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Abstract

Automatic groups admitting prefix-closed automatic structures with uniqueness are characterized
as the quotients of free groups by normal subgroups possessing sets of free generators satisfying
certain language-theoretic conditions.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It is an open problem whether or not every synchronously automatic group admits a
prefix-closed automatic structure with uniqueness[4, Open Problem 2.5.10]. Motivated by
this problem, we give new characterizations of synchronous and asynchronous automatic
groups which have prefix-closed automatic structures with uniqueness.

Automatic groups are a class of finitely presented groups modeled on the fundamental
groups of compact 3-manifolds and defined by the property that group multiplication can
be carried out by finite automata. The standard introduction is[4]; [3] is a more recent
introduction for those familiar with the theory of finite automata. Accounts of the context
in which automatic groups occur are given in[2,9].
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Theorem 1. Agrouphasaprefix-closedasynchronousautomatic structurewith uniqueness
if and only if it is isomorphic to the quotient of a finitely generated free group F by a normal
subgroup N admitting a linear language L of freely reduced generators with significant
letters.

L is a subset of the free monoid over a set of free generators and their inverses forF.
Linear languages lie between the better known classes of regular and context free languages.
L has significant letters if each word inL has a distinguished letter such that free reduction
of a product of two words fromL or their inverses does not affect the distinguished letters
except when the product consists of a word times its inverse. Precise definitions are given
in the next section.

Theorem 2. Agroup has a prefix-closed synchronous automatic structure with uniqueness,
if and only if it is isomorphic to the quotient of a finitely generated free group by a normal
subgroup admitting a linear language of freely reduced generators with significant letters
satisfying either of the following two conditions:

(1) For some constant k each significant letter is k-central.
(2) The significant letters are o-central.

A significant letter isk-central if it is within a distancek of the center of its word. A set
of words with significant letters haso-central significant letters if either the set is finite or
if the distance from significant letters to the center of their words iso of the length of the
word. Thusk-central implieso-central.

The generators mentioned in Theorems 1 and 2 are essentially the Schreier generators
corresponding to the combing from the automatic structure. The desired properties of these
generators are derived in a straightforward way from the combing, but the argument in the
other direction is more complicated.

2. Preliminary definitions and results

2.1. Formal languages

An alphabet is a finite nonempty set,�. A formal language over� is a subset of�∗, the
free monoid over�. Elements of�∗ are called words. The identity element of�∗ is the
empty word, denoted�. |w| is the length of a wordw. If w = a1 . . . an, the distance from
the letterai to the center ofw is |i − (n + 1)/2|.

�∗ is well ordered by the shortlex order, which is defined byu<v if either |u|< |v| or
|u|=|v| andu is less thanv in the lexicographic order corresponding to some fixed ordering
of �. The shortlex order has the property thatu<v impliesxuy< xvyfor all x, y ∈ �∗.

We assume the reader is familiar with the theory of automatic groups including the basic
facts about regular languages and finite automata necessary for the development of that
theory. We include some additional definitions and results from formal language theory
which we shall need. See[7] for a survey of the whole field.



R.H. Gilman / Journal of Pure and Applied Algebra 202 (2005) 313–324 315

Recall that regular languages are the languages accepted by finite automata. A finite
automatonA over � is a finite-directed graph with edge labels from�� = � ∪ {�}, a
designated initial vertex, and some terminal vertices. A path inA is called successful if
it starts at the initial vertex and ends at a terminal vertex. The language accepted byA is
the collection of labels of successful paths. The label of a path is just the product of its
edge labels. The label of a path of length 0 is�. We assume without loss of generality that
every edge and every vertex of an automaton occur in some successful path. Other edges
and vertices can simply be deleted. We denote by|A| the number of vertices in a finite
automatonA.

Regular languages are closed under union, product and generation of submonoid. We
require some additional properties.

Lemma 2.1. Every regular language R may be expressed as a finite unionR = ⋃
XiYi

of products of regular languagesXi, Yi in such a way thatw = uv ∈ R if and only if
u ∈ Xi, v ∈ Yi for some i.

Proof. LetRbe accepted by an automatonA with verticesp1, . . . , pn. For eachi between
1 andn define an automatonAi by alteringA so thatpi is its single terminal vertex.
Likewise defineA′

i by makingpi the initial vertex. The languagesXi accepted byAi and
Yi accepted byA′

i are as required. �

Definition 2.2. For any wordw, wr is w written backwards. Likewise for any language
L,Lr = {wr |w ∈ L}.

