(‘.-)

i=1

u(0)=u(1)=0,

where the x, are pairwise different elements of (0, 1) and B,eR, is a
piecewise linear function. In this case (H2) holds, if u is not constant on
any subinterval of (0, 1). Condition (H3) can be considered as assuming a
priori knowledge of a— b on a one dimensional subspace. In view of the
one dimensional kernel of the differentiation operator which acts on au, in
the strong form of (2.1) this is a natural assumption.

THEOREM 2.4. Let (a,u)e L*x W"™ and (b,v)eL*x W™ be solu-
tions of (2.1) and assume that (H2), (H3) hold. Then there exists a constant
K, independent of (b, v) and a such that

la=bl < Kbl 2 lu,—v, .-

Proof. Let 4 denote the Laplace operator from H |} to H ', let D stand
for differentiation, and let P=D 4 'D, considered as an operator on C*.
It is simple to argue that P has a unique extension as a bounded linear
operator on L* [IK1], which will be again denoted by P. Moreover,
P is an orthogonal projection on L* with ker P= {¢: ¢ = constant},
Po=0—[,o(s)ds, and |Po|7:=¢|}.— ([, @(s) ds)’. From (2.1) we have

<(a_b) Uy, (Dx> + <b(u\ - D.x‘)v (pt> :0, for all ¢ e Hé

and hence

(a—b)u,+b(u,—v,)=constant
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and
P(la—b)u,)=P(b(v,—u,)).

From (2.3) we conclude
el 2
a—b)u,l:— (J (@a—b)u, dx) < )bl uy —vil3a. (2.4)
0

Let us put A=a—b, and let fe R be arbitrary. Then using (H3) we have

(fo] Pt d">2 = ( J b, pw) dx>2

1 N 2
<|hu_¥|§_:f (1—-@) dx
0 U

X

2
o U,

1w 1 2
slhuv|iz[l-2[)’f i‘—dxwzf E—arx].
0 Uy

Let f=[§wu, ' dx/[owiu,? dx, where we observe that [§ w’u_* dx #0 due
to (H2) and (H3).

Then for A:=1—({qwu;"dx)?/[} wiu ?dx we have 1e(0, 1) by (H3)
and ([ hu,dx)’<i|hu,|}:. Inserting this estimate in (2.4) we obtain
(1 —A)Ha—b)uJ2:<|b|32lu,—v,|3.. The desired estimate now follows
from (H2).

Remark 2.5. The results of this section remain unchanged if the equa-
tion contains a convection—and a restoring force term, so that the weak

form of the equation is given by
<aux’ (Px>+<alu,r+a2u’ (P>=<f; (/)>a fOl' all (PeHl,
with a;, a, given.

3. The Linearization of the Parameter-to-Solution Mapping

In this subsection we study properties of the linearization of the
parameter-to-solution mapping of two point boundary value problems.
Besides being of interest in their own right, these properties are essential for
the analysis of maximizing the sensitivity of the parameter-to-output
mapping by choice of an appropriate inhomogeneity f/ [1K2]. For ease of
presentation we restrict ourselves to homogeneous Dirichlet boundary
conditions and consider

—(au,),=f on (0, 1)
u{0)=u{1)=0.

(2.5)
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It is well known that for every fe H ' and ae L™, with a(x):y >0, for
a.e. xe (0, 1), there exists a unique weak solution ue H(’, of (2.5). It can be
shown that the mapping a — u(a) is Fréchet differentiable from L™ to H'
(and a fortiori from L™ to L?), and that the Fréchet derivative n = u'(a)(h)
of u at a in direction A is characterized by

- (a',x).\’ = (hu.r(a))x
n(0)=n(1)=0.

(2.6)

Let A(a): H) — H ~' denote the operator given by

Ala) = —(ap,).,,

and observe that A(a) is an isomorphism from H onto H ~' Using the
operator A(a), the Fréchet derivative can be expressed as

w(a)yh=A4"'(a) (hua)),.

Let us introduce the operator Th= A4~ '(a)(hu,(a))., with dom T=L>. If
ue W=, then T has a unique extension as a bounded linear operator from
L? to H' and a fortiori from L? into itself, which will again be denoted
by T.

THEOREM 2.6. Assume that ue Wb =,

(i) The operator T considered from L? to L* and from H' to H) is
a compact linear operator.

(ii) The operator T:L>— H} is bounded linear operator. If (H2),
(H3), with a— b replaced by h hold, then there exists k, >0 such that

lThIH(‘,Zkl |hl .2

for all he L? with {3 hwdx=0; in particular this implies that R(T), the
range of T restricted to {he L?: [} hw dx =0}, is a closed subset of H}, and
that T is continuously invertible on R(T).

(i) Assume that (H1) holds and that there exists s€ (0, |) such that
lim, _, .+« (x) and lim, _, .- u (x) exists and differ (or lim, _ v (x)=+
or lim, _,,u(x)=0). Then for every r >0 there exists k, such that

| Thl sy >k,

for all he H* with |kl ;i <rand 1h),2=1.
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Proof. In view of the fact that A(a): H)— H ~' is an isomorphism, and
due to the compact embedding of H} into L? T is compact from L? into
L*. Since (the extension) of T is continuous from L? into H', compactness
of the embedding H' — L? implies that T is also a compact operator from
H' into H}. This (i) is verified.

