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It is shown that the inherent one-loop quadratic divergence of the Higgs mass renormalization of the
standard model may be avoided in the well-studied scotogenic model of radiative neutrino mass as well
as other analogous extensions.
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In quantum field theory, the additive renormalization of m2

for a scalar field of mass m is a quadratic function of the cut-
off scale Λ. The elegant removal of this quadratic divergence is a
powerful theoretical argument for the existence of supersymmetric
particles. However, given the recent discovery of the 126 GeV par-
ticle [1,2] at the Large Hadron Collider (LHC), presumably the long
sought Higgs boson of the standard model, and the nonobservation
of any hint of supersymmetry, it may be a good time to reexamine
an alternative solution of the quadratic divergence problem.

It was suggested a long time ago [3] that in the standard model
of quarks and leptons, the condition
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where N f = 3 for quarks and N f = 1 for leptons, would make the
coefficient of the Λ2 contribution to m2

H vanish. This would predict
mH = 316 GeV, which we now know to be incorrect.

The same idea may be extended to the case of two Higgs dou-

blets [4–7] where 〈φ0
1,2〉 = v1,2, with v =

√
v2

1 + v2
2 = 174 GeV.

In that case, the vanishing of quadratic divergences would also
depend on how Φ1,2 couple to the quarks and leptons. In the sco-
togenic model of radiative neutrino mass [8], there are two scalar
doublets (φ+, φ0) and (η+, η0), distinguished from each other by
a discrete Z2 symmetry, under which Φ is even and η odd. Thus
only φ0 acquires a nonzero vacuum expectation value v . This same
discrete symmetry also prevents η from coupling to the usual
quarks and leptons, except for the Yukawa terms

LY = hij
(
νiη

0 − liη
+)

N j + H .c., (2)

where N j are three neutral singlet Majorana fermions odd un-
der Z2. As a result, neutrinos obtain one-loop finite radiative Ma-
jorana masses as shown in Fig. 1. This is a well-studied model
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Fig. 1. One-loop generation of neutrino mass with Z2 symmetry.

which also offers
√

2Re(η0) as a good dark-matter candidate [9].
The lightest N may also be a dark-matter candidate [10] but is
more suitable if the dark-matter discrete symmetry Z2 is extended
to U (1)D as proposed recently [11].

The scalar potential of the scotogenic Z2 model is given by [8]
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Let φ0 = v + H/
√

2 and η0 = (ηR + iηI )/
√

2, then

m2(H) = 2λ1 v2, (4)

m2(η±) = m2
2 + λ3 v2, (5)

m2(ηR) = m2
2 + (λ3 + λ4 + λ5)v2, (6)

m2(ηI ) = m2
2 + (λ3 + λ4 − λ5)v2. (7)

The corresponding two conditions for the vanishing of quadratic
divergences are
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Fig. 2. One-loop generation of electron mass with soft Z2 breaking.
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Consequently, the following two sum rules are obtained:
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where 3h2 = ∑
i, j h2

i j . Since λ2 must be positive, Eq. (11) can-
not be satisfied without the Yukawa couplings of Eq. (2). In other
words, the existence of N , hence the radiative generation of neu-
trino mass, is necessary for this scenario. In a model with simply
a second “inert” scalar doublet [12,13], vanishing quadratic diver-
gence will not be possible. To test Eq. (10), Eqs. (5) to (7) may be
used, i.e.

2λ4 v2 = m2
R + m2

I − 2m2+. (12)

As for λ3, it may be extracted [14,15] from H → γ γ using also m+ .
However Eq. (11) is very difficult to test, because h2 and λ2 are not
easily measurable.

Analogous extensions of the scotogenic model may also accom-
modate vanishing quadratic divergences. As an example, consider
the addition of a charged scalar χ+ odd under Z2, then the elec-
tron may acquire a radiative mass by assigning eR to be odd with
the Yukawa couplings f ēR NLχ

− as shown in Fig. 2, where NL is
even under Z2, but the soft Dirac mass term N̄L NR breaks Z2 ex-
plicitly. With the addition of χ+ , the scalar potential has the extra
terms
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The conditions for vanishing quadratic divergence in this model are
then:
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3
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Again, verification is possible, at least in principle. Other more in-
volved scenarios such as the scotogenic U (1)D model [11] or that
of a recent proposal [16], where all quark and lepton masses are
radiative with either Z2 or U (1)D dark matter, may also have sim-
ilar viable solutions.

It is of course well-known that the one-loop vanishing of the
Higgs quadratic divergence is not invariant under the renormal-
ization-group running of the gauge, Yukawa, and quartic scalar
couplings. Thus the two-loop SM contribution has also been stud-
ied [17,18]. Whereas it is impossible to have both set equal to zero,
if the latter is viewed as a perturbation to the first for a physical
cutoff [19], then the approximate validity of the Veltman condition
remains a plausible solution. Other ideas regarding the inherent
quadratic divergence of any scalar mass have also been discussed
in the recent literature [20–22].
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