Lemma 2.3. If R is a regular language, so isRr .

Proof. LetRbe accepted by the automatonA. Reverse the orientation of the edges ofA
and make the initial vertex the single terminal. Taking each original terminal vertex in turn
as the initial vertex, we obtain a set of finite automata. The union of the languages accepted
by these automata isRr . �

2.2. Transductions

Finite automata over� × � are defined just like finite automata over� except that edge
labels are from�� ×��. The label of a path of length 0 is(�, �), and the collection of labels
of successful paths is a subset of�∗ × �∗ called a rational transduction over�. A rational
transduction is a binary relation on�∗.

Lemma 2.4. Every finite binary relation on�∗ is a rational transduction. Projections of
rational transductionontoeither coordinateyield regular languages.Rational transductions
are closed under union and product. They are also closed under intersection with direct
productsR × S ⊂ �∗ × �∗ of regular languagesR, S over�.

Proof. The first two assertions are immediate from the definition of rational transduc-
tion. To show closure under union combine two automata over� × � by adding a new
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initial vertex together with edges labeled(�, �) from the new vertex to the initial vertex
of each automaton. The new automaton accepts the union of the two rational transduc-
tions accepted by the original automata. Closure under product is demonstrated similarly
using edges from the terminal vertices of the first automaton to the initial vertex of the
second.

To complete the proof of the lemma it suffices to show that if� is a rational transduction
accepted by an automatonA over � × � andR is a regular language accepted by the
automatonB over�, then� ∩ (�∗ × R) and� ∩ (R × �∗) are both rational transductions.
The argument is the same in both cases. We will show that� ∩ (�∗ × R) is a rational
transduction.

First observe that it does no harm to require a loop (an edge from a vertex to itself) with
label(�, �) at each vertex ofA and a loop with label� at each vertex ofB. Now define an
automatonC = A × B over� × � as follows. The set of vertices ofC is the Cartesian
product of the vertices ofA with the vertices ofB. There is an edge with label(a, b) from
(p1, q1) to (p2, q2) if and only if there is an edge fromp1 to p2 with label(a, b) in A and
an edge fromq1 to q2 with labelb in B.

It is easy to see that if there is path inC with label(u, v) from (p1, q1) to (p2, q2), then
there is a path inA fromp1 top2 with label(u, v) and a path inB from q1 to q2 with label
v. The converse is also straightforward once we observe that if there are paths inA from
p1 to p2 with label(u, v) and inB from q1 to q2 with labelv, then by judiciously inserting
loops with labels(�, �) or � into the two paths we can arrange things so thatv is expressed
in exactly the same way as a product of elements of�� along both paths. (This argument is
given in greater detail in the proof of[6, Theorem 4.4].)

Take the initial vertex ofC to be(p0, q0) wherep0 is the initial vertex ofA andq0 is
the initial vertex ofB. Likewise(p, q) is terminal if bothp andq are. It follows from the
preceding paragraph that(u, v) is the label of a successful path inC if and only if (u, v) is
the label of a successful path inC andv is the label of a successful path inB. �

Lemma 2.5. For each regular language R over� the binary relation�R ={(u, u) |u ∈ R}
is a rational transduction.

Proof. Since�R = ��∗ ∩ (R × R), it suffices by Lemma 2.4 to consider the caseR = �∗.

The automaton with one vertexp (which is both initial and terminal) and edgesp
(a,a)→ p for

eacha ∈ � accepts��∗ . �

2.3. Linear languages

Definition 2.6. A languageL over � is linear if for some rational transduction� over
�, L = {uvr | (u, v) ∈ �}.

In other words a linear language consists of all wordsuvr such that(u, v) is the label of
a successful path in some fixed automaton over� × �. Other characterizations are given
in [7, Chapter 3, Section 6.1]. Automata over� × � serve as acceptors for both rational
transductions and linear languages.
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Lemma 2.7. The union of two linear languages is linear. The intersection of a linear
language over� and a regular language over� is linear.

