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Abstract

We define a new multispecies model of Calogero type inD dimensions with harmonic, two-body and three-body interactio
Using the underlying conformalSU(1,1) algebra, we indicate how to find the complete set of the states in Bargmann
space. There are towers of states, with equidistant energy spectra in each tower. We explicitely construct all po
eigenstates, namely the center-of-mass states and global dilatation modes, and find their corresponding eigenen
also construct ladder operators for these global collective states. Analysing corresponding Fock space, we detect the
critical point at which the model exhibits singular behavior. The above results are universal for all systems with und
conformalSU(1,1) symmetry.
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1. Introduction

The (rational) Calogero model describesN iden-
tical particles on the line which interact through
inverse-square two-body interaction and are subje
to a common confining harmonic force. Starting fro
the inception[1], the model and its various desce
dants (also known as Calogero–Sutherland–Mo
systems[2]) continue to be of interest for both physi
and mathematics community, primarily because the
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are connected with a number of mathematical
physical problems, ranging from random matrices a
symmetric polynomials[3] to condensed matter sy
tems and black hole physics[4]. The model is also
connected to Haldane’s exclusion statistics[5]. The
role of Haldane statistical parameter is played by (u
versal) coupling constant in the two-body interacti
In Haldane’s formulation there is the possibility
having particles of different species with a mutual s
tistical coupling parameter depending on the spe
coupled. This suggest the possible generalizatio
the ordinary one-dimensional Calogero model w
identical particles to the one-dimensional Calog
model with non-identical particles. Distinguishabillity
icense.
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can be introduced by allowing particles to have d
ferent masses and different couplings to each ot
In this way a one-dimensional multispecies Calog
model is obtained[6,7].

Further generalizationcan be achieved by formu
lating the model in dimensions higher than one.
the case of single-species model(s), it was shown
some exact eigenstates (including the ground st
can be obtained for aD dimensions provided that
long-range three-body interaction is added[8]. The in-
evitable appearance of three-body interaction inD > 1
makes any analysis of such a model(s) highly n
trivial and very little is known about their exact sol
ability. Some progress has been achieved only rece
for a class of two-dimensional models with identic
particles[9].

In a present Letter we propose a new type of p
tially solvable multispecies model of Calogero ty
in D dimensions. In addition to the harmonic p
tential, it contains two-body and three-body intera
tions with coupling constants depending on the pa
cle’s species. We also allow particles to have differ
masses. In this way we incorporate both general
tions mentioned above into a single model. We
dicate how to obtain (in principle) all eigenstates o
the model Hamiltonian in Bargmann representati
The spectrum of states shows a remarkable simp
ity. There are towers of states with equidistant en
gies. We are able to find all polynomial eigensta
and corresponding eigenenergies of the Hamiltonian
describing global collective states. Closer inspect
of the Fock space, corresponding to the relative m
tion of particles, reveals the existence of the unive
critical point at which system exhibits singular beha
iour. This result generalizes that mentioned in[7,10].
Our results are universal and applicable to all syste
with underlyingSU(1,1) algebra.

2. A model Hamiltonian

We start the analysis with observation that
exact wave functions of the Calogero model are hig
correlated. These correlations are encoded in the w
functions in the form of a Jastrow prefactor(xi − xj )

ν

for any pair of particlesi, j . The exponent of the
correlator is related to the strength of the two-bo
interaction. It is then plausible to make an ans
for the most general ground state wave function
the N distinguishableCalogero-like particles inD
dimensions in the form (̄h = 1)

(1)Ψ0(�r1, . . . , �rN) = ∆e− ω
2

∑N
i=1 mi �r 2

i ,

where the Jastrow prefactor is generalized to

(2)

∆ =
∏
i<j

|�ri − �rj |νij , νij = νji, i, j = 1,2, . . . ,N.

