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Abstract

We define a new multispecies model of Calogero typP idimensions with harmonic, two-body and three-body interactions.
Using the underlying conforma&@U(1, 1) algebra, we indicate how to find the complete set of the states in Bargmann—Fock
space. There are towers of states, with equidistant energy spectra in each tower. We explicitely construct all polynomial
eigenstates, namely the center-of-mass states and global dilatation modes, and find their corresponding eigenenergies. We
also construct ladder operators for these global collective states. Analysing corresponding Fock space, we detect the universal
critical point at which the model exhibits singular behavior. The above results are universal for all systems with underlying
conformalSU(1, 1) symmetry.
0 2004 Published by Elsevier B.W@pen access under CC BY license.
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1. Introduction are connected with a number of mathematical and
physical problems, ranging from random matrices and
The (rational) Calogero model describ&siden- symmetric polynomial$3] to condensed matter sys-

tical particles on the line which interact through an tems and black hole physi¢4]. The model is also
inverse-square two-body interaction and are subjectedconnected to Haldane’s exclusion statistjb$. The
to a common confining harmonic force. Starting from role of Haldane statistical parameter is played by (uni-
the inception[1], the model and its various descen- versal) coupling constant in the two-body interaction.
dants (also known as Calogero—Sutherland—MoserIn Haldane’s formulation there is the possibility of
systemg2]) continue to be of interest for both physics having particles of different species with a mutual sta-
and mathematics communjtgrimarily because they tistical coupling parameter depending on the species
coupled. This suggest the possible generalization of
~ E-mail addressesneljanac@irb.hr (S. Meljanac), T[he O.rdmary _one-dlmen5|onal c.:aIOQe.ro model with
marijan@phy.hr (M. Milekot), a.samsarov@irb.hr identical particles to the one-dimensional Calogero
(A. Samsarov). model with non-identical péicles. Diginguishabillity
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can be introduced by allowing particles to have dif- for the most general ground state wave function for
ferent masses and different couplings to each other.the N distinguishableCalogero-like particles inD
In this way a one-dimensional multispecies Calogero dimensions in the formi(= 1)
model is obtaineb,7]. PRV
Further generalizatiooan be achieved by formu-  o(FL, ..., 7x) = Ae™ 2 Zi=ii, 1)
lating the model in dimensions higher than one. In \yhere the Jastrow prefactor is generalized to
the case of single-species model(s), it was shown that
some exact eigenstates (including the ground state) A = l_[|?i =", vj=vj, i,j=12,...,N.

can be obtained for & dimensions provided that a i<j
long-range three-body interaction is add@d The in- (2)
evitable appearance of three-body interactioPis 1 Here,m; are masses of the particlesis the frequency

makes any analysis of such a model(s) highly non- of the harmonic potential and;; are the statistical
trivial and very little is known about their exact solv-  parameters between particlesand j. In principle,
ability. Some progress has been achieved only recentlyone could start with any wave function with no
for a class of two-dimensional models with identical nodes, except at the coincidence points, and which
particles[9]. is continuosly connected with Gauss function when

In a present Letter we propose a new type of par- parameters;; — 0. Note that forv;; = v, m; = m
tially solvable multispecies model of Calogero type and D +# 1, Eq. (1) smoothly goes to exact ground
in D dimensions. In addition to the harmonic po- state of the Calogero—Marchioro modéll], so the
tential, it contains two-body and three-body interac- wave function(1) is a natural choice. Adopting the
tions with coupling constants depending on the parti- reasoning from Ref12], we can ask for what kind of
cle’s species. We also allow particles to have different Hamiltonian is the wave functiofi) the exact ground
masses. In this way we incorporate both generaliza- state. It turns out thatVy(r1,...,7n) will be, for
tions mentioned above into a single model. We in- sufficiently small deformations;;, the exact ground
dicate how to obtain (in pritiple) all eigenstates of  state of the Hamiltonian
the model Hamiltonian in Bargmann representation. N , N
The spectrum of states shows a remarkable simplic- , _ 1 Z i§2 LY Zm'F‘Z