Proof. The first assertion is immediate from Lemma 2.4. For the second letL be linear
andR regular.L is accepted by an automatonA which also accepts a rational transduction
� such thatL = {uvr | (u, v) ∈ �}. ExpressR = ⋃

XiYi as in Lemma 2.1. By Lemmas 2.3
and 2.4�′ =⋃

(�∩ (Xi ×Y r
i )) is a rational transduction. SinceL∩R ={uvr | (u, v) ∈ �′},

L ∩ R is linear. �

2.4. Languages and groups

Consider a groupGand a surjective homomorphism� : F → G from a finitely generated
free groupF. LetN be the kernel of�. Take� to be an alphabet of free generators and their
inverses forF and let� : �∗ → F be the projection which sends each wordw ∈ �∗ to the
element ofF it represents. Notice that�∗ is equipped with formal inverses in a natural way,
and� respects inverses. We will call this configuration a choice of generators forG. From
now on� stands for an alphabet with formal inverses.

�∗ �→ F
�→G. (1)

When we wish to avoid explicit reference to� and�, we will usex̂ andx to denote the
image ofx in F andG, respectively.

Given a choice of generators (1), we see that for every languageL over � there is a
subgroupH = 〈L̂〉 generated by the image ofL in F. We callL a language of generators
for H.

2.5. Significant letters

Definition 2.8. Let L ⊂ �∗ be a language of freely reduced words which does not contain
the empty word.L has significant letters if everyw ∈ L can be written as a product
w = uav−1 with a ∈ � such that for allw1, w2 ∈ L and �1, �2 = ±1, free reduction
of (w1)

�1(w2)
�2 = (u1a1v

−1
1 )�1(u2a2v

−1
2 )�2 does not affecta1 or a2 unless the product

reduces to�.

When considering a wordw in a languageLwith significant letters,w=uav−1 will always
mean the significant letter decomposition ofw. Significant letters need not be uniquely
determined, but it is clear from Definition 2.8 that we may assume that ifw,w−1 ∈ L and
w=uav−1, thenw−1 =va−1u−1 is the significant letter decomposition ofw. It follows that
if L has significant letters, so doesL ∪ L−1. We record this fact along with two immediate
consequences of Definition 2.8.

Lemma 2.9. Let L have significant letters. ThenL ∪ L−1 has significant letters. Consider
w = uav−1, w1 ∈ L. If either ua is a prefix ofw1 or av−1 is a suffix, thenw = w1. If either
va−1 is a prefix ora−1u is a suffix, thenw = w−1

1 .

If L ⊂ �∗ has significant letters, then̂L is a set of free generators for the subgroup
〈L̂〉 ⊂ F generated bŷL. Indeed ifw�1

1 . . . w
�n
n is any product of words fromL and their
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inverses such that now�i
i is followed by its inverse, then free reduction of the product does

not affect the significant letter of anywi . Consequentlŷw1
�1 . . . ŵn

�1 �= 1.

2.6. Combings

Definition 2.10. A combing is a languageC over� such thatC = G. C is prefix closed if
every prefix of anyw ∈ C is also inC.C is a combing with uniqueness ifCmaps bijectively
toG. C is regular if it is a regular language.

There are other definitions of combing in the literature.

Lemma 2.11. If C is a prefix-closed combing with uniqueness, then no nontrivial subword
of a word in C defines the identity in G. In particular C consists of freely reduced words.

Proof. If not, then there isuxv ∈ C with x = 1. By closure under prefixes,u, ux ∈ C,
contradicting uniqueness.�

Lemma 2.12. If � is a rational transduction over�, thenL={uv−1 | (u, v) ∈ �} is a linear
language. If L is linear, then so isL−1 = {w |w−1 ∈ L}.

Proof. For the first part replace each edge label(a, b)with (a, b−1). For the second assertion
change each label(a, b) to (b−1, a−1). �

In practice we will not replace(a, b) by (a, b−1). Instead we will just read(uv−1) instead
of (uvr ) for each path with label(u, v) in an automaton accepting�. From now on the linear
language corresponding to a transduction� will be L = {(uv−1 | (u, v) ∈ �}.

We will make use of the following possibly infinite automaton.

Definition 2.13. Let G be a group and (1) a choice of generators. The Cayley automaton

AG has verticesG and edgesg
(a,b)→ h for all g, h ∈ G anda, b ∈ �� with gb = ah. The

initial state ofAG is 1, and all states are terminal states.

Lemma 2.14. There is a path inAG with label(u, v) from1 to h if and only ifh = u−1v.
If u andv are asynchronous k-fellow travelers, then the path may be chosen in the ball of
radius k around 1.