Here,mi are masses of the particles,ω is the frequency
of the harmonic potential andνij are the statistica
parameters between particlesi and j . In principle,
one could start with any wave function with n
nodes, except at the coincidence points, and wh
is continuosly connected with Gauss function wh
parametersνij → 0. Note that forνij = ν, mi = m

and D �= 1, Eq. (1) smoothly goes to exact groun
state of the Calogero–Marchioro model[11], so the
wave function(1) is a natural choice. Adopting th
reasoning from Ref.[12], we can ask for what kind o
Hamiltonian is the wave function(1) the exact ground
state. It turns out thatΨ0(�r1, . . . , �rN) will be, for
sufficiently small deformationsνij , the exact ground
state of the Hamiltonian

H = −1

2

N∑
i=1

1

mi

�∇2
i + ω2

2

N∑
i=1

mi�r 2
i

+ 1

2

∑
i<j

νij (νij + D − 2)

|�ri − �rj |2
(

1

mi

+ 1

mj

)

(3)+ 1

2

∑
i �=j,i �=k

νij νik(�ri − �rj )(�ri − �rk)
mi |�ri − �rj |2|�ri − �rk |2

,

such that

(4)HΨ0 = E0Ψ0,

(5)E0 = ω

(
ND

2
+

∑
i<j

νij

)
≡ ωε0.

The ground state(1) and the Hamiltonian(3) are in-
variant under the group of permutation ofN elements,
SN , generated by exchange operatorsKij [13]. Oper-
atorsKij interchange indicesi ↔ j in all quantities,
i.e.,mi ↔ mj , νik ↔ νjk , �ri ↔ �rj , �pi ↔ �pj .

For D = 1 the three-body term in(3) identically
vanish ifνij = ν, mi = m or if νij = αmimj , α beeing
some universal constant[7]. Unlike in one dimension
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however, it does not vanish in higher dimensions a
plays a crucial role in the analysis that is to follow.

Let us perform the non-unitary transformation
Ψ0, namely Ψ̃0 = ∆−1Ψ0. It generates a similarity
transformation which leads to anotherSN invariant
HamiltonianH̃ = ∆−1H∆. We findH̃ as

H̃ = −1

2

N∑
i=1

1

mi

�∇2
i + ω2

2

N∑
i=1

mi�r 2
i

−
∑
i<j

νij

(�ri − �rj )
|�ri − �rj |2

(
1

mi

�∇i − 1

mj

�∇j

)

(6)= ω2T+ − T−,

where we have introduced

T− = 1

2

N∑
i=1

1

mi

�∇2
i

+
∑
i<j

νij

(�ri − �rj )
|�ri − �rj |2

(
1

mi

�∇i − 1

mj

�∇j

)
,

(7)T+ = 1

2

N∑
i=1

mi�r 2
i , T0 = 1

2

(
N∑

i=1

�ri �∇i + ε0

)
.

The operatorsT±, T0 satisfy theSU(1,1) algebra

(8)[T−, T+] = 2T0, [T0, T±] = ±T±.

The following identity (i.e., similarity transformation
holds forω �= 0:

H̃ = ω2T+ − T− = 2ωST0S
−1,

(9)S = e−ωT+ e− 1
2ω T− .

Owing to this identity, we can employ Bargman
representation and construct iteratively Bargma
Fock space of eigenstates. We begin with stateΦ0,
which is the lowest weight vector of the operatorT−
and also an eigenstate ofT0:

(10)T−Φ0 = 0, T0Φ0 = ε0

2
Φ0.

In our case,Φ0 = 1 andε0 is given inEq. (5).
The tower of excited states (level 0-tower)

obtained by succesive application ofT− operator:

T−Φ2p = Φ2p−2, 2ωT0Φ2p = ω(2p + ε0)Φ2p,

(11)p = 0,1,2,3, . . . .
The statesΦ2p are either polynomials or irrationa
functions of homogenity 2p, and are eigenstates ofT0.
Two succesive states differ in energy by an amountω.

Similarly, one can construct towers of states
level 1,ΦI1

2p+1, p = 0,1,2, . . . , I1 = (i1 = 1,2, . . . ,N;
α1 = 1,2, . . . ,D), using

T−Φ
I1
1 = 0, T−Φ

I1
2p+1 = Φ

I1
2p−1,

(12)2ωT0Φ
I1
2p+1 = ω

(
2p + ε

I1
1

)
Φ

I1
2p+1.

