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1. Introduction

The circular polarization of the photon in the b → sγ pro-
cess has a unique sensitivity to new physics, namely to the right-
handed charged current (see e.g. [1–3]). While it is a very funda-
mental observable, the experimental determination of the photon 
polarization was not achieved at a high precision in the previous B
factory experiments. Therefore, this is a very important challenge 
for LHCb as well as for the upgrade of B factory, Belle II experi-
ment. Various theoretical ideas to measure the photon polarization 
have been proposed (pioneered by [4–8] and followed by [9–12]) 
and many experimental efforts are currently on-going [13,14]. 
Since the photon polarization measurement determines the Wil-
son coefficient C (′)

7 , it will have an important consequence to the 
global fit as well [15].

Recently the LHCb Collaboration has presented an interesting 
result [16] on the so-called up-down asymmetry of the B →
Kππγ decay, originally proposed in [7,8]. The up-down asymme-
try, which is the difference of the number of events with photon 
emitted above and below the Kππ decay plane in the Kππ ref-
erence frame, can indeed provide the information on the photon 
polarization. The basic idea is to determine the photon polariza-
tion by measuring the K1 polarization, which is correlated with 
the photon polarization, through its angular distribution in the 
B → Kππγ decay.

To determine the photon polarization from the LHCb result, we 
need the detailed prediction of the K1 → Kππ strong decay. In 
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our previous works [9,17], we have obtained this information by 
using the other experimental results, mainly the isobar model de-
scription from the ACCMOR Collaboration [18], complemented by 
the theoretical model computation using the 3 P0 model [19]. The 
B → K1(1270)γ → Kππγ channel, different from the K1(1400)

channel, requires various unconventional treatments and unfortu-
nately, our conclusion is that there are certain uncertainties re-
maining to describe this channel. The main difficulties are (see [17]
for the detailed discussions):

• the existence of two intermediate processes, K1(1270) → K ∗π
and K1(1270) → Kρ , with the latter being just on the edge 
of the Kρ phase space and having however a large branching 
ratio. Quasi-threshold effects must be taken into account;

• furthermore, as we found, the final estimation of photon po-
larization is also sensitive to the contribution of the K1(1270)

decay channels with scalar isobars, K1(1270) → K (ππ)S−wave

or K1(1270) → (Kπ)S−waveπ , which are not well determined, 
neither by experiment nor by theory.

These problems must be solved in the future with more detailed 
analysis of K1 resonances, which are produced from B , τ or J/ψ
decays.

In this article, we rather propose a model independent ap-
proach to circumvent the problem. In all the previous works, only a 
partial angular distribution was considered, i.e. taking into account 
only one θ angle. We show in this article that with a more com-
plete angular description, the information on the K1 decay needed 
for photon polarization determination can be extracted directly 
from B → Kππ + γ decay. That is, using the angles involving not 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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only the cos θ like distribution which yields the up-down asymme-
try, but also the azimuthal angle φ dependence, we can obtain the 
full hadronic information without the isobar model description of 
the resonances.

In fact, with the limited statistics available for B → Kππ + γ , 
this method is currently difficult. On the other hand, it turns out 
that we can obtain the same hadronic information from another 
channel B → Kππ + J/ψ where two orders of magnitudes higher 
statistics, with respect to the photon channel, is available [20]. We 
show that the full angular distribution measurement allows us to 
separate the B decay and K1 decay parts so that we can extract 
the same hadronic information from the B → Kππ + J/ψ decay.

For the moment, for a simpler illustration of the approach, we 
consider the case of only one K1 resonance, which may be prac-
tically supported by the fact that B → K1(1270)γ seems largely 
dominant over B → K1(1400)γ [14,16,21,22].

The rest of the article is organized as follows: in section 2, we 
introduce the kinematical variables including the θ and φ angles 
which are crucial for our work. In section 3, we write down the 
decay amplitudes of B → K1 J/ψ and B → K1γ with K1 decaying 
to Kππ . In section 4, we derive the angular distributions for these 
decays. Then, we demonstrate in section 5 that the hadronic infor-
mation we need to determine the photon polarization in B → K1γ
can be obtained directly from the measurement of angular co-
efficients in B → K1 J/ψ and/or B → K1γ , and we conclude in 
section 6.