Proof. It is straightforward to prove by induction on length that there is a path with label
(u, v) fromg toh in AG if and only if gu= vh. The second assertion follows directly from
the definition of asynchronous fellow traveler.�

2.7. Automatic structures

Lemma 2.15. AcombingC for a groupG supports a prefix-closed asynchronous automatic
structure with uniqueness if and only if C is prefix-closed with uniqueness, and for each
a ∈ � the binary relation�a = {(u, v) |u, v ∈ C, ua = v} is a rational transduction.
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Proof. SupposeC supports a prefix-closed asynchronous automatic structure with unique-
ness in the sense of[4, Definition 7.2.1]. ThenC is a prefix-closed combing with uniqueness,
and it is not hard to check that the corresponding binary relations are transductions.

For the converse takeC and�a , a ∈ � as above, and letk be an upper bound for the
number of vertices in automataAa accepting�a . Suppose� is a successful path in some
Aa . For each vertexp of � there is a path of length at mostk from p to a terminal vertex
of Aa . Thus if(u, v) is the label of� up top, there are wordsx, y of length at mostk such
that(ux, vy) ∈ �a . Consequently,uxa = vy, which implies that the word differenceu−1v

has the same image inG as some word of length at most 2k + 1. From this observation
together with the fact that�� is the identity binary relation onCwe see thatC satisfies the
asynchronous fellow traveler property. By Theorems 1 and 2 of[8] some subset ofC is
a regular combing supporting an asynchronous automatic structure. SinceC is a combing
with uniqueness, the subset must beC itself. �

An analog of Lemma 2.15 holds for synchronous automatic structures, but the rational
transductions are of a special type.

Definition 2.16. A rational transduction� ⊂ �∗ × �∗ is called synchronized if(u, v) ∈ �
implies the lengths|u| and|v| differ by at mostk for some constantk. A finite automaton
over� × � is synchronized if it is built up from a subautomatonA0 with edge labels all in
� × � by attaching directed paths of length at mostk such that the edge labels along each
path are either all in� × {�} or all in {�} × �. These paths are attached at their initial points
only and are otherwise disjoint from each other.

It is clear that any rational transduction accepted by a synchronized automaton is syn-
chronized. The converse follows from[5, Proposition 2.1].

Lemma 2.17. A rational transduction is synchronized if and only if it is accepted by a
synchronized finite automaton.

Lemma 2.18. A combing C for a group G supports a prefix-closed synchronous automatic
structure with uniqueness if and only if C is prefix-closed with uniqueness and for each
a ∈ � the binary relation�a = {(u, v) |u, v ∈ C, ua = v} is a synchronized rational
transduction.

Proof. SupposeC supports a prefix-closed synchronous automatic structure with unique-
ness in the sense of[4, Definition 2.3.1]. It is clear that the associated binary relations�a

are rational transductions. By[4, Lemma 2.3.9]the uniqueness condition onC implies that
the�a ’s are synchronized rational transductions.

For the converse takeC and�a , a ∈ � as above. Synchronized finite automata accepting
the�a ’s fit the definition of the automata occurring in[4, Definition 2.3.1]once labels(a, �)
and(�, a) are replaced by labels(a,$) and($, a), respectively. The same conclusion holds
for ��, as it is the identity onC. �

Automatic structures can also be defined in terms of regular combings satisfying fellow
traveler conditions.These conditions are defined in terms of the word metricdcorresponding
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to a choice of generators (1). We writeDa(w, v)�k if two wordsw, v ∈ �∗ satisfy the
asynchronousk-fellow traveler condition andDs(w, v)�k if they satisfy the synchronous
k-fellow traveler condition. The following lemma records some well known properties.

Lemma 2.19. If Ds(w, v)�k, thenDa(w, v)�k. Further,

(1) If Da(u, v)�k andDa(v, v
′)�k′, thenDa(u, v

′)�k + k′.
(2) If Ds(u, v)�k andDs(v, v

′)�k′, thenDs(u, v
′)�k + k′.

(3) Ds(u,uv)� |v|.

3. Finding generators

In this section we proveTheorems 1 and 2 in one direction by extracting from an automatic
structure a language of generators of the required type. The arguments are identical for both
types of automatic group except for one paragraph which applies only to the synchronous
case.