Here,εI1
1 is energy of the first excited state which ten

to (1+ ND
2 ) in the limit νij → 0. Two succesive state

also differ in energy by an amount 2ω.
Following the procedure, one gets the towers

states at levelk, 0� k � ND, using

T−Φ
I1,...,Ik

k = 0, T−Φ
I1,...,Ik

2p+k = Φ
I1,...,Ik

2p+k−2,

2ωT0Φ
I1,...,Ik

2p+k = ω
(
2p + ε

I1,...,Ik

k

)
Φ

I1,...,Ik

2p+k .

Here, the energiesεI1,...,Ik

k tends to(k + ND
2 ) in the

limit νij → 0. The statesΦI1,...,Ik

2p+k are eigenstates o

the Hamiltonian 2ωT0 = S−1H̃S, Eq. (9). Particularly,
the stateΦ0 = 1 is a ground state (i.e., the lowe
energy eigenstate) for all towers ifε0 < ε

I1,...,Ik

k ,
∀I1, . . . , Ik and for all indicesk.

Notice that the operatorT+ of Eq. (7), acting on
the particular state in the given tower, gives an ano
state in the same tower with energy greater by
amount 2ω (see alsoSection 3, Eq. (17)).

The procedure outlined above inEqs. (10)–(12)
is exhaustive, i.e., it gives all eigenstates of
S-transformed HamiltonianS−1H̃S (cf. Eq. (9)), pro-
vided one is able to solve differential equations(11)
and (12). This is a non-trivial task, even inD = 1.
However, one can readily show that this procedu
when applied to the system ofN D-dimensional free
harmonic oscillators (νij = 0 in Eqs. (6) and (3))
yields the following set of eigenstates forH̃ = H :

(13)S ·
(

N∏
i=1

D∏
α=1

r
ni,α

i,α

)
, ni,α = 0,1,2, . . . ,

where (cf.Eqs. (7) and (9))

S = e−ωT+ e− 1
2ω

T− = e−ω 1
2

∑N
i=1 mi �r 2

i e
− 1

2ω
1
2

∑N
i=1

1
mi

�∇2
i .
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Table 1

k Level-k tower Indices

0 1 –
1 rI I = (i,α)

2 rI1rI2 I1 �= I2
3 rI1rI2rI3 I1 �= I2 �= I3 �= I1
.
.
.

.

.

.
.
.
.

The corresponding eigenenergies are

(14)ω

(
ND

2
+

N∑
i=1

D∑
α=1

ni,α

)
.

For the convenience of the reader, we describe
Table 1the structure of the few lowest towers of sta
at levelk (Eqs. (10)–(12)) in this simple case.

For the general case,Eqs. (10)–(12), the towers of
states at levelk, Φ

I1,...,Ik

k , need not have such a sim
ple monomial structure since they can be, in princip
homogenious irrational functions. FromEq. (13)one
can count the number of states at each level of g
homogenity. For example, there areND states of ho-
mogenity one,ND + ND(ND−1)

2 states of homogenit
two, etc. There are 2ND towers in total.

Now, one can put an interesting question, nam
is there, for sufficientlysmall deformation parame
tersνij , one-to-one correspondence between our m
tispecies model̃H(νij ), Eq. (6), andN D-dimensional
free harmonic oscillatorsH(νij = 0) = H̃ (νij = 0).
According to our analysis, there is no unique simil
ity transformation betweenthese two systems. How
ever, there is similarity transformation between giv
tower in the interacting system (νij �= 0) and analo-
gous tower in the free system (νij = 0), up to the con-

stantεI1,...,Ik

k . Particularly, this was shown forD = 1
and identical particles (νij = ν) in Ref. [9]. In that
case, the eigenstates are restricted toSN -symmetric
representations.