2. Kinematics of B+ → V K +
1 → V K +π+π− decay (V = J/ψ, γ )

In this section, we describe all the definitions of the kinemati-
cal variables (see Fig. 1). We use B+ → V K +

1 → V K +π+π− decay 
as an example but one can obtain the similar formulae for other 
charge combinations. Throughout this article, we work in the K1
rest frame. We can move to the conventional B rest frame or any 
other frame simply by a Lorentz transformation. First, we assign 
the three momenta as

π+(�p1) , π−(�p2) , K +(�p3) . (1)

Now, we define a standard orthogonal frame, with respect to 
the spin direction of K1, or V = J/ψ, γ . First, the O z is defined as 
the V direction

�ez = �pV

|�pV | = −�pB

|�pB | . (2)

We define the axis perpendicular to the Kππ decay plane by �n:

�n = �p1 × �p2

|�p1×�p2| . (3)

Then, the O y is chosen as normal to the O z and V = J/ψ, γ di-
rection by

�e y = �pV × �n
|�pV ×�n| . (4)

Finally, O x is then chosen as the normal to O y and O z: �ex =
�e y × �ez .

One also defines a polar angle θ , of �n with respect to the �ez:

cos θ = �ez · �n (5)

Let us here set a condition for θ as

�ex · �n = sin θ > 0, 0 < θ < π . (6)

Now we rotate �ex onto the Kππ decay plane and define the 
result as �e ′

x which can be written as

�e ′
x = �e y × �n (7)
Fig. 1. Kinematics of the B → K1(→ Kππ)V decay.

We can then define a second orthogonal frame, which is based on 
the K1 decay plane, �e ′ , �e y , �n. Defining φ1,2 to be the azimuthal 
angle from the �e ′

x axis in this (x′, y) decay plane, the components 
of the pions three momenta,

�p1,2 = |�p1,2|(cosφ1,2 �e ′
x + sinφ1,2 �e y) , (8)

can be expressed in terms of θ , φ1,2 in the standard frame as:

(�p1,2)x = |�p1,2| cos θ cosφ1,2 ,

(�p1,2)y = |�p1,2| sinφ1,2 ,

(�p1,2)z = −|�p1,2| sin θ cosφ1,2 .

(9)

The advantage is that the angles θ , φ1,2 are connected directly 
with the decay plane. We note that the linear combination of the 
φ1,2 angles,

δ ≡ φ2 − φ1 , (10)

is a function the Dalitz variables defined by

s = (pK1)
2

s13 = (p1 + p3)
2 = (pK1 − p2)

2 ,

s23 = (p2 + p3)
2 = (pK1 − p1)

2 ,

s12 = (p1 + p2)
2 = (pK1 − p3)

2 .

(11)

In the K1 rest frame, �pK1 = 0 and |�p1,2,3| can be expressed in 
terms of s23, s13, s12 respectively. Since only two of them are inde-
pendent, we choose s23, s13 for symmetry. Then the relative angle 
between the three momenta of the two pions

cos δ = �p1 · �p2

|�p1||�p2| = |�p3|2 − |�p1|2 − |�p2|2
2|�p1||�p2| , (12)

is expressible in terms of s, s13, s23. The same holds for the other 
relative angles between the three momenta.1 This means that the 
Kππ system is rigid once the masses of the two Kπ subsystems 
have been chosen. It is still allowed to rotate however: if the nor-
mal is fixed by a definite θ , there remains a free rotation of the 
rigid Kππ system around �n in the decay plane. We choose the 
angle defining this rotation as:

1 We have furthermore 0 < δ < π , (sin δ > 0), because the angles φ1, φ2 are mea-
sured in the plane oriented by the normal �n = �p1 × �p2/|�p1 × �p2|.
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φ ≡ φ1 + φ2

2
. (13)

In this way, the angle φ in the reference [7] is now fixed, which 
allows to perform definite calculations. Note that our definition is 
just one possible among many others while we have found it con-
venient because it simplifies the calculations.

Then, re-expressing φ1,2 as

φ1,2 = φ ∓ δ

2
,

one can get the components of �p1,2 in Eq. (9), expressed in terms 
of φ and the Dalitz variables.