To verify (ii) it suffices to establish the lower bound for 7. Observe that

|Th| uy=1DA™'(a) D(hu(a))| 2,

where we use |Do| as a norm on H|. It can be shown that there exists a
constant k,> 0 such that |DA ~!(a) D(hu (a})| 2=k, |P(hu (a))| 2 for all
heL®. As in the proof of Theorem 2.5 we find (1—A)|hua)l,:<
|Phu(a)l 2 <k;"'|DA~'(a) D(hu(a))| 2=k |Th| 3, for all he L? with
jé hw dx =0. This implies the desired estimate in (n). If (iii) were false,
there would exist a sequence &, in H' with |4,|,2=1, and |h,|, <r such
that [Th,| < 1/n for all n. This would imply the existence of a sub-
sequence again denoted by A, and of an element A* € H' such that A, — h*
in L% |h*|;2=1, and Th* =0. Since the hypotheses on u, imply injectivity
of T this is a contradiction.

Remark 2.7. Let us interpret Theorem 2.6 from the point of view of
well-posedness of the linearized inverse problem. Recall that a linear
inverse problem

Tx=y (2.7)

is well-posed (in the sense of continuous dependence of the least squares solu-
tions of (2.7) on y} if and only if the range of T is closed and, for T compact,
if and only if the range of T is finite dimensional. Theorem 2.6(i) gives cases
where the linearized inverse problem is not well-posed (unless u, is trivial),
whereas (i) describes a formulation where the linearized inverse problem is
well-posed. The formulations in (ii) and (iii) will be the basis for our study
of determining the optimal input to identify a from knowledge of u.

II1. RouGH-CASE, SEVERAL SPACE DIMENSIONS

1. Three Examples

We present three examples of generaic situations in which |Vu(x)| can be
bounded away from zero ae. uniformly on Q, and which are used to
illustrate the analysis that follows. The examples will be special cases of
weak solutions of

-V-(a@aVu)=f in Q
(3.1)

ulﬁ{2=0’
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where 2 is a bounded domain in R”, with Lipschitz continuous boundary
0Q. Unless otherwise specified all function spaces will be rconsidered
over 2.

ExampLEs 3.1. Let Q< R? be the open unit square with lower left
corner at the origin and define u: 2 — R by

7 X2 on [I={(x,x,):0<x,<1/2,
and x, <x;<1/20r 1/2<x,; <1 —x,}
1 —x, on If={(x,,x,):12<x, <1,
and T —x, <x,<20r 12<x,<x,}
1 —x, on II={(x;,x,):1/2<x,< |,
and  —x,<x, <12 0r 1/2<x,<x;}
X on [V={(x,x):0<x <1/2,
\  and x,<x,<120r12<x,<1—x,}.

u(xy, x3)

I
A

It is simple to check that u is the variational solution in H} of (3.1) with
a=1 and fe H ' given by

<(Psf>H‘I],H'1=\/§J‘D(,DdS forall @eH),

where (-, > - denotes the duality pairing between H () and
H () and D is the union of the two diagonals of the unit square.
Obviously |Vu(x)| =1 for all xe 2\D and ue W' >(£2) in this example.

EXAMPLE 3.2. Let Q be the open unit disk in R? and define

4o” 1
fxy %)) = with ae (o, 5).

(xi+x3) "

If p(1 —a) <1 and pe[], «w], then fe L?. Therefore, for any x€ (0, 1/2)
there exists ¢ >0 such that feL'** and consequently fe H ' for every
o€ (0, 1/2). One check that for this choice of f and @ the weak solution in
H of (3.1) with a=1 is given by

u(xy, x,)=1—(x2+x3)*
and that

Vu(x,, x;) = ~2x col(x (x3+ x3)* 1, x(xi+ x3)* ).
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We find that |Vu(x,, x;)|*=4a’*(x]+x3)>* ' and hence, for any
a€(0, 1/2), there exists &, >0 such that |Vu(x)| >k, a.e. on Q. Moreover
if p<2/(1 —2u0) then ue W' 7 and u¢ W* = for ae(0, 1/2).

ExaMpPLE 3.3. As in the previous example, let 2 be the open unit circle
in R* and define fe H ' by

1/2
<‘paf>H[’l,H"=f I/Z(P(xx,O)dxl, for @oeH).