We are unable to find towers of states by solv
differential equations(10)–(12)in general. However
as we will show in the next section, we are able to c
struct global collective states for the Hamiltonian(6).
These states represent all states of the polynomial
in Bargmann representation in generic case. Moreo
these states are universal for all systems with unde
ing conformalSU(1,1) symmetry.
3. Ladder operators and Fock space
representation for global collective states

It is convenient to introduce the center-of-ma
coordinate�R and the relative coordinates�ρi [14]:

�R = 1

M

N∑
i=1

mi�ri , �∇R =
N∑

i=1

�∇i ,

(15)�ρi = �ri − �R, �∇ρi = �∇i − mi

M
�∇R.

They satisfy identities
∑N

i=1 mi �ρi = ∑N
i=1

�∇ρi = 0. In
terms of the variables just introduced, the Hamilton
H̃ and wave functionΨ̃0 separate into parts whic
describe center-of-mass motion (CM) and relat
motion (R), namelyH̃ = H̃CM + H̃R andΨ̃0(�r1, . . . ,

�rN) = Ψ̃0( �R)Ψ̃0( �ρ1, . . . , �ρN).
UsingEqs. (7) and (15)we define creation (+) and

annihilation (−) operators

�A±
1 = 1√

2

(√
Mω �R ∓ 1√

Mω
�∇R

)
,

(16)A±
2 = 1

2

(
T−
ω

+ ωT+
)

∓ T0,

which satisfy the following commutation relation
(α,β = 1,2, . . . ,D):[
A−

1,α,A+
1,β

] = δαβ,[
A−

1,α,A−
1,β

] = [
A+

1,α,A+
1,β

] = 0,[ �A−
1 ,A+

2

] = �A+
1 ,

[
A−

2 , �A+
1

] = �A−
1 ,

[
A−

2 ,A+
2

] = H̃

ω
,

[
H̃ , �A±

1

] = ±ω �A±
1 ,

(17)
[
H̃ ,A±

2

] = ±2ωA±
2 .

Notice thatA±
2 = ST±S−1, �A+

1 = S �RS−1 and �A−
1 =

S �∇RS−1, with S defind in Eq. (9). They act on the
Fock vacuum|0̃〉 ∝ Ψ̃0(�r1, . . . , �rN) as

(18)�A−
1 |0̃〉 = A−

2 |0̃〉 = 0, 〈0̃|0̃〉 = 1.

The excited states in the Fock space, correspondin
global collective states, are of the form(
A+

1,1

)n1,1 · · · (A+
1,D

)n1,D
(
A+

2

)n2|0̃〉

(19)≡
D∏

α=1

(
A+

1,α

)n1,α
(
A+

2

)n2|0̃〉,

wheren1,α = 0,1,2, . . . (∀α) andn2 = 0,1,2, . . . .
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The repeated action of the operatorsA+
1,α on the

vacuum |0̃〉 reproduces, in the coordinate repres
tation, Hermite polynomialsHn1,α

(Rα

√
Mω). Sim-

ilarly, the repeated action of the operatorA+
2 on

the vacuum|0̃〉 reproduces hypergeometric functio
which reduces to associated Laguerre polynom
L

ε0−1
n2+ε0−1(2ωT+) for certain values of parameters. T

states(19) are eigenstates of thẽH with the energy
eigenvalues (cf. last two equations inEqs. (17))

(20)En1,α ;n2 = ω

(
D∑

α=1

n1,α + 2n2 + ε0

)
.

This is the part of the complete spectrum which cor
responds to center-of-mass states and global dilata
states, respectively.

Now we show that the states(19)are perfectly nor-
malizable, i.e., quadratically integrable and physica
acceptable for both Hamiltonians̃H andH , provided
that ε0 > D/2. First, we completely decouple CM
andR-motion by introducing another set of the cr
ation and annihilation operators{B+

2 ,B−
2 }:

(21)B±
2 = A±

2 − 1

2

( �A±
1

)2
,

such that

(22)
[
A±

1,α,B∓
2

] = 0.