LetG be automatic of either type. Make a choice of generators (1), and takeN to be the
kernel of�. As in Definitions 2.15 and 2.18C is a combing supporting a prefix-closed auto-
matic structure with uniqueness, and for eacha ∈ �, �a ={(u, v) |u, v ∈ C, a ∈ �, ua=v}
is a rational transduction. In the synchronous case�a is a synchronized rational transduc-
tion. We will show thatL = {uav−1 |u, v ∈ C, a ∈ �, ua = v,uav−1 is freely reduced} is
the desired language of generators.

First we note that by constructionL is closed under inverse. Next we show thatL is a linear
language. By Lemma 2.4 the product(�a){(a, �)} = {(ua, v) |u, v ∈ C, a ∈ �, ua = v} is
a rational transduction. Likewise�=⋃

a∈��a ={(ua, v) |u, v ∈ C, a ∈ �, ua = v} is also
a rational transduction. HenceL′ = {uav−1 |u, v ∈ C, a ∈ �, ua = v} is a linear language.
As L is the intersection ofL′ with the regular language of nontrivial freely reduced words,
L is linear by Lemma 2.7.

In the synchronous case� is synchronous because each�a is. Thus for some positive
integerk, (ua, v) ∈ � implies that|ua| and|v| differ by at mostk. We conclude that in the
synchronous case thea’s arek-central for words inL and henceo-central as well.

It remains to show that in both casesL is a language of generators and thea’s are
significant letters forL. Observe that prefix closure and uniqueness forC imply thatĈ is a
set of prefix-closed coset representatives forN inF. We will interpret this fact geometrically.

Eachw ∈ �∗ may be thought of as a path beginning at 1 in�, the Cayley diagram of
G with respect to the set of generators�. We pick one letter from each paira, a−1 to use
as edge labels in�. An edge of� traversed backwards is construed as a forward edge with
the inverse label.C is a spanning tree for�, and any worduav−1 with ua = v is a cycle.
If a labels an edge of� in the spanning treeC, then because of our convention about edge
labels,uav−1 is a cycle inCand thus freely equal to�. Otherwiseuav−1 is freely reduced by
inspection. Likewise free reduction of a product of two words inu1a1v

−1
1 , u2a2v

−1
2 ∈ L,

cannot involve theai ’s unless they are labels of inverse edges in� in which case the product
is freely equal to�. Finally if uav−1 is freely reduced, so isva−1u−1. It follows that thea’s
are significant letters forL. HenceL is a language of free generators and their inverses for
the subgroup〈L̂〉 ⊂ F .
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A wordw ∈ �∗ represents an element ofN if and only ifw is a cycle in�. Thus〈L̂〉 ⊂ N .
On the other hand supposew is a cycle in�. A short argument by induction on the number,
n, of edges ofw not in� shows thatw is freely equal to a product of words inL. Indeed if
n = 0, then as abovew is a cycle inC and so freely equal to�, which is the empty product.
Otherwisew = uaxwherea labels the first edge not inC. But thenu ∈ C, and there is
uav−1 ∈ L. Consequentlyw is freely equal to(uav−1)vx. But vx is a cycle to which the
induction hypothesis applies.

4. Finding automatic structures

We complete the proofs of Theorems 1 and 2 by finding the required automatic structures.
Assume thatG is a group with choice of generators (1) and thatN has a linear language,
L, of freely reduced generators with significant letters. By Lemmas 2.9 and 2.7 we may
assume thatL is closed under inverse.

It suffices to show that�∗ contains a prefix-closed regular combing with uniqueness
which satisfies the appropriate fellow-traveler property. The arguments in the two cases are
almost identical. When it is necessary to distinguish between them, we refer to the central
and noncentral cases.

Let L be accepted by an automatonA over�� × ��. If possible chooseA to be syn-
chronized. Let� be the rational transduction accepted byA; L = {uv−1 | (u, v) ∈ �}.

If A is synchronized, there are no edges with label(�, �). However, in general there
may be some. If there is a cycle with label(�, �), then identifying all the vertices in the
cycle, discarding the edges in the cycle, and taking the resulting vertex to be initial or
terminal if one of the identified vertices does not change the set of labels of successful
paths. Consequently, we assume that there are no such cycles.

Without loss of generality delete edges and vertices ofA not lying on successful paths.
If A was synchronized before this change, it remains so. Choose a constantK greater than
the number of vertices and edges inA.

If G is free or finite, there is nothing to prove. Thus we may assumeN �= 1 andN has
infinite index inF. As finitely generated normal subgroups of free groups have finite index,
N is not finitely generated. ThusL is infinite, and consequentlyA has at least one cycle.