=1 M 24 o

i

ity. There are towers of states with equidistant ener- =~ 2
gies. We are able to find all polynomial eigenstates 1_ i+ D—2) [ 1 1
and corresponding eigenagies of the Hamiltonian, + = Z - = <_ + _>
describing global collective states. Closer inspection 2 i<j lri —rjl mip o mj
qf the Fock space, correspondmg to the relatlv_e mo- 1 vijvir (Fi — 7)) (Fi — 7x)
tion of particles, reveals the existence of the universal + > - 2. -2 (3)
critical point at which system exhibits singular behav- it ik Milri =1l = il
iour. This result generalizes that mentioned(i0]. such that
Our results are universal and applicable to all systems
with underlyingSU(1, 1) algebra. HWo = Eo¥, (4)
ND
Eozw(7+2v,~j>zweo. (5)
2. A model Hamiltonian i<i

The ground stat¢l) and the Hamiltoniar{3) are in-
We start the analysis with observation that the variant under the group of permutationfelements,
exact wave functions of the Calogero model are highly Sy, generated by exchange operat&fs [13]. Oper-
correlated. These correlations are encoded in the waveatorsK;; interchange indices <> j in all quantities,
functions in the form of a Jastrow prefactaf — x;)" i.e.,mj <> mj, vik < Vjk, I <> Fj, pi <> Pj.
for any pair of particles, j. The exponent of the For D = 1 the three-body term i(3) identically
correlator is related to the strength of the two-body vanishifv;; = v, m; =m orif v;; = am;m;, « beeing
interaction. It is then plausible to make an ansatz some universal constafi]. Unlike in one dimension,



S. Meljanac et al. / Physics Letters B 594 (2004) 241-246

however, it does not vanish in higher dimensions and
plays a crucial role in the analysis that is to follow.

Let us perform the non-unitary transformation on
Yo, namely Yo = A~1¢. It generates a similarity
transformation which leads to anoth8y invariant
HamiltonianH = A~1HA. We find H as

N 2 N
~ 1 1 =92 W -2
H:—E‘ m_, l+?Zmiri
i=1 i=1
FoF) (1. 1
_ Zvi/ El q])z (_vl _ —Vj)
i<j |rl _r]| mi m]
:a)ZT+—T_, (6)

N
T =:_L i"Z
- l
21=1m’
G- (1. 1.
+3 SV =),
Z”|?—?|2 mi ' omj Y
i<j ! J
1 1{ &
T+_§Zmi7,-2, To=§(27ivi+€o>- (7)
i=1 i=1

The operatord’y, Tp satisfy theSU(1, 1) algebra

[T-, Ty]=2To. [To, T+] = (8)

The following identity (i.e., similarity transformation)
holds forw # 0:

+T.

H=w?T, —T_ =2wSToS™ 1,

S_efwT+e sz,

©)

Owing to this identity, we can employ Bargmann
representation and construct iteratively Bargmann—
Fock space of eigenstates. We begin with st@te
which is the lowest weight vector of the operafor
and also an eigenstate 6:
€0

T_®o=0, To®o = E@o. (10)
In our casego = 1 andeg is given inEq. (5)

The tower of excited states (level O-tower) is
obtained by succesive application®f operator:

T_®yp = D2y 2,
p=0123,....

Za)To(sz =w2p+ €0)P2p,
(11)
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The states®,, are either polynomials or irrational

functions of homogenity 2, and are eigenstates 1.

Two succesive states differ in energy by an amount 2
Similarly, one can construct towers of states at

IeveIl(bZH,p 0,1,2,....,1=(G1=12,...,N;
a1=1,2,..., D), using

I I I
T_®'=0, T-®y =Py

Za)TocZiszrl =w(2p+ €)@yt

2p+1- (12)

Here ell is energy of the first excited state which tends
to (1+ ) in the limit v;; — 0. Two succesive states
also dlffer in energy by an amoun&?

Following the procedure, one gets the towers of
states at levet, 0< k < N D, using

n,..Ix _~n 4+ 5., /A
T, 0, I ¢2p+k =Popii-2
----- _ In,... I\ 5100 0k
ZwToq§2p+k _w(2p+6k )¢2p+k .