Hence, we get

H̃R = ω
[
B−

2 ,B+
2

]
,

[
H̃R,B±

2

] = ±2ωB±
2 ,

(23)H̃CM = 1

2
ω

D∑
α=1

{
A−

1,α,A+
1,α

}
+.

The Fock space now splits into the CM-Fock spa
spanned by

∏D
α=1(A

+
1,α)n1,α |0̃〉CM and the R-Fock

space, spanned by(B+
2 )n2|0̃〉R , where|0̃〉CM ∝ e− ω

2 M �R2

and |0̃〉R ∝ e− ω
2

∑
i mi �ρ 2

i . We point out thatR-modes
are universal for all systems with underlying confo
mal SU(1,1) symmetry, i.e., for the Hamiltonians o
the formH = −T− + ω2T+ + γ T0, whereT±, T0 sat-
isfy SU(1,1) algebra(8).

Closer inspection of theR-Fock space of the
Hamiltonian H̃R, Eq. (23), reveals the existence o
the universal critical point defined by the zero-ene
condition

(24)E0R = (N − 1)D

2
+ 1

2

∑
i �=j

νij = 0.

At the critical point the system described bỹHR col-
lapses completely. This means that the relative c
dinates, the relative momenta and the relative ene
are all zero at this critical point. There survives on
one oscillator, describing the motion of the cent
of-mass. Such behaviour resembles some feature
the Bose–Einstein condensate. It was first notice
Ref. [9] for the caseD = 1, νij = ν andmi = m. In
that case the critical point(24) is simply atν = − 1

N
.

(Notice that there is also critical point atν = 1 + 1
N

for this case). Of course, for the initial HamiltonianH ,
Eq. (3), which is not unitary (i.e., physically) equiva
lent toH̃ , this corresponds to someνij < 0, satisfying
Eq. (24), and the norm of the wave function(1) blows
up at the critical point. Forνij negative but greate
than the critical values(24), the wave function is sin
gular at coincidence points but still quadratically
tegrable. Out of the critical point we have one-to-o
correspondence between our multispecies system(6)
and the system ofN D-dimensional free oscillators
at least for the dilatation states(B+

2 )n2|0̃〉R .

4. Conclusion

In summary, we have defined a non-trivial man
body HamiltonianH (Eq. (3)) of Calogero type in
D dimensions with two- and three-body interactio
among non-identical particles. Strength of the int
actions, νij , depends on the particle’s species a
this feature makes any analysis of such a model n
trivial, even in D = 1. Using underlyingSU(1,1)

structure of the transformed HamiltoniañH (Eq. (6))
and Bargmann representation we outlined a proce
which gave in principle all eigenstates of the Ham
tonian. While we were unable to solve correspo
ing differential equations(11), (12), we were able to
find some general features of the solutions. There
towers of states with equidistant energy spectra
each tower two neighbouring states differ in energy
by 2ω. Moreover, we managed to solvẽH partially,
i.e., we explicitely found its global collective state
corresponding to the center-of-mass motion and
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1;
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81

6
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43

2)

l.

.

Ap-
relative motion of particles. Those are all polynom
solution in the Bargmann representation in gene
case. We also found their eigenenergies. The spec
of collective modes,Eq. (20), is linear, equidistan
and degenerate. It is also found that, for

∑
i �=j νij =

−(N − 1)D, the Fock space, corresponding to the r
ative motion of particles, contained states of zero no
and the whole system exhibited singular behaviour
this critical point the ground state wave function of t
HamiltonianH , Eq. (3), posseses infinite norm.

If we consider identical Bose (Fermi) particle
with mi = m, andνij = ν, the eigenstates are restrict
to SN -symmetric (antisymmetric) functions and t
critical point is atν = −D/N . Our analysis of mul-
tispecies Calogero model gives deeper insight on
single-species Calogero models in higher dimensio

All results presented here are common and uni
sal for all systems with underlying conformalSU(1,1)

symmetry. The potentially most interesting applic
tions of our results might be in two dimensions a
quantum Hall efect.
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