Assigning a single server to inhomogeneous queues with switching costs

Ger Koole ${ }^{*, 1}$
Vrije Universiteit, Faculty of Mathematics and Computer Science, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Reccived September 1995
Communicated by I. Mitrani

Abstract

In this paper we study the preemptive assignment of a single server to two queues. Customers arrive at both queues according to Poisson processes, and all service times are exponential, but with rates depending on the queues. The costs to be minimized consist of both holding costs and switching costs. The limiting behavior of the switching curve is studied, resulting in a good threshold policy. Numerical results are included to illustrate the complexity of the optimal policy and to compare the optimal policy with the threshold policy.

1. Introduction

Our model consists of two queues with Poisson arrivals (with rate λ_{i} at queue i) and exponential service times (with rate μ_{i} at queue i). There are holding costs (c_{i} at queue $i)$ for each time unit a customer spends in a queue. There is a single server, which has to divide its time between the queues. When the server moves from one queue to the other, switching costs are incurred (equal to $s_{i j}$ if the server moves from queue i to queue j). The objective of this paper is to study the optimal preemptive dynamic assignment of the server to the queues, with respect to the long run discounted or average costs. We characterize the optimal policy in as much detail as possible, and we compare the optimal policy with several heuristics.

A special case of this model, with $\mu_{1}=\mu_{2}$ and $c_{1}=c_{2}$ (and with switching times instead of switching costs), has been studied in [6,8]. In both papers it is shown that the optimal policy serves each queue exhaustively. (In [8] a more general model is considered, allowing for more than two queues and different information structures.) In [6] it is conjectured that it is optimal for the server to switch from an empty queue to

[^0]the other if the number of customers in the other queue exceeds a certain level. Such a policy is called a threshold policy.

Another special case, the one with $s_{12}=s_{21}=0$, has been studied extensively. For this model the μc-rule is known to be optimal (e.g. [3]). The μc-rule serves, amongst the non-empty queues, a customer in the queue with highest $\mu_{i} c_{i}$.

In this paper we study the general case with arbitrary parameters.
Before going into the technical details of the paper, let us first do a numerical experiment, to obtain some insight in the model. This we do using dynamic programming (dp). Using standard arguments (on which we elaborate in Section 2), we can reformulate our continuous time problem into a discrete time problem, and derive its dp equation.

Using a computer program, we computed the actions minimizing the α-discounted costs, (for a state space truncated at a sufficiently high level) for $\lambda_{1}=\lambda_{2}=1, \mu_{1}=$ $\mu_{2}=6, c_{1}=2, c_{2}=1, s_{12}=s_{21}=20$, and $\alpha=0.95$. The results can be found in Table 1. We denote the state of the system with (x, y), with $x=\left(x_{1}, x_{2}\right)$ the numbers of customers in the queues, and $y \in\{1,2\}$ the position of the server. A "-" at position $x=\left(x_{1}, x_{2}\right)$ denotes that if the server is in state $(x, 1)$, then it is optimal to switch from queue 1 to queue 2. A " + " denotes that it is optimal to switch to queue 1 in state $(x, 2)$. A "." denotes that the server stays at the present queue. In Table 1 the state space is truncated at $x_{1}, x_{2} \leqslant 15$, but the computations were done for higher truncation levels.

Several interesting conclusions can be drawn from Table 1. In the first place, as the policy in the table does not have a simple form, it seems unlikely that the optimal policy can be described easily.

Switching from queue 1 to queue 2 occurs only if $x_{1}=0$, i.e., queue 1 is served exhaustively. This we can prove (see Section 2), for all cases with $\mu_{1} c_{1} \geqslant \mu_{2} c_{2}$. Thus

Table 1
The optimal switching policy for $\lambda_{1}=\lambda_{2}=1, \mu_{1}=\mu_{2}=6, c_{1}=2, c_{2}=1, s_{12}=s_{21}=20$,