Since Fo={"%,(x,,0)dx, defines a continuous linear functional
on WY9 for any g=>1, see [G], there exists a unique solution u of
(3.1) with a=1 and ue Hy(Q2)n W' ?(Q) for every pe [1, o0). We argue
that |Vu(x)| can be bounded away from zero a.e. uniformly on €.
Green’s function for the Dirichlet problem on the unit disk is given by
[S, p. 518]

1
log +—log |&],
2

1 1 1
=—log ——— — — log ————
806 0 = OB T T 2 B
where x, £, and £* e R? and &* is the inverse point of £ with respect to the
unit circle (i.e., the polar coordinates of &* are (1/r, ) if those of ¢ are

(r, ©}). The solution of (3.1) is then given by

1

( ) 1 J.I/Z 1 dc
u(x,, x,)=— 0g ————————
‘ 2001 S L) X

1 1/21 1 J 1 1/21 J
- o += og |
z:i,,z B & 2nj4/2 g 1¢l

i L og 12) d
~.u+v+§;j_m og ¢ dt,

and v is harmonic on € [S]. Let us first consider the free space funda-
mental solution # and define J= {(x,,0):x,e[—1/2,1/2]}. A short
calculation shows that for x=(x,, x,)¢J

(x,—1/2)? +x§

u"'(x)=ﬁ (xy+ 122+ x3
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and hence for xe Q\J
axl(o’ x2)=0» ﬁ.\'l(xl’XZ): -i';xl(_xl’sz
e (xy, x)<0 if x,>0,

i, {x,,x;})>0 if x, <0,

lim @ (x,0)= -, im, (., #.(x;,0)=0

ap = 1/2)*
Moreover, for every &> 0 there exists M_ >0 such that

fi , (x) =M, forall xeQ,={xeQ:|x,|>¢}.
Similarly one finds for x € Q\J that

[
i, (x)f = —5=

J‘HZ X5 dC
2 S =)+ x3
X —1)2 xl-l/2>

—arc tan

1
=-—|[ arc tan
2n X, X,

and consequently for x,e {(x,,0): x,€(—1/2,1/2)},

lim @,(x)=—~1/2,  lim i (x)=1/2

X = Xp X —+ Xp
x3>0 x3<0

@olx), X)) =~ (—xy, X;)
and
i,(x)<0 if x,>0,
i,(x)>0 if x,<0.

For v one finds

lf% X, —z dz lf'Z X, —z zi_z_
2

U ==

.—_+_— —— e
nly (xy—zV+x3z wdo o (e —z)2+xiY
lelJ"Z X5

v, =— —— X
Bo2md (e -z P4 x3

and consequently
le(o, x2]=v,\'2(x1’0)=09 v.’c‘(—xhxz): _Ux,(xlax2)a fOI'
v, (x)<0 if x;,>0

v,(x)>0 if x,<0.

(3.2)

(3.3)

(3.5)

(3.6)
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Using (3.4), (3.5), and (3.6) one can argue that there exists k£, > 0 such that
[ (x)| = v, (x)| =k, >0 on Q-Q,,. (3.8)

Combining (3.3) and (3.8) we find that there exists a constant k>0 such
that |Vu(x)| >k ae. on Q.

Remark 3.4. The solution u of Examples 3.1-3.3 satisfies u(x)=0
everywhere on Q.

Above we gave three examples for different choices of f so that the weak
solution ue H of (3.1) satisfies

(i) there exists k >0 such that |Vu(x)| =k >0 ae. in Q,
(iil) ue W? for some p>n,
(ili) wu(x)=0 everywhere in Q.

In the above examples properties (i)—-(iii) were established for a fixed
value for the coefficient, a = 1. We show next that properties (i) and (ii) are
stable under appropriate perturbations of the coefficients a if 0Q is smooth.
Property (iit) is stable with respect to L™ perturbations of a if, e.g., f is
such that {f, @) >0 for all ¢ € H,. This follows from the weak maximum
principle.

ProrosiTiON 3.5. Let 0Q be C"! smooth, fe H™', p>n, e W7, with
a(x)=v>0 and let u=u(a) be the weak solution of (3.1) satisfying proper-
ties (i) and (ii). Then there exists a neighborhood N of @ in W* P such that
for each ae N the weak solution u(a) of (3.1) satisfies (1) and (ii). The
constant k =k, in (i) can be chosen uniformly for all ae N.

Proof. Since p>n we have Wt 2 C' for all i=0, 1, .... There exists
a neighborhood N of @ in L™ (and hence in W? *) such that a(x)>v/2
for all ae N_,. For ae N let v=u(a) be the weak solution of (3.1). We
introduce w= v — (a/a) u and observe that

aVw, Vo) ,:={f. o> for peHj,
where

f”:S(aAﬁ—dAa—Va-Vd+g|Va|2>+YaE(GV5—5V0)-

Since ue W'?, ae W>”, and ae W>7 it follows that fe L” and f -0 in
L? for a—ain W?*°?. This implies that we W>? ~ H| and that w— 0 in
WP if a—ain W2? [T, p. 180].

409-188;3.23
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Since u(a)=w + (a/a) u, it follows that w(a) satisfies (i) and (ii) whenever
a is in a sufficiently small neighborhood N of @ in W27,

We close this section with an example illustrating the fact that
knowledge of u=u(a) satisfying properties (i)-(ili) is not sufficient for
identifiability of « from w(a).