3. The decay amplitudes and rates

The four body decay rate can be written as the product of the 
decay rates of B → K1sz V sz and K1sz → Kππ summed over the 
different V polarizations:

d
V
4 (s) ≡ d
(B → K1 V → (Kππ)V )s (14)

=
∑

sz

(2π)4

2MB

∣∣∣MV
sz

(B → K1sz V → (Kππ)V )s

∣∣∣2
(2π)3dsd�2d�3 ,

where sz is the polarization of V = J/ψ, γ :

sz = 0,±1 (for V = J/ψ), sz = ±1 (for V = γ ) . (15)

We follow the PDG convention, i.e. 
∫
�

d�2 = 1
(2π)5

|�p ∗
V |

2MB
, 
∫
ψ

d�3 =
1

32(2π)8
1
s ds13ds23dφd(cos θ), where the angles are those defined 

in the previous section. Here, B can be B± , B0 or B
0

. Denoting 
the amplitude of B → K1(s)V as Asz (s) and of K1(s) → Kππ as 
ε
μ
K1sz

Jμ , one can write:

MV
sz

(B → K1sz V → (Kππ)V )s =
AV

sz
(s) × (ε

μ
K1sz

Jμ(s13, s23)s)

(s − m2
K1

) + imK1
K1(s)
.

(16)

In the following, we consider only the dominant K1 = K1(1270) for 
simplicity, though it can be readily extended to include K1(1400). 
The propagator of the K1, which is parametrized here as Breit–
Wigner function, is introduced in order to use the Kππ invariant 
mass mKππ ≡ √

s as the varying K1 mass. The K1 rest frame is 
meant as the actual Kππ system. This is not a convention, but an 
assumption on the off-shell extrapolation of amplitudes, partially 
justified by unitarity. Note that this implies that the Dalitz plot 
(s13, s23) depends on s as well.

In Eq. (16), the full kinematical variable dependence of J is left 
implicit but it can be displayed with help of two form factors as 
C1,2 [9]:

Jμ(s13, s23)s ≡ C1(s, s13, s23)p1μ − C2(s, s13, s23)p2μ . (17)

These form factors could be made explicit in a quasi-two-body ap-
proach to the K1 decay [17]. Here, on the contrary, we want to 
determine them in a model independent way by using the experi-
mental data to avoid the ambiguities described in the introduction.

4. Angular distribution

Now, we define the probability density function (PDF) for a 
given value of s. First, the different transverse (sz = ±) and the 
longitudinal (sz = 0) polarizations of V state do not interfere, thus 
the decay rate is written as2:

2 For V = J/ψ , we integrate over the J/ψ decay angle here so that the interfer-
ence term disappears.
d
(B → K1 V → (Kππ)V )s

ds13ds23d(cos θ)dφ

= (2π)4

2MB
(2π)3ds

1

(2π)5

|�p ∗
V |

2MB

× 1

32(2π)8s

∣∣∣∣∣ 1

(s − m2
K1

) + imK1
K1(s)

∣∣∣∣∣
2

×
∑

sz

|AV
sz

(s)|2
∣∣∣�εK1sz

· �JK1(s13, s23)s

∣∣∣2
,

(18)

where �p ∗
V is the three momentum of V in the B reference frame, 

while the K1 polarization vector �εK1 and �JK1 are defined in the 
K1 reference frame. Therefore, the θ and φ dependence is con-

tained in the factor 
∣∣∣�εK1sz

· �JK1 (s13, s23)s

∣∣∣2
. Note that in Eq. (18), 

the width in the denominator could also be related to �JK1 , except, 
we have to add all charge combinations, K +

1 → K +π+π− and 
K +

1 → K 0π+π0 for K +
1 and K 0

1 → K +π0π− and K 0
1 → K 0π+π−

for K 0
1 (and similar for the charge conjugations).