$x_{2}=15$	-		-	-	+	+	+	$+$	+	+	+	+	+	+	$+$	+
14	-	-	.	.	$+$	$+$	$+$	+	$+$	+	+	+	+	+	+	+
13	-	.	.	.	$+$	$+$	+	$+$	$+$	+	$+$	+	+	+	$+$	$+$
12	-	-	.	-	$+$	$+$	$+$	+	+	+	+	$+$	+	+	$+$	+
11	-	.	.	.	$+$	$+$	$+$	+	+	+	+	+	+	+	$+$	+
10	-	.		.	$+$	$+$	$+$	$+$	+	$+$	+	+	$+$	+	+	+
9	-	-	.	-	$+$	$+$	$+$	$+$	$+$	+	+	$+$	$+$	$+$	+	+
8	-	.	.	-	$+$	$+$	$+$	$+$	$+$	+	$+$	$+$	$+$	$+$	$+$	+
7	-	.	-	-	+	$+$	+	+	$+$	+	+	$+$	$+$	+	$+$	$+$
6	-	.	-	.	+	+	+	+	$+$	+	+	+	+	$+$	$+$	$+$
5	-	-	-	-	.	+	+	+	$+$	+	$+$	+	$+$	+	$+$	$+$
4	-		-	-	-	1	t	$+$	$+$	$+$	$+$	$+$	$+$	+	$+$	$+$
3	-	-	.	.	-	-	$+$	$+$	+	+	+	+	+	$+$	$+$	$+$
2		.	-	.	.	-	+	$+$	+	+	+	+	$+$	$+$	$+$	+
1		.	-	-	-	-	.	+	+	+	+	+	$+$	$+$	+	$+$
0		\cdot	+	+	$+$	$+$	+	+	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$
	$x_{1}=0$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

the queue that would get higher priority under the μc-rule in the case without switching costs, is served exhaustively. We also show in Section 2 that if $x_{1}=0$, then queue 2 is served exhaustively. This is also in compliance with the μc-rule.

From Table 1 it is clear that it is not optimal always to serve queue 2 exhaustively; if there are sufficient customers in queue 1 , it pays to switch to queue 1 . Note that serving queue 1 reduces the holding costs at a faster rate than by serving queue 2 . (This is the intuitive explanation of the optimality of the μc-rule.) However, to reduce costs at a faster rate we have to invest in the form of switching costs. This investment is only worthwhile if there are enough customers in queue 1 to serve. This suggests a threshold level for x_{1}, at which to switch to queue 1. In our example, this threshold clearly depends on x_{2}, but becomes constant for $x_{2}>5$ (and remains the same for values of x_{2} well beyond 15). The intuition behind this is that if there are only a few customers in queue 2 , it is better to serve these first before switching to queue 1 , thereby avoiding having to switch back to queue 2 after serving queue 1 exhaustively. This complex behavior lends itself hardly for analysis, but for the discounted costs criterion, and for x_{2} big enough, we can prove that the optimal policy does not depend on x_{2}. This is done in Section 3, and we show how the optimal policy for x_{2} large can be computed. In Section 4 we compare numerically the optimal policy and several threshold policies, one of which is based on the limiting policy obtained in Section 3.

Independently, both Reiman and Wein [9] and Duenyas and Van Oyen [5] studied similar models. In [9] a heavy traffic approximation of the model is optimized, resulting in a threshold policy much like the one we obtain. This is done both for the model with switching costs and for the model with switching times. For general service times it is shown in [5] that the optimal policy serves the high priority queue exhaustively. Threshold policies are proposed and numerical results are derived, also for systems with more than two queues. Finally, in [2] the threshold policy for the two-dimensional model is further analyzed, both using analytical methods and the recently developed power series algorithm.

2. Exhaustive policies

In this Section we formally derive the discrete time dp equation, and prove some properties of this model, which partially describes the optimal policy.

In [12] it is shown that each continuous time Markov decision process with uniformly bounded transition rates is equivalent to a discrete time Markov decision chain, for the discounted cost criterion. In our model, the sum of the transition rates is bounded by $\gamma=\lambda_{1}+\lambda_{2}+\mu$ in each state (with $\mu=\max _{i} \mu_{i}$). By adding fictitious transitions from a state to itself, we can assume that the sum of the rates in each state is equal to γ. Let the costs at t in the continuous time model be discounted with a factor β^{t}. Then, according to [12], the optimal policy in the continuous time model is the same as the optimal policy in the discrete time model with the transition rates divided by γ
as transition probabilities, and with discount factor $\alpha=\gamma /\left(\log \left(\beta^{-1}\right)+\gamma\right)$. In each state, the transition probabilities sum to one due to the fictitious transitions. The minimal discounted costs in both models are equal up to a multiplicative factor γ. A similar result holds for the average cost case.

In our model we do not allow for idleness of the server at the current queue, if there are customers available at that queue. If $c_{i}>0$, it can indeed be shown that idleness is suboptimal, in the same way as Liu et al. [8] show it for their model. Note however, that the optimal policy need not be work conserving: in the example of the previous Section the server remains in state $((0,1), 1)$ at the empty queue 1 , while there is a customer waiting in queue 2 .