DefineA0 to be the subgraph ofA consisting of all vertices and edges which are in
cycles or in paths leading to cycles. As every edge ofA is on a successful path, the initial
vertex ofA must be inA0. By definition ofA0 there are no cycles inA − A0 and no
edges fromA−A0 intoA0. Consequently every path inA lies inA0 except for its last
j vertices for somej �K.

Lemma 4.1. An edge ofAwhose label holds the significant letter for some successful path
does not lie inA0.

Proof. Assume otherwise. There is a successful path�= �1�2 such that�1 is inA0 and the
significant letter occurs in an edge label of�1. Since�1 is inA0, there are successful paths
�1�3�4�5 where�4 is a cycle. By Lemma 2.9 all these paths have the same label. But then
�4 must have label(�, �) contrary to our assumption about cycles inA. �
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Lemma 4.2. In the central case� is a synchronized rational transduction, and the edge
labels ofA0 lie in � × �.

Proof. We claim that every cycle inA has label(u, v) with |u| = |v|. As every path in
A has at mostK edges which do not occur in cycles along the path, it will follow that
||x| − |y||�K for every(x, y) ∈ �. Hence,� will be synchronized.

To verify our claim suppose(u, v) is the label of a cycle inA and|u| �= |v|. As all cycles
lie in A0, Lemma 4.1 implies that for fixed wordsu0, u1, v0, v1 and all integersi�0, L
contains wordsu0u

iu1v
−1
1 v−iv−1

0 whose significant letters occur in the subwordu1v
−1
1 . It

follows by a straightforward argument that the significant letters ofL are noto-central and
hence notk-central. Thus our claim is valid.

Finally, since� is synchronized, our choice ofA guarantees thatA is too. It follows
from Definition 2.16 that the edge labels ofA0 lie in � × �. �

The choice of generators (1) determines a Cayley diagram� forGwith the corresponding
word metricd. Each word in�∗ is the label of a unique path from 1 in�, and we will use
w to refer to the path as well as the word. A word represents an element ofN if and only if
it is a cycle in�.

Lemma 4.3. The language C consisting of all prefixes not including the significant letter
of eachw ∈ L is a prefix-closed combing with uniqueness for G. Further, if ua = v for
u, v ∈ C anda ∈ �, then either uav−1 is freely equal to� or uav−1 ∈ L with significant
letter a.

Proof. C is obviously prefix closed. For anyg ∈ G there is a simple pathw in � from 1
to g. SinceN �= 1, there is a simple cycle of length at least 1 starting atg. Extend the path
w by continuing around this cycle until its first return tow and then followingw back to 1.
This extension ofw is a cycle passing throughgwith freely reduced label. Consequentlyw

is the free reduction of a product of generators fromL. Each of these generators is a cycle,
and one of them, sayw = uav−1, must contain the vertexg. Consequently some prefix ofu
or of v is a path from 1 tog. AsL is closed under taking inverses, that prefix lies inC. Thus
Cmaps ontoG.

To prove thatCmaps injectively toG supposeu = v for u, v ∈ C with u �= v. It follows
that uv−1 is freely equal to a nonempty product of generators fromL. By the nature of
significant letters, the prefixu1a1 from the first generatoru1a1v

−1
1 in the product and the

suffix anv
−1
n from the last generator are not affected by free reduction of the product. Asu

andv are both freely reduced, it follows thatu1a1 is a prefix ofu or anv
−1
n is a suffix of

v−1. But by the definition ofC together with Lemma 2.9 this is impossible.
The last assertion is proved in the same manner. Asu andv are freely reduced,uav−1

is either freely reduced or freely equal tou1v
−1
1 for prefixesu1 of u andv1 of v. In the

latter caseu1 = v1 by injectivity whenceuav−1 is freely equal to�. In the former case the
argument of the previous paragraph yields eitherua = u1a1 or av−1 = anv

−1
n . It follows

thatn = 1 anduav−1 = u1a1v
−1
1 . �
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Lemma 4.4. In the noncentral case there is a constant k such that C satisfies the asyn-
chronous k-fellow traveler condition. In the central case there is a constant k such that C
satisfies the synchronous k-fellow traveler condition.