ExaMpLE 3.6. Let 2 and f be as defined in Example 3.1 and let u be the
weak solution of (3.1) with a= 1. Its explicit form is given in Example 3.1.
It can be shown that (b, #) also satisfies

bVu,Vod>={f, ¢> forall ¢peH)
provided that

(hy(x) onl/
hi(x) on /11
) —h(1=y) onll for y<1/2
(a=b)x, y)—< —hs(») on Il for y>1/2
—h3(1—y) on IV for y>1/2
\ —/:(») on IV for yp<1/2,

and #,eL*0, 1), hye L*0, 1). Therefore identifiability of a from u fails
within the class of L? coefficients.

This example is also of interest for the linearization of the parameter-to-
solution mapping a — u(a). The Fréchet derivative of a » u(a) at a=1is
given by (1) (h)=(—4)"'V-(hVu); for details see Subsection 3.2.
Clearly /(1) is well defined from L* to H} and the choice A =a — b shows
that the kernel of #'(1) is infinite dimensional.

2. Estimates Based on a Variational Procedure

In this subsection we derive an identifiability result, an a priori estimate,
and a lower bound on the linearization of the parameter-to-solution map-
ping by choice of a proper test function in the variational formulation
of the boundary value problem. The results are directly applicable to
Examples 3.1-3.3. Moreover, they can also be used in situations where u is
smooth. Let 2 be a bounded domain in R”, n=2 or 3, with ('"'-smooth
boundary 62 or £ convex, and fe H ~'. We consider

(aVu, Vo> =<f, ¢> forall @eH|, (3.9)

where ¢ -, -> denotes the inner product in L? as well as the duelity pairing
between H) and H ', and we refer to (a,u) as a solution of (3.9) if
(a,u)e L™ x H}, and (3.9) holds.



COEFFICIENT-TO-SOLUTION MAPPINGS 1053

THeOREM 3.7 (Identifiability). Let (a, u) and (b, v) be solutions of (3.9)
in W"*xH} and a(x)=v>0.If

(o alVul>+uf >>0  forevery @#0 with oueH}) (3.10)

then u=v implies a=b.

THEOREM 3.8. (A Priori Estimate). Let (a, u) and (b, v) be solutions of
(3.9) in Wh=x (H A W"%) and let a(x)>v>0. If there exist $>0 such
that

V@l <<@% a|Vul>y +<o’u, [ for every ¢#0
with ue H\|, (3.11)

then there exists a constant K= K(v, V, |d| 41, [#] y1.4) such that
la—bl3: <K lalfx lu—vlyrs

If n=2, then W"® can be replaced by W' 2** for any £¢>0.

The constants K in Theorem 3.8 and Theorem 3.10 below can be chosen
such that they depend continuously on their arguments.

Proof of Theorem 3.7. Let us first assume that fe L% Due to the
assumptions on 82 and a, b it follows that ue H{n H? and ve H{n H?
[G]. Let us put A=a—b.

A little algebra shows that

A Y@V -(hVu)=A4 (@) V-(bV(u—v)) in HYQ), (3.12)
where A(a): Hy(Q)— H () is defined by A(a)p= —V-(aVe). This
equality implies

<A‘(a)V-(hVu),%> =<A“(a)V-(bV(u—v)),%> . (3.13)

1. a l,a

where for ¢, Y e Hg we put (o, ¥>, ,=<{aVo, V).
Hence we have

<a VA Y a)V-(hVu),V <%li>>

=<VA‘(a)V‘(bV(u—u)),aV<h—u)> (3.14)

a
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and

<V(h Vu), %E> = <V(b(u — 1)), ha_u>

() a5y~ (v (Eova-n). s

Next we manipulate the term on the left hand side of (3.15}):

<V (h-—") hVu> = <3Vh +éVu—ﬁgVa, hVu>
a 12 a a a 12

1 2 2
=— <Vh2, EVu> + <ll—, |Vu|2> — <h—2 Vu, u Va>
2 a a a

2

1
=—3 <g-2-, a|Vu]?> + au Au——uVu-Va>

h? i
N <_, |Vu|2> _ <h—2vu, uVa>
a a
1/n: 1 /h?
=3\ —XF\ T3 -V
2<a [Vu| >L2 2<02 uVu a>L2
1 /h? 1 /h? R n’
—§<;u, Au>'2'<—a_a |Vu] >_<;§usv(avu)>

1 /h*
=-2—<;5,a |Vu|2+uf>.

We summarize these equalities in

2
<V (%),hvu>=%<§5,a:vu|2+uf>. (3.16)

Density of L? in H ~' and continuity of /' — u«(f) from H ~' to H} imply
the validity of (3.16) also for fe H .
If u=v then (3.15) and (3.16) imply

This implies

h? )
0= <21-2,d Vu| +Uf>

from which it follows that a = b, by (3.10).
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Proof of Theorem 3.8. This is an extension of the proof of the previous
theorem. We estimate the right hand side of (3.15) from above:

(v (%) 6V0-0)

= <le—2 (ah Vu+ auVh—huVa), bV(u, v)>

12

<V Vil 216 V= )] 2+l o IV 5 V(=)

v
1
+;—2 lul ;= Va2 |bh V{u—v)] 2.