Assume, without restricting generality, that $\lambda_{1}+\lambda_{2}+\mu=1$. Recall that $x=\left(x_{1}, x_{2}\right)$ denote the queue lengths, and that y is the queue presently being served. The dp equation of the discrete time model is then as follows (with $e_{1}=(1,0)$ and $e_{2}=(0,1)$):

$$
\begin{align*}
V^{n}(x, y)= & \min \left\{\hat{V}^{n}(x, y), s_{y z}+\hat{V}^{n}(x, z)\right\}, \quad z=3-y, \tag{2.1}\\
\hat{V}^{n+1}(x, y)= & x_{1} c_{1}+x_{2} c_{2}+\alpha \lambda_{1} V^{n}\left(x+e_{1}, y\right)+\alpha \lambda_{2} V^{n}\left(x+e_{2}, y\right) \\
& +\alpha \mu_{y} V^{n}\left(\left(x-e_{y}\right)^{+}, y\right)+\alpha\left(\mu-\mu_{y}\right) V^{n}(x, y), \tag{2.2}
\end{align*}
$$

with $V^{0}(x, y)=0$. Here \hat{V}^{n} serves as an intermediate variable, making the notation easier. If $\alpha<1$ then $V^{n}(x, y)$ converges to the minimal discounted costs $V^{\alpha}(x, y)$ for all x and y, and the actions minimizing $V^{n}(x, y)$ converge to the minimizing actions in (x, y) (by results on negative dynamic programming, see [10]). In case $\alpha=1$ and if $\lambda_{1} / \mu_{1}+\lambda_{2} / \mu_{2}<1$, then an optimal average cost policy exists (e.g., by showing that for every work conserving policy the average costs are finite, and then verifying conditions (C) in [4]). Using results from [11] it can be shown that the results we are about to prove not only hold for the limiting discounted case, but they carry over to the average cost case as well.

In the remainder of this paper we study the discrete time model, whose dp equation is given by (2.1) and (2.2). Assume that $\mu_{1} c_{1} \geqslant \mu_{2} c_{2} \geqslant 0$, and that $s_{12}, s_{21} \geqslant 0$. To show that queue 1 should always be served exhaustively, we need a technical lemma. Define $\bar{\mu}_{i}=\mu-\mu_{i}$, and note that $\alpha<1$ is equivalent to taking $\lambda_{1}+\lambda_{2}+\mu<1$ and $\alpha=1$. Therefore we will suppress α in the notation, and drop the condition that $\lambda_{1}+\lambda_{2}+\mu=1$.

Lemma 2.1. For $n=0,1, \ldots$, we have

$$
\begin{equation*}
\mu_{1} V^{n}\left(x-e_{1}, 1\right)+\bar{\mu}_{1} V^{n}(x, 1) \leqslant \mu s_{12}+\mu_{2} V^{n}\left(x-e_{2}, 2\right)+\bar{\mu}_{2} V^{n}(x, 2), \quad x>0 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
V^{n}(x, y) \leqslant V^{n}\left(x+e_{i}, y\right) \tag{2.4}
\end{equation*}
$$

Proof. It is easily seen that

$$
\begin{equation*}
V^{n}(x, y) \leqslant s_{y z}+V^{n}(x, z), \quad z \neq y \tag{2.5}
\end{equation*}
$$

We use induction to n. Instead of proving (2.3) and (2.4) inductively, we will show that

$$
\begin{equation*}
\mu_{1} V^{n}\left(x-e_{1}, 2\right)+\bar{\mu}_{1} V^{n}(x, 2) \leqslant \mu_{2} V^{n}\left(x-e_{2}, 2\right)+\bar{\mu}_{2} V^{n}(x, 2) \tag{2.6}
\end{equation*}
$$

and (2.4) propagate.
Note that (2.3) follows from (2.6), because $V^{n}(x, 1) \leqslant s_{12}+V^{n}(x, 2)$ for all x. We start with (2.6). For $n=0$ the inequality holds. Assume it holds up to n. Consider $n+1$.