The PDF WV (s13, s23, cos θ, φ)s is obtained from Eq. (18) and is 
normalized as:∫

ds13

∫
ds23

∫
d(cos θ)

∫
dφ WV (s13, s23, cos θ,φ)s = 1 . (19)

Thus, the PDF can be written in terms of the squared decay ampli-
tudes, which are the functions of the kinematical variables we are 
interested in, without the irrelevant pre-factors:

WV (s13, s23, cos θ,φ)s =∑
sz

|AV
sz

(s)|2
∣∣∣�εK1sz

· �JK1(s13, s23)s

∣∣∣2

∫
ds13

∫
ds23

∫
d(cos θ)

∫
dφ

∑
sz

|AV
sz (s)|2

∣∣∣�εK1sz
· �JK1(s13, s23)s

∣∣∣2

(20)

Next we make explicit the angular distribution of WV using the 
definition of the coordinate system and angles given in section 2:

WV (s13, s23, cos θ,φ)s

≡ aV + (aV
1 + aV

2 cos 2φ + aV
3 sin 2φ) sin2 θ + bV cos θ , (21)

where the angular coefficients depend on the Dalitz variables and 
fixed value of s. They can be written as:

aV (s, s13, s23) = N V
s ξ V

a

[
|c1|2 + |c2|2 − 2Re(c1c∗

2) cos δ
]

, (22)

aV
1 (s, s13, s23) = N V

s ξ V
ai

[
|c1|2 + |c2|2 − 2Re(c1c∗

2) cos δ
]

, (23)

aV
2 (s, s13, s23) = N V

s ξ V
ai

[
(|c1|2 + |c2|2) cos δ − 2Re(c1c∗

2)
]

, (24)

aV
3 (s, s13, s23) = N V

s ξ V
ai

[
(|c1|2 − |c2|2) sin δ

]
, (25)

bV (s, s13, s23) = −N V
s ξ V

b

[
2Im(c1c∗

2) sin δ
]

, (26)

where the factor N V
s > 0 is the normalization factor, which is equal 

to the inverse of the denominator of Eq. (20).
The ξ ’s represent the B → K1 V decay, and thus, depend only 

on s

ξ V
a (s) ≡ |AV+(s)|2 + |AV−(s)|2

2
,

ξ V
ai

(s) ≡ −(|AV+(s)|2 + |AV−(s)|2) + 2|AV
0 (s)|2

4
,

ξ V
b (s) ≡ |AV+(s)|2 − |AV−(s)|2

.

(27)
2
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In fact, for V = γ , the longitudinal amplitude vanishes (Aγ
0 = 0), 

which simplifies the above expressions, giving as a result aγ =
−2aγ

1 .
The coefficients c1,2 are related to the form factors in Eq. (17)

as:

c1(s, s13, s23) = C1(s, s13, s23)|�p1|,
c2(s, s13, s23) = C2(s, s13, s23)|�p2| ,
where we wrote explicitly the Dalitz variables dependence. The an-
gle δ (with 0 < δ < π ) is defined as

cos δ = �p1 · �p2

|�p1||�p2| .

Let us also remind that all the relevant kinematical variables can 
be expressed in terms of the Dalitz variables:

|�p1,2|2 = E2
1,2 − m2

1,2 , �p1 · �p2 = E1 E2 − s12 − m2
1 − m2

2

2
,

E1,2 = s − s23,13 + m2
1,2

2
√

s
.

5. Photon polarization: relating the B → K1γ and B → K1 J/ψ
amplitudes

The photon polarization in the B → K1γ process which we 
want to determine is defined as following:

Pγ ≡ |Aγ
+(s)|2 − |Aγ

−(s)|2
|Aγ

+(s)|2 + |Aγ
−(s)|2 . (28)

Strictly speaking, Pγ is different from the “polarization parame-
ter”

λγ ≡ |C+|2 − |C−|2
|C+|2 + |C−|2 (29)

where C± represents only the short-distance b → sγ decay, i.e. 
C+/C− 	 ms(b)/mb(s) for B(B) decays, while the amplitude Aγ

±(s)
is written as the product of C± and the hadronic form factor T1(0)

which contains the long-distance effect. Now, when we consider 
only one K1 final state, we expect a single form factor for both ±
polarization, i.e. Aγ

±(s) ∝ T1(0). Thus, the long-distance part can-
cels out and Pγ becomes equivalent to λγ . On the other hand, 
the so-called charm loop contributions deviate the form factors for 
the ± polarization, which induces a small difference between Pγ

and λγ . We will come back to this issue later-on. Note that Pγ is 
s-independent even after including a possible charm loop contribu-
tion as the s-dependence part is the same for Aγ