We now consider the case n=3. If n=2 the estimate is quite similar and
it is left to the reader. We find

(V%) V=))W 9 10 96— 00
1l (V] 161 1V )]
+ (o (9l 161 1 19t )]
< e (lal e 1810+ 161)
xla—bl,p lu—0v| s, (3.17)

where k depends on v and embedding constants. Combining (3.11), (3.15),
(3.16), and (3.17) we find

|a—b|iz<2x\? IaIix (la] g1+ b 1) la— b g1 |u— 0] s,

This estimate implies the desired result.

Remark 3.9. Condition (3.11) is satisfied for the specific cases of
Examples 3.1-3.3.

We turn to an estimate of the linearization of the parameter-to-output
mapping. It is simple to argue that L*(|Vu|)> L®if n=3 and ue W7, and
that L*(|Vu|)> L7 with g=2(2+¢)/e, >0, if n=2 and ue W"?*% In
either case L2(|Vu|)> H! and T is well defined on H'.
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THEOREM 3.10. Let (a,u)e W' x (H A W"*) with azv>0, be a
solution of (3.9) and let (3.11) hold. Then the linearization T of a — u(a) at
a satisfies

\h|3:<KI|Th|,y  forall heH’,
where K=K(v, |al| = 1al 1, |l yrs, |hly). If n=2 then W"* can be
replaced by W'2*°, for any ¢> 0.

Proof. Let he W4 so that A Vue L2 and observe that as in the proof
of Theorem 3.7 (see (3.13}-(3.15)) we find

(%) (v (5 )nvu)
a l.a a 12

Using (3.16) we find

2 h
L ey = (™ <im
2\ a? a 0
1, a

av (%)

ahVu+ auVh — huVa)

12

1
< Thl gy |- (
a L2

1
< min (1, ;) [Th g (18 Vul 2+ |u VA 2 + Thu Va] 1),
Again we give the details for n =3 and leave the case n=2 tc the reader.
We find
1 /h? , ) 1
5 23, a ]Vul‘+uf> < min 1,; ‘Tth(l)
X (|A) o |Vu| g+ |ul L5 (VA 2+ [u] 1« |F 10 |Va] 14)

and by (3.11)

2lal?. . 1
e <208 i (1, ;) (Il Vil o+ Ll 1V

+ lul 1 4] o [Val 14). (3.18)

This implies the claim for #€ W' * The assertion of the theorem follows
from density of W' *in H'.
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Remark 3.11. If the assumption on the regularity of « in Theorem 3.7
is increased to ue H{,~ L™, then hypothesis (3.10), in Theorem 3.7, can be
relaxed to

There exists yeR such that (@2 a(l+yu) |Vu|*) +
{@*u, £ >0 for every ¢ #0 with pue H}. (3.10")

Similarly (3.11) in Theorems 3.8 and 3.10 can be relaxed to

There exists yeR and ¢>0 such that V|2 <
(p? a(l +yu) |Vul? + (o%u, f> for all ¢#0 with
oueH'. (3.11)

This can be verified by making the transformation o= he!~7?* in the
proofs and using a~ 'ke™?™ as a test function.

IV. SMooTH CASE

1. A Priori Estimate

In this section an priori estimate on the diffusion coefficient in terms of
the solution of an elliptic boundary value problem is obtained. The result
will imply in particular the identifiability of the coefficient from knowledge
of the solution. The reference solution of the boundary value problem will
be assumed to be smooth. For fixed fe L? we consider

-V (aVu)=f inQ, 4.1)

where €2 is a bounded domain in R”, n=1,2, or 3. If n=1 then we put
Q=1(0,1). We refer to (a, u)e Wh*x H? as a solution of {4.1) if (4.1) is
satisfied in the L2-sense. For two solutions (a, u) and (b, v) of (4.1) an a
priori estimate of a— b in terms of u—v will be obtained. The following
hypotheses are required:

(A1) @ is bounded domain in R”, n=1, 2, or 3 with C"'-smooth
boundary 40, if n=2 or 3.

(A2) (a,u)e W' *x (H: CHD)), (b, v)e W™*x (H* ~ CH((2)).

(A3) There is an at most countable family of disjoint connected

subdomains 2, c 2, with Lipschitz continuous boundaries 02, such that
*  Q,=Q. Moreover, there are constants k>0 and i,e [ —/, /], where

i=1

/>0, such that for each i

(i) 4, |Vu(x)|*+ 1 Au(x) has an a.e. uniform sign on Q, for all i,
(i) |4, [Vu(x)*| + 1 du(x)| >k for ae. xeQ,, and
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(iii) a=~h on [; for all i, where

{x€882;:Vu(x) n;(x)<0}
r- if A (Vu(x)?+ 1 du(x) =k ae. on Q,
! {x€d,;: Vu(x) -n;(x)>0}
if A |Vu(x)|* + 1 du(x)< —k ae on Q,.

and n; denote the unit outer normal to Q.