We have to distinguish between all combinations of actions in $\left(x-e_{2}, 2\right)$ and $(x, 2)$. The optimal actions in these states are denoted with a_{1} and a_{2}, respectively. If $a_{1}=$ $a_{2}=1$, it suffices to show

$$
\begin{equation*}
\mu_{1} \hat{V}^{n+1}\left(x-e_{1}, 2\right)+\bar{\mu}_{1} \hat{V}^{n+1}(x, 2) \leqslant \mu s_{21}+\mu_{2} \hat{V}^{n+1}\left(x-e_{2}, 1\right)+\bar{\mu}_{2} \hat{V}^{n+1}(x, 1) \tag{2.7}
\end{equation*}
$$

Now we have

$$
\begin{aligned}
\mu_{1} V^{n}\left(x-e_{1}+e_{i}, 2\right)+\bar{\mu}_{1} V^{n}\left(x+e_{i}, 2\right) \leqslant & \mu_{2} V^{n}\left(x-e_{2}+e_{i}, 2\right)+\bar{\mu}_{2} V^{n}\left(x+e_{i}, 2\right) \\
\leqslant & \mu_{2}\left(s_{21}+V^{n}\left(x-e_{2}+e_{i}, 1\right)\right) \\
& +\bar{\mu}_{2}\left(s_{21}+V^{n}\left(x+e_{i}, 1\right)\right)
\end{aligned}
$$

the first inequality by induction, the second by (2.5).
By (2.5) it also follows that

$$
\begin{aligned}
& \mu_{1} \mu_{2} V^{n}\left(x-e_{1}-e_{2}, 2\right)+\bar{\mu}_{1} \mu_{2} V^{n}\left(x-e_{2}, 2\right)+\mu_{1} \bar{\mu}_{2} V^{n}\left(x-e_{1}, 2\right)+\bar{\mu}_{1} \bar{\mu}_{2} V^{n}(x, 2) \\
& \leqslant
\end{aligned} \begin{aligned}
& \mu^{2} s_{21}+\mu_{1} \mu_{2} V^{n}\left(x-e_{1}-e_{2}, 1\right)+\bar{\mu}_{1} \mu_{2} V^{n}\left(x-e_{2}, 1\right)+\mu_{1} \bar{\mu}_{2} V^{n}\left(x-e_{1}, 1\right) \\
& \\
& \quad+\bar{\mu}_{1} \bar{\mu}_{2} V^{n}(x, 1)
\end{aligned}
$$

If we multiply the first inequality by λ_{i}, sum it for $i=1$ and 2 , add the second inequality to it, add $0 \leqslant \mu\left(1-\lambda_{1}-\lambda_{2}-\mu\right) s_{21}$ and $x_{1} c_{1}+x_{2} c_{2}-\mu_{1} c_{1} \leqslant x_{1} c_{1}+x_{2} c_{2}-\mu_{2} c_{2}$, then we find (2.7).

For $a_{1}=a_{2}=2$, we show

$$
\mu_{1} \hat{V}^{n+1}\left(x-e_{1}, 2\right)+\bar{\mu}_{1} \hat{V}^{n+1}(x, 2) \leqslant \mu_{2} \hat{V}^{n+1}\left(x-e_{2}, 2\right)+\bar{\mu}_{2} \hat{V}^{n+1}(x, 2)
$$

This inequality follows easily by induction and $\mu_{1} c_{1} \geqslant \mu_{2} c_{2}$. Note that if $x_{2}=1$ (2.4) is used.

If $a_{1}=1$ and $a_{2}=2$, it is sufficient to show

$$
\begin{equation*}
\mu_{1} \hat{V}^{n+1}\left(x-e_{1}, 2\right)+\bar{\mu}_{1} \hat{V}^{n+1}(x, 2) \leqslant \mu_{2} s_{21}+\mu_{2} \hat{V}^{n+1}\left(x-e_{2}, 1\right)+\bar{\mu}_{2} \hat{V}^{n+1}(x, 2) \tag{2.8}
\end{equation*}
$$

We have

$$
\begin{aligned}
& \mu_{1} V^{n}\left(x-e_{1}+e_{i}, 2\right)+\bar{\mu}_{1} V^{n}\left(x+e_{i}, 2\right) \leqslant \mu_{2} V^{n}\left(x-e_{2}+e_{i}, 2\right)+\bar{\mu}_{2} V^{n}\left(x+e_{i}, 2\right) \\
& \quad \leqslant \mu_{2}\left(s_{21}+V^{n}\left(x \quad e_{2}+e_{i}, 1\right)\right)+\bar{\mu}_{2} V^{n}\left(x+e_{i}, 2\right) \\
& \mu_{1} \mu_{2} V^{n}\left(x-e_{1}-e_{2}, 2\right)+\bar{\mu}_{1} \mu_{2} V^{n}\left(x-e_{2}, 2\right) \\
& \quad \leqslant \mu \mu_{2} s_{21}+\mu_{1} \mu_{2} V^{n}\left(x-e_{1}-e_{2}, 1\right)+\bar{\mu}_{1} \mu_{2} V^{n}\left(x-e_{2}, 1\right)
\end{aligned}
$$