±(s) for radiative 
decays. We will also discuss on a possible s-dependence of Pγ

later-on.
Now using Eq. (27), one can find

Pγ = ξ
γ
b

ξ
γ
a

. (30)

We show now that this can be determined from the measurement 
of angular coefficients of B → K1γ and B → K1 J/ψ , i.e. aV , aV

i , 
aγ , bγ in Eq. (21) in a model independent way. The result, which is 
our main finding, is:

Pγ = ξ
γ
b

ξ
γ
a

= ∓bγ (s, s13, s23)

aγ (s, s13, s23)

× 1√
1 −

(
aV

2 (s,s13,s23)

aV
1 (s,s13,s23)

)2

−
(

aV
3 (s,s13,s23)

aV
1 (s,s13,s23)

)2
.

(31)
Let us briefly derive this equation. First, we obtain ξγ
a via:

ξ
γ
a = aγ (s, s13, s23)

Nγ
s

[|c1|2 + |c2|2 − 2Re(c1c∗
2) cos δ

] . (32)

The term in the square brackets in the denominator is common for 
V = J/ψ, γ and can be obtained for given point of (s, s13, s23) as

|c1|2 +|c2|2 − 2Re(c1c∗
2) cos δ = aV (s, s13, s23)

N V
s ξ V

a (s)
= aV

1 (s, s13, s23)

N V
s ξ V

ai
(s)

.

(33)

Next, we determine ξγ
b from the experimental measurement of 

bγ (s, s13, s23):

ξ
γ
b = − bγ (s, s13, s23)

Nγ
s

[
2 Im(c1c∗

2) sin δ
] . (34)

Now we obtain the denominator factor 2Im(c1c∗
2) sin δ. By writing

Im(c1c∗
2) = ±

√
|c1|2|c2|2 − [Re(c1c∗

2)]2 ,

we find that we need to obtain independently these two factors, 
|c1|2|c2|2 and Re(c1c∗

2), from the above equations. Then, by using 
Eqs. (23)–(25), we find

2 Im(c1c∗
2) sin δ = ± 1

N V
s ξ V

ai
(s)

×
√

(aV
1 (s, s13, s23))2 − (aV

2 (s, s13, s23))2 − (aV
3 (s, s13, s23))2

(35)

Finally, the sign ambiguity remains, which can not be resolved 
at this point.

Now by inserting Eqs. (32)–(35) into Eq. (30), we can obtain the 
polarization which we want to determine as Eq. (31)

The main result in Eq. (31) implies:

• The photon polarization in B → K1γ can be obtained from 
the measurement of the angular coefficients aγ (s, s13, s23), 
bγ (s, s13, s23) which can be measured only with the standard 
cos θ distribution, together with the coefficients aV

1,2,3(s, s13,

s23) which requires the azimuthal angle φ distribution. The ad-
vantage is that the latter coefficients can be measured equally 
by using either B → J/ψ K1 or B → K1γ decays. Therefore, 
we can take advantage of the much higher statistics of the 
J/ψ process.

• The final results depend only on the ratio of the angular coef-
ficients so that there is no need for the normalization.

• The photon polarization Pγ does not depend on s nor any 
Dalitz variables (sub-dominant effects which could induce 
s-dependence are discussed below), which implies that the ex-
pression in Eq. (31) is constant at any point of the (s, s13, s23)

plane. When we use the J/ψ to determine the denominator of 
this term, we simply need to map point by point on the Dalitz 
plane.

• Concerning the sign ambiguity, in practice, we may measure 
the absolute value of the polarization parameter |Pγ |. In this 
way, we are left with the sign ambiguity of overall sign of Pγ

but we can neglect the sign variation of bγ /aγ term since Pγ

must be constant in the (s, s13, s23) plane.

We should make a brief comment on the s-dependence of Pγ . 
Although it is sub-dominant, a contamination from the K1(1400)

resonance could cause the s-dependence. Also, the large width of 
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the K1(1270) itself inducing an s-dependence can not be impossi-
ble [23]. However, for both cases, the s-dependence would appear 
only at far the K1 pole. Therefore, in studying the amplitudes in 
the vicinity of the peak, we expect the final s-dependence to be 
very moderate.