In the one dimensional case, the requirement a, be W' * in (A2) can be
replaced by a, be H'.
An example illustrating (A3) is given by the function

u(x, p)=(x*+ yH)(x*+ y*—1) on Q={(x,y):x’+y’<l}cR2
(4.2)

We find Au=4(Q2r—1)(2r+1), and |Vu|>=4r>(2r* —1)?, where r’=
x2+ »?, and hence possible choices for the subdivision of Q are given by

Q ={(x,y):x*+y*<a}

and

1 1
Q,{(x, y)ia<a’+ yi<l1}, with ae(—,—-).
A T
Let us briefly discuss (A3) for the case n=1. Assume that there exists an
at most countable family of disjoint open intervals Q,=(/,, ;1 such that
Q=[0,1]1=,Q,. Moreover, assume that there are constants k>0 and
A,e [ -1 1] for some />0, such that for each i

(i*) sgnu(r;)= —sgnu(l), if 2,=(0,r;) then either u (0)=0 and
u(r;)#0, or sgnu, (0)= —sgnur), if 2,=(/,1) then either u (1)=0
and u, (/) #0, or sgnu (I, )—sgnu (1),

(ii*) |4 d(x)+iu(x) =k for ae xeQ,,

(iti*) sgnur;))=sgn(4, u (x)*+ Su,(x)) for ae. xef, except if
Q,=(,1] and u (1)=0, in which case sgnu.(/,)= —sgn(d,u.(x)*+
fu.(x)), for ae xeQ,.

If (i*)-(iii*} hold, then the family £, satisfies (A3). These cond.tions imply
that on each of the subintervals Q,, which does not contain a boundary
point, u, has exactly one extremum. Moreover, u cannot have a turning
point (u.(s)=u,(s)=0) with (ii*) holding. Conditions (i*)-(iii*) do not



COEFFICIENT-TO-SOLUTION MAPPINGS 1059

cover the case that w, has a uniform sign on (0, 1). If, for example, >0
on (0, 1) then (A3) can be replaced by

1,(0) (a(0)— b(0)) =0 and if there are constants 4 and & > 0 such that
Au(x)?+Lu. (x)>k ae on (0, 1)

The condition (A3) with only one domain @, was considered in [R] where
an estimate on |a|; =g, in terms of {f|, o, and |al =0, is obtained. The
technique of proof in [R7 is completely different from the one that we use.

THEOREM 4.1. Let (a, u) and (b, v) be solutions of (4.1) and assume that
(A1)-(A3) hold. Then there exists a constant K depending on k,l, and
embedding constants, but independent of (b, v), such that

la— b2 <K (bl s [u— vl 2
Proof. From (4.1) we have
V.((a—b)Vu)=V-(bV(v—u)). (4.3)
The right hand side of (4.3) can be estimated as
V- (6 V(o —u))l 2 <|bl Lo [A(u—0) 2+ [Blyrs [ —v]yrs
SM (blyrs |u—vlp2, (4.4)

where M is an embedding constant. This estimate depends on the fact that
n<3. Next we bound the left hand side of (4.3) from below. Let us set
h=a—b and p=exp(—!max, o [u(x)]). Then we find on each Q,,

V- ((a—b) Vu)| LY0,) " [a— bl £2(82))
> u*\V - (hVu) e_;L‘uILZ(Q,) ]he*i’ull_lm,)
P /‘2| <E‘Am(h Au+Vh-Vu), 9*;"uh>L2(sz,)l,
and substituting v=e~%“h
V. (h Vu)‘LZm,») ‘hh}m.)

> 12 [<v Au+Vu -Vo+ 40 [Vl 0> 20,

1
= p? [ {du+ 4, |Vul?, v2>L2(.Q‘) +5 (Vu, Vo? > 2,

1 \ 1 /ou
~du+ i, |Vul?, vz) +—<——, vz> l
<2 Loy 2 \on LY(202,)

=ﬂ2
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where we used Green’s formula. By (A3) the last estimate implizs
IV (h V)| g2y 1) 2 2 10k L7 20, 2 10K LR ayg,,s
and therefore
K |a = bl 20, < IV - ((a—b) Vi) 2y (45)
Combining (4.3)-(4.5) we obtain the desired result.

2. The Linearization of the Parameter-to-Solution Mapping

This section is devoted to a study of the linearization of the parameter-
to-solution mapping. We restrict ourselves to Dirichlet boundary condi-
tions, i.e., we consider

~V-(aVu)=f in 2
u=0 on 0Q2.

(4.6)

For fe L?, the mapping a — u(a) is well defined from H?to H? if n=2 or
3, and from H' to H? if n=1, whenever a> 0. For such g, the Fréchet
derivative of u(a) at g in direction he H?> (he H' if n=1) is gven by

W(ayh=A"Ya)V - (hVu(a)),
where

A(a) 9=V -(a Vo)

with domain D(A4(a))= H?~ H} [CK]. Let us henceforth denote by 7" the
operator that characterizes the action of «'(a), i.e.,

Th=A"Ya)V-(hVu).