Here, the energies " tends to(k + %2) in the

limit v;; — 0. The statesbzl';,; I are eigenstates of

the Hamiltonian 7o = S~1H S, Eq. (9) Particularly,
the state®g = 1 is a ground state (i.e., the lowest
energy eigenstate) for all towers & < ¢/,
VI, ..., I; and for all indice.

Notice that the operatof;. of Eq. (7) acting on
the particular state in the given tower, gives an another
state in the same tower with energy greater by an
amount 2 (see als&ection 3Eq. (17).

The procedure outlined above Hgs. (10)—(12)
is exhaustive, i.e., it gives all eigenstates of the
S-transformed Hamiltonias—1A S (cf. Eq. (9)), pro-
vided one is able to solve differential equatidii4)
and (12). This is a non-trivial task, even i = 1.
However, one can readily show that this procedure,
when applied to the system of D-dimensional free
harmonic oscillatorsi(; = 0 in Egs. (6) and (3)
yields the following set of eigenstates fr= H

(FHT””) nie=0,12 ..., (13)
i=la=1

where (cf.Egs. (7) and (9)

S = e~ T+ 67%T* = gf“):’zL Z;\IzlmiFiz g_%%ZN: mi%
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Table 1 3. Ladder operatorsand Fock space
X Level« tower Indices representation for global collective states
0 1 -~
1 ry I=(.a) It is convenient to introduce the center-of-mass
2 T IL#1p coordinater and the relative coordinates [14]:
3 N h#hLh#I3#1 N N
: ' k==Y mi,  W=3%
= M - iri, R = ‘ i
i=1 i=1
- = o Mo
. . . i =1 — R, V, =Vi——Vg. 15
The corresponding eigenenergies are pr=ri PRV YR (15)

N D They satisfy identitie " , m;5; = YN, V,, =0.1n
ND E : . terms of the variables just introduced, the Hamiltonian
w + E Nig ). (14) = N i s
2 H and wave functiony separate into parts which

) ~_ describe center-of-mass motion (CM) and relative
For the convenience of the reader, we describe in yotion ®), namelyH = Hcw + Hg and (71, .

Table 1the structure of the few lowest towers of states n) = Po(R) o1, - . ., PN).

at levelk (Egs. (10)~(12)in this simple case. UsingEgs. (7) and (15)ve define creation{) and
For the general cas&gs. (10)—(12)the towers of  gppihjlation () operators

i=1 a=1

oy

ple monomial structure since they can be, in principle, ;1—“ = i ( /Mo R F L%R),

homogenious irrational functions. Froy. (13)one V2 VMo

can count the number of states at each level of given , . 1/7_

homogenity. For example, there a¥eD states of ho- A7 = 2\ w +oly ) 5 To, (16)

mogenity oneN D + YPWP=D states of homogenity
two, etc. There are’?” towers in total. (,8=1,2,...,D):
Now, one can put an interesting question, namely
is there, for sufficientlysmall deformation parame-
tersv;;, one-to-one correspondence between our mul-
tispecies modef (v;;), Eq. (6) andN D-dimensional
free harmonic oscillatorg? (v;; = 0) = I:[(U,'j =0).
According to our analysis, there is no unique similar-
ity transformation betweethese two systems. How-
ever, there is similarity transformation between given
tower in the interacting systemy;{ # 0) and analo- . . .
gous tower in the free system;( = 0), up to the con- Ngtice thatAf =ST+S7Y, AT = SRS~ andA] =
stante; ', Particularly, this was shown fab = 1 SVgS~1, with § defind inEq. (9) They act on the
and identical particlesf; = v) in Ref. [9]. In that ~ Fock vacuumo) o< ¥o(r1, ..., 7y) as
case, the e_|genstates are restrictedsfosymmetric ’KI@ _ A5|6) —0, ©0[0) = 1. (18)
representations.
We are unable to find towers of states by solving The excited states in the Fock space, corresponding to
differential equation§10)—(12)in general. However,  global collective states, are of the form
as we will show in the next section, we are able to con- (A+ )nl,l o (A* )nl.D(A+)n2|6>
struct global collective states for the Hamiltonig). 11 1D 2

H,Af]=+2wAj%. (17)