and

$$
\mu_{1} \bar{\mu}_{2} V^{n}\left(x-e_{1}, 2\right)+\bar{\mu}_{1} \bar{\mu}_{2} V^{n}(x, 2) \leqslant \bar{\mu}_{2} \mu_{2} V^{n}\left(x-e_{2}, 2\right)+\bar{\mu}_{2}^{2} V^{n}(x, 2)
$$

The last two inequalities give the terms concerning departures, and (2.8) is derived as in the previous cases.

Finally, if $a_{1}=2$ and $a_{2}=1$, we can derive

$$
\begin{aligned}
& \mu_{1} V^{n}\left(x-e_{1}+e_{i}, 2\right)+\bar{\mu}_{1} V^{n}\left(x+e_{i}, 2\right) \\
& \quad \leqslant \mu_{2} V^{n}\left(x-e_{2}+e_{i}, 2\right)+\bar{\mu}_{2}\left(s_{21}+V^{n}\left(x+e_{i}, 1\right)\right) \\
& \mu_{1} \mu_{2} V^{n}\left(x-e_{1}-e_{2}, 2\right)+\bar{\mu}_{1} \mu_{2} V^{n}\left(x-e_{2}, 2\right) \\
& \quad \leqslant \mu_{2}^{2} V^{n}\left(\left(x-e_{2}-e_{2}\right)^{+}, 2\right)+\mu_{2} \bar{\mu}_{2} V^{n}\left(x-e_{2}, 2\right)
\end{aligned}
$$

in which Eq. (2.4) is used if $x_{2}=1$, and

$$
\mu_{1} \bar{\mu}_{2} V^{n}\left(x-e_{1}, 2\right)+\bar{\mu}_{1} \bar{\mu}_{2} V^{n}(x, 2) \leqslant \mu \bar{\mu}_{2} s_{21}+\bar{\mu}_{2} \mu_{1} V^{n}\left(x-e_{1}, 1\right)+\bar{\mu}_{2} \bar{\mu}_{1} V^{n}(x, 1)
$$

This solves the last case.
Eq. (2.4) follows easily, by showing $\hat{V}^{n}(x, y) \leqslant \hat{V}^{n}\left(x+e_{i}, y\right)$ for all x, y and i.
Now we can show that queue 1 should always be served exhaustively.
Theorem 2.2. For $n=0,1, \ldots$, we have

$$
\begin{equation*}
\hat{V}^{n}(x, 1) \leqslant s_{12}+\hat{V}^{n}(x, 2) \text { if } x_{1}>0 \tag{2.9}
\end{equation*}
$$

showing that queue 1 should be served exhaustively.
Proof. Again by induction. Using (2.5), it is easily seen that

$$
\lambda_{i} V^{n}\left(x+e_{i}, 1\right) \leqslant \lambda_{i} s_{12}+\lambda_{i} V^{n}\left(x+e_{i}, 2\right)
$$

By (2.3) (or (2.4), if $x_{2}=0$) we have

$$
\mu_{1} V^{n}\left(x-e_{1}, 1\right)+\bar{\mu}_{1} V^{n}(x, 1) \leqslant \mu s_{12}+\mu_{2} V^{n}\left(\left(x-e_{2}\right)^{+}, 2\right)+\bar{\mu}_{2} V^{n}(x, 2)
$$

Summing the inequalities (and using that $s_{12} \geqslant 0$) gives (2.9) for $n+1$. As $\lim _{n \rightarrow \infty} \hat{V}^{n}(x, y)=\hat{V}^{\alpha}(x, y)$, (2.9) holds also for \hat{V}^{α}. Thus, if $x_{1}>0$, the action
minimizing $V^{n}(x, 1)$, is staying at queue 1 . This shows that the optimal discounted policy serves queuc 1 exhaustively.