Proof. Supposeu, v ∈ C with d(u, v)�1 in �. If d(u, v) = 0, thenu = v by uniqueness
and both fellow traveler conditions are satisfied withk = 0. If d(u, v) = 1, thenua = v for
somea ∈ �. By Lemma 4.3 eitherua is freely equal tov or uav−1 ∈ L. In the first case
both fellow traveler conditions are satisfied withk = 1.

Assume the second case holds, and suppose� is a successful path inA with labeluav−1.
� consists of a prefix�0 in A0 followed by a suffix of length at mostK. Let (u0, v0) be the
label of�0. By Lemma 4.1u0 includes all but the lastj letters ofu for somej �2K, and
likewise forv0. In the central case|u0| = |v0| as the edge labels ofA0 are all from� × �.
By Lemma 2.19 it suffices to prove thatu0 andv0 arek0 fellow travelers of the appropriate
type for some constantk0.

Consider any vertexp of �0. There is a path of length at mostK from p to a terminal
vertex ofA. Thusu0x(v0y)

−1 ∈ L for some wordsx, y with |x|, |y|�K. Consequently
u0x = v0y, which implies that the word differenceu−1

0 v0 has the same image inG as some
word of length at most 2K. In the noncentral case we see immediately thatDa(u0, v0)�2K.
In the central caseDs(u0, v0)�2K because the edge labels ofA0 are all in� × �. �

It remains only to show thatC is regular, but unfortunately there does not seem to be any
reason why this should be so. However, by replacing certain suffixes of length at most 2K

of words inCwith new suffixes of length at most 2K we obtain a combingC′ which works.
Recall thatA0 is the subgraph ofA supported by all vertices which are in cycles or

in paths leading to cycles and thatA0 contains the initial vertex ofA. MakeA0 into an
automatonB0 over� by replacing each edge label(a, b) with the labela. The initial vertex
of B0 is the initial vertex ofA, and all vertices are terminal.B0 accepts a prefix-closed
regular languageC0. By Lemma 4.1C0 is a collection of prefixes ofC. It follows from the
structure ofA that each word inC is obtained by appending a word of length at most 2K

to a word inC0. We will defineC′ by appending other suffixes of at most the same length.
LetX be the set of all words in�∗ of length at most 2K. ClearlyC ⊂ C0X. DefineC′ as

follows. For eachg ∈ G pick the uniquex ∈ X minimum in the shortlex order such that
there existsu0 ∈ C0 with u0x = g. SinceC ⊂ C0X, such au0 exists. By the uniqueness
property ofC, there is just one choice foru0. Also since� is the minimum element ofX in
the shortlex order, our construction guaranteesC0 ⊂ C′.

Lemma 4.5. C′ is a prefix-closed combing with uniqueness. For some constantk′, C′
satisfies the appropriatek′-fellow traveler condition.

Proof. C′ has uniqueness by construction. Likewise Lemma 4.4 and the properties listed
in Lemma 2.19 insure thatC′ satisfies the appropriate fellow traveler condition. To show
prefix closure consider a prefixv of u0x ∈ C′. If v is a prefix ofu0, thenv ∈ C0 ⊂ C′.
Otherwisev = u0x1 for some prefixx1 of x = x1x2. If v /∈C′, then there existsu1y ∈ C′
with u1 ∈ C0, u1y = u0x1 andy <x1.But thenyx2 <x andu1yx2 = u0x contradicting the
construction ofC′. �
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We must show thatC′ is a regular language. For eachx ∈ X letCx={r | r ∈ C0, rx ∈ C′}.
C′ = ⋃

xCxx is regular if eachCx is. Cx = C0 − ⋃
y∈X,y<xCx,y whereCx,y = {r | r ∈

C0, rx = sy for somes ∈ C0}, so it suffices to show thatCx,y is regular.
Define a finite automaton over�� × �� from the ball of radiusk + 4K around 1 in the

Cayley automatonAG by taking 1 as the initial vertex andxy−1 as the single terminal
vertex. Let�x,y be the rational transduction accepted by this automaton. By Lemma 2.14

�x,y is contained in the set of(u, v) such thatu−1v = xy−1 and contains all(u, v) such that

u−1v = xy−1, andDa(u, v)�k + 4K.
Supposer, s ∈ C0 with rx = sy for x, y ∈ X. As C0 ⊂ C, Lemmas 4.4 and 2.19 imply

Da(r, s)�k + |x| + |y|�k + 4K. Hence�x,y ∩ (C0 ×C0) is a rational transduction whose
projection onto the first coordinate isCx,y . ThusCx,y is regular.
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