These states represent all states of the polynomial type D Ve s A
in Bargmann representation in generic case. Moreover, = | | (A1,)"*(43)"10), (19)
these states are universal for all systems with underly- a=1

ing conformalSU(1, 1) symmetry. whereny, =0,1,2,... (Vo) andn=0,1,2,....
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The repeated action of the operatorﬁa on the
vacuum|0) reproduces, in the coordinate represen-
tation, Hermite polynomials,, , (Ryv/Mw). Sim-
ilarly, the repeated action of the operatﬂf{ on
the vacuum|0) reproduces hypergeometric function,

245

condition
(N-DD 1
= T + E Z Vij = 0.
i#]

Eor (24)

At the critical point the system described B col-

which reduces to associated Laguerre polynomials Japses completely. This means that the relative coor-

Ligjrio_l(ZwTJr) for certain values of parameters. The

states(19) are eigenstates of the with the energy
eigenvalues (cf. last two equationskqs. (17)

D
Enyyinp = a)(an’a + 2n2 + 80)-

a=1

(20)

This is the part of the conigte spectrum which cor-

dinates, the relative momenta and the relative energy
are all zero at this critical point. There survives only
one oscillator, describing the motion of the centre-
of-mass. Such behaviour resembles some features of
the Bose—Einstein condensate. It was first noticed in
Ref. [9] for the caseD =1, v;; = v andm; =m. In

1

that case the critical poir{24) is simply atv = — .

(Notice that there is also critical point at=1 + %

responds to center-of-mass states and global dilatationfor this case). Of course, for the initial Hamiltoni&h

states, respectively.

Now we show that the staté$9) are perfectly nor-
malizable, i.e., quadratically integrable and physically
acceptable for both Hamiltoniar$ and H, provided
that g > D/2. First, we completely decouple CM-
and R-motion by introducing another set of the cre-
ation and annihilation operatofsgr, B }:

BE = A — S(A%)2

: (21)

such that

[T

Lo BJ|=0. (22)

Hence, we get

Hr=o[B,.Bf].  [Hg.By]|=+20B5,

Afa} L (23)

1 D
Hcm = Ea) Z{Al_,a’
a=1

The Fock space now splits into the CM-Fock space,
spanned by]'[le(AIa)”MIO)cm and the R-Fock
space, spanned b, )"2|0) g, where|0)cm o e~ SMER?
and|0)g oc e~ % Xi™i77 We point out thatR-modes
are universal for all systems with underlying confor-
mal SU(1, 1) symmetry, i.e., for the Hamiltonians of
the formH = —T_ + w?Ty + y Tp, whereTy., Ty sat-
isfy SU(1, 1) algebra8).

Closer inspection of theR-Fock space of the
Hamiltonian Hg, Eq. (23) reveals the existence of
the universal critical point defined by the zero-energy

Eq. (3) which is not unitary (i.e., physically) equiva-
lent to A, this corresponds to somg < 0, satisfying
Eq. (24) and the norm of the wave functigf) blows

up at the critical point. Fow;; negative but greater
than the critical valueg4), the wave function is sin-
gular at coincidence points but still quadratically in-
tegrable. Out of the critical point we have one-to-one
correspondence between our multispecies syg&m
and the system oV D-dimensional free oscillators,
at least for the dilatation stateB;)”2|())R.

4. Conclusion

In summary, we have defined a non-trivial many-
body HamiltonianH (Eq. (3) of Calogero type in
D dimensions with two- and three-body interactions
among non-identical particles. Strength of the inter-
actions, v;;, depends on the particle’s species and
this feature makes any analysis of such a model non-
trivial, even in D = 1. Using underlyingSU(1, 1)
structure of the transformed Hamiltoni#h (Eq. (6)
and Bargmann representation we outlined a procedure
which gave in principle all eigenstates of the Hamil-
tonian. While we were unable to solve correspond-
ing differential equation§11), (12), we were able to
find some general features of the solutions. There are
towers of states with equidistant energy spectra. In
each tower two neighbouringates differ in energy
by 2w. Moreover, we managed to solvé partially,
i.e., we explicitely found its global collective states,
corresponding to the center-of-mass motion and the
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