Theorem 2.3. For $n=0,1, \ldots$, we have

$$
\begin{equation*}
\hat{V}^{n}(x, 2) \leqslant s_{21}+\hat{V}^{n}(x, 1) \quad \text { if } x_{1}=0 \tag{2.10}
\end{equation*}
$$

showing that queue 2 should be served as long as queue 1 is empty.
Proof. The proof is similar to that of Theorem 2.2. It is easily seen that

$$
\lambda_{i} V^{n}\left(x+e_{i}, 2\right) \leqslant \lambda_{i} s_{21}+\lambda_{i} V^{n}\left(x+e_{i}, 1\right)
$$

and

$$
\mu_{2} V^{n}\left(\left(x-e_{2}\right)^{+}, 2\right)+\bar{\mu}_{2} V^{n}(x, 2) \leqslant \mu s_{21}+\mu V^{n}(x, 1),
$$

holds by (2.4) and (2.5).
If $s_{12}=s_{21}=0$ it follows from Theorems 2.2 and 2.3 that the μc-rule is optimal. Indeed, because in this case $V^{n}(x, y)=\min \left\{\hat{V}^{n}(x, 1), \hat{V}^{n}(x, 2)\right\}$, it follows from Theorem 2.2 that queue 1 should always be served if $x_{1}>0$; by Theorem 2.3 we know that if $x_{1}=0$ and $x_{2}>0$ queue 2 should be served. A simpler iterative proof of the optimality of the μc-rule can be found in [7].

I tried to generalize the results of this Section to more than two queues using similar arguments, but failed.

Remark 1. We assumed the arrivals to be Poisson, but without losing the results of this Section, we can allow them to be more general, for example a Markov arrival process (MAP). Note however that in this case the optimal policy will also depend on the state of the arrival process. In [7] the MAP is used for a related control model.

Remark 2. In the literature on polling models it is customary to study the expected (weighted) waiting time of an arbitrary customer, instead of holding costs. The problem of finding the optimal policy for this criterion is equivalent to finding the policy that minimizes the expected (weighted) sojourn time, as each customer's expected service time is fixed. By Little's theorem, for each stationary policy $\sum_{i} \lambda_{i} \hat{c}_{i} \mathbb{E} W_{i}$ is equal to $\sum_{i} \hat{c}_{i} \mathbb{E} L_{i}$, where \hat{c}_{i} is a weighting factor, and L_{i} is the stationary queue length at queue i. But this is equivalent to the average cost case studied in this Section, with $c_{i}=\hat{c}_{i}$. Thus the results proved in this Section hold also if the objective is to minimize the sum of expected waiting times and switching costs.

3. Asymptotic analysis

In this Section we will study the actions minimizing $V^{\alpha}(x, y)$ for x_{2} large. To do this, we consider the optimal actions in $V^{n}(x, y)$ for $n \leqslant x_{2}$, and n large (and thus also
x_{2} large). These results are used to derive ε-optimal policies for the discounted cost criterion. Throughout this Section we assume again that $\lambda_{1}+\lambda_{2}+\mu=1$, and thus that $\alpha<1$.

Lemma 3.1. If $x_{2} \geqslant n$, then $V^{n}\left(x+e_{2}, y\right)=V^{n}(x, y)+\left[\left(1-\alpha^{n}\right) /(1-\alpha)\right] c_{2}$. Furthermore, the optimal actions in $V^{n}(x, y)$ and $V^{n}\left(x+e_{2}, y\right)$ are equal.

Proof. We use induction to n. The equality holds trivially for $n=0$. Assume that $V^{n}\left(x+e_{2}, y\right)-V^{n}(x, y)=\left[\left(1-\alpha^{n}\right) /(1-\alpha)\right] c_{2}$ for all x with $x_{2} \geqslant n$. Then the actions minimizing $V^{n}(x, y)$ and $V^{n}\left(x+e_{2}, y\right)$ are equal. (Note that adding a constant to $V^{n}(x, y)$ does not change the optimal action, giving the second part of the theorem.) Now look at $V^{n+1}\left(x^{\prime}+e_{2}, y\right)-V^{n+1}\left(x^{\prime}, y\right)$, with $x_{2}^{\prime} \geqslant n+1$. For all states x that can be reached from x^{\prime} in one step, we have $x_{2} \geqslant n$. Therefore,

$$
V^{n+1}\left(x^{\prime}+e_{2}, y\right)-V^{n+1}\left(x^{\prime}, y\right)=c_{2}+\alpha \frac{1-\alpha^{n}}{1-\alpha} c_{2}=\frac{1-\alpha^{n+1}}{1-\alpha} c_{2}
$$

Thus, if $x_{2} \geqslant n$, the optimal policy does not depend on x_{2}. To study the limiting behavior as both n and x_{2} go to ∞, we consider a model with states $\left(x_{1}, y\right)$, where x_{1