As stressed earlier, the polarization Pγ differs in principle from 
λγ due to the charm loop contribution, which is not short distance, 
and is not included therefore in the C± coefficients. The evaluation 
of this effect is very difficult. It has been discussed quantitatively 
only in the simpler cases B → K ∗γ and B → K ∗l+l− where rather 
different evaluations have been proposed: one being a parametric 
one in the 1/mb expansion [24], another being through QCD sum 
rules [25,26]. In our paper [1], we have tried to discuss the con-
nection between the two evaluations. On the other hand, an eval-
uation of charm contributions to B → K1γ has not been done so 
far. Since the short-distance contributions, including new physics 
effects, should be the same for B → K ∗γ and B → K1γ , an obser-
vation of different photon polarizations between these two chan-
nels should be attributed to the long-distance effect, in particular, 
to the charm contributions. Therefore, such an observation could 
provide an important key to understand the charm loop contribu-
tions.

Before closing the section, let us discuss the reliability of the 
method. Our argument below is only qualitative since for a quan-
titative discussion, detailed Monte Carlo simulations would be 
needed. B → J/ψ Kππ has been studied by the Belle Collab-
oration [20]. In order to separate B → J/ψ K1 event from the 
J/ψ Kππ spectrum, a careful resonance study has to be done, 
namely vetoing other charmonium channels such as B → ψ(2S)K1
as well as the exotic resonances which decay into J/ψππ , i.e. 
B → X(3872)K or B → Y (4260)K . Nearly 2.5 × 103 events are 
identified as B → J/ψ K1 in [20]. Approximately 20(100) times 
more events are expected at Belle II with 10(50) ab−1 of data, 
which will allow easily to extract detailed Dalitz and angular distri-
butions of K1 decays. Therefore the errors expected in the second 
part of Eq. (31) (those written in terms of aV

i ) would be nearly 
negligible.

The main uncertainty will come from the first part of Eq. (31), 
i.e. the ratio of the angular coefficient of B → K1γ , bγ (s, s13, s23)/

aγ (s, s13, s23). In the recent analysis of Babar [14], about 2.5 × 103

B+ → K +π+π−γ events are reconstructed, among which 60% 
are known to come from B+ → K +

1 (1270)γ . Thus, with Belle II 
with 10(50) ab−1 of data, we expect 5(25) × 103 B → K1(1270)γ
events. With LHCb run one data (3 fb−1), 1.4 × 104 B+ →
K +π+π−γ events are reconstructed, which extrapolate to ∼2.2 ×
104 events for B+ → K +

1 (1270)γ at the end of LHCb run II 
(8 fb−1). With this size of data, we can easily make over a hundred 
of bins on the Dalitz plane, which can be further optimized by us-
ing the known decay property of K1(1270). This naive estimate 
tells that we can have order of 10 MeV resolution on ππ and Kπ
invariant mass, which can lead to a high enough sensitivity to Pγ .

6. Conclusions

The angular distribution in the polar angle θ of the B →
Kresγ → Kππγ process has recently been measured by the LHCb 
Collaboration [16]. Among various kaonic resonances Kres, a large 
B → K1(1270)γ contribution has been identified, confirming the 
previous result [14,21,22]. The extraction of the b → sγ photon 
polarization from this data requires a detailed knowledge of the 
K1 decays, in particular, the imaginary part of the product of the 
two form factors, Im(c1c∗

2). The imaginary part is, in general, very 
sensitive to the resonance structure of the decay while there are 
many uncertainties in the resonance decay structure of K1(1270), 
especially due to i) the limited phase space for the main decay 
channel K1(1270) → ρK resulting in strong distortion effects, ii) a 
possible K1(1270) → κπ contributions, neither well determined 
experimentally nor theoretically tractable.

In order to circumvent this problem, we propose a determina-
tion of the strong interaction factor Im(c1c∗

2) independent of an 
isobar model for the K1 decay. This method requires the Dalitz plot 
of the angular coefficients including both polar and azimuthal an-
gles. In this article, we have shown that the same Dalitz plot anal-
ysis can be also obtained through the B → J/ψ K1 → J/ψ Kππ
channel. The B decay part of these two channels are very different 
while we found that we have enough observables to separate the 
B decay part. The realization of our proposal would require a de-
tailed Monte Carlo studies, in particular by evaluating the binning 
effect.
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