We observe that T can be considered as a compact mapping from H'(£2)
to itself, it provided that u(a)e W' *. Moreover, T has a bounded exten-
sion as a linear operator from L? to H'. Our specific interest, however, lies
in the choice of topologies for the domain and the range of T, for which
T becomes continuously invertible on its range. For sufficiently smooth u,
this is achieved, if T is considered as a mapping from a subset of L? to H2
In this case T becomes an unbounded operator and som:z analysis is
required to interpret T as a closed operator from L? to H?.

Some additional notation and assumptions are introduced next. The
solution is assumed to satisfy

(Ad) u=u(a)e W4
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Here and throughout a>0and ae H*if n=2or 3 and ac H'(R2) if n= 1.
Let U denote that nx n matrix with elements U; = u,, « and let i, be the
maximum modulus of the eigenvalues of U. We deﬁne the inflow boundary

I'=cl{xedQ:Vu(a)(x) n(x) <0},

where cl denotes closure.

Note that the inflow boundary is not invariant under change of sign of
[ (or equivalently of u(a)). It will be necessary to assume that the closure
of the inflow boundary and its complement do not meet, more precisely,

(AS) 0Q— I is closed relative to dQ.
We do not exclude the case where I'= (. The following two technical

lemmas will be needed.

LEMMA 4.2, Let (Al), (A4), and (AS) hold. The operator B: D{B)c
L3(R2) — L¥(R2) given by

DB)={peH":¢|'=0} and Be=V-(¢Vu)

is closable.

Here ¢|, =0 is interpreted in H'*(I).
We show that p+ B is closable for some sufficiently large u. This will
imply the claim. The following auxiliary lemma is needed.

LemMMa 43. Let (A1), (Ad), and (AS) hold, and let
n>2k [Au| o+ Ay,

where k > 1 is a common embedding constant of H' into L* and W' * into
L*. Then for every be H' with g| =0 there exists a unique solution
yeH' of

ny+Vu-Vy+Aduy=g

Y (4.7)

ylr": 0>
with
(0= 2k |Aul yrs— 2ag) | ¥l i1 <3/2 | &L,

and

(n—31dul <) |yl 2<1gl 2.

The proofs of Lemmas 4.2 and 4.3 will be given at the end of this section.
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Remark 44. The assumption ue W** is used in the proof of
Lemma 4.3. In the one dimensional case, (A4) can be replaced by the
requirement that u e H> only. Then we can assert that

N>31Aul e+ 3k 1" 2,

with k& the embedding constant from H' into L™. This implies the existence
of a unique solution ye H! of (4.7) which satisfies

(=3 14ul 1o — 2k ("] 12) [V /2 gl
and
(n— % [Aul =) Iyl 2 <8l 2

We now specify T together with its domain so that it becomes closable as
an operator from L*(Q) to H*(Q):

D(TYy={heH' h|I'=0},

(4.8)
Th=A(a) ' V-(hVu).

THEOREM 4.5. Let (Al) and (A3)}-(AS) hold. Then T is closable operator
from LX(Q) to H*(R2) and its closure T satifies

|Th| 2= K |2

for some constant K >0 independent of he D(T). In particular this implies
that the range of T, R(T), is closed in H*(Q) and that T is continuously
invertible on R(T).

Proof. Since A(a)™ "' is a homeomorphism from L* to H?, T is closable
by Lemma 4.3. From the proof of Theorem 4.1, see (4.5), it follows that

\Thiy2=]4""(a) V- (hVu)| 22 K |hl 2,

for some constant K> 0 independent of ke D(T).
Taking the closure of the graph of T one concludes that

\Thiy22 K || 2

for all #e D(T). This estimate ends the proof.
This section is conclude with the proofs of Lemmas 4.2 and 4.3.

Proof of Lemma 4.3. We follow a parabolic regularization technique
used previously in [B, OR]. For ¢ >0 and ge H () with g|, =0 consider
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—edy+ny+Vu-Vy+dup=g inQ
y=0 onrl (49)
oy/on=0 on 0Q-—T.

We use the Lax—Milgram theorem to establish existence of a unique
solution of (4.9). Taking the inner product in L? of (4.9) with we H',
w| =0, we obtain the weak form of (4.9):

eVy, Vw) + 1y, w) + {Vu-Vy, w) + {duy, wd = {g, w). (4.10)

The left hand side of (4.10) with w= ye H', y|,=0 can be bounded from
below:

elVyllatn |yl 2a+ 4 <Vun, 320 200, + 3 {du, 37D
e |Vy+ (n— 5| dul <) |y 2.

Hence there exists a unique variational solution y,e H'(Q2) of (4.9). The
regularity assumption (A4) on u and (AS5) imply further that y, e H*(Q)
and that y, satisfies the boundary conditions in the strong sense, see, ¢.g.,
[T, p. 132]. We next take the scalar product in L*(Q) of (4.9) with — A4y, :

1Ay, T+ 1 (V|5 — (Vu-Vy,, Ay, > — (duy,, 4y, > = — g, 4v,).
Using the formula
div((Vu-Vy,) Vy, — 3 Vu [Vy,I?) = (Vu-Vy,) 4y, + Vy[uVy, — § Au [Vy, |
We obtain
eldy )4+ n |V 2+ <V, uVy, > — 5 (du, [Vy,I?)>
+5<n-Vu, [V pagy — <Vu-Vy,, n-Vy. > gy + (V(duy,), V>
={(Vg, Vy.).

Here the boundary conditions for g on I" and for dy,/én on éQ2 — I were
used.
In the following calculations we consider n=3. The dimensions n=1
and n=2 can easily be seen to be special cases of n=3. On I we find
5(n-Vu) |Vy, 1> = (Vu-Vy,)(n-Vy,)
0 0
= - (n Vu) |V}’s]2 + —N3 'Vys Vll N s x3

ny ys, X2
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n3 Ve, x;
+ 0 |-Vy, |Vu. 0
L\ N Ve x
[ —n, ] Ve 1
o ||| v )= 3 v0 v,
0 i 0

where we used the fact that y, =0 on I. Moreover, on 02— I” we have
¢y,./0n=0 and hence

L (n-Vu) [Vy, | = (Vu-Vy,)(n-Vy,) =% (n-Vu) |Vy,)*
Thus we find

eldy |24+ n1Vy. )i+ <Vya, uVy,;> + 5 {du, |Vy,|*>
+ % <‘n 'Vul’ [Vye(2>L2(ﬁQ) + <V(Auy£)’ Vy£> = <Vga v )s>'
This allows the estimate

ey, 2+ (=31 AUl oo — dpg) [Vp )22~ IV Aul a1 y,] 14 V0,12
< Vgl [Vyl e (4.11)

Let k> 1 be a constant for which |@|,«<k |@|y for all ge HY(£2) and
|@| L= <k |@| s for all o e WE4(Q). Then we find

e 1Ayl 2e+ (0 =2k | ul s — A 4g) V3l 32— 3 K | Al s | 1) 32
<|Vgl [Vyl . (4.12)
Taking the scalar product of (4.9) with p, gives in view of (4.10)
eIVl o+ (=4 14ul o) [yl < gl [yl o (4.13)
Combining (4.12) and (4.13) we arrive at
(IVy 12+ Ay, 22) + (n = 3k [ dul yra)(| yel T2 + VY. 72)

<lglez o+ Vel 2 [Vy e
<21l 1y (4.14)

From (4.14) we deduce that

(1= 3k |dul yro) | ol <2 18l (4.15)
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Since by assumption #>(5/2)k |du| 414, there exists a subsequence
{Vuti=1 of {y.},~0 and an element ye H' such that w—lim, y, =y in
H'. Moreover we have y|7"=0 and ¢ |4y,|,;:— 0 as ¢ — 0. Thus it follows
that  is a solution of (4.7). The a priori estimates of Lemma 4.3 on y in
terms of g follow from (4.13) and (4.15).

In the case n=1, estimate (4.11) is replaced by

ey e+ (=3 14ul ) Vol 32+ "] 2 1ol e 1Vpel 2
g lVgIL2 ‘Vys‘Lza (411’)

from which it follows that

3 3 k
e tan Tt (=3 1l = S K 1) 1903 5 L 3l
<|Vgl2 1Vy.l e (4.127)
Together with (4.13), (4.12') implies

1Ay )2+ (=31 4ul o — 2k 1) (Vi 22 4 |4l 22)
NP

This implies the assertion in Remark 4.4

Proof of Lemma 4.2. Let C denote the injective mapping of Lemma 4.3
that assigns to every ge H'(€2) with g|,=0 in H '*(I') the unique solution
vy of (4.7). By Lemma 4.3, C can be extended to a bounded linear operator
on L%(2), which will be denoted by C. Its inverse, C ', is well defined on
R(C) and closed. Below it will be argued that D(C ') = R(C) > D(B). This
will imply that C ' is a closed extension of u/+ B. Hence pf+ B and
consequently B are closable.

To argue that R(C)>D(B) let S={yeH' (Q):y|;=0, V-(hVu)e
HY(2), V- (hVu)|=0}. Since the space D(B)={peH'(Q):¢|I=0 in
HYX(I)} can be equivalently defined as the closure in H'(Q) of
Cr(2u(62—T7)) (the set of C*-functions with compact support in
QU6 ~-T)) it follows that S is dense in D(B) in the H'(2) topology
[T, pp. 67, 75]. Hence there exists for every ye D(B) a sequence y,e S
converging to y in H'(L2). Let us define g, =:ny, +V-{(y,Vu). Then
Cg,=y, and g, is a Cauchy sequence in L%*(Q). Hence there exists an
element ge L*(Q) with lim, g, =g in L%*2). Moreover Cg=y and
therefore y € R(C) as desired. This ends the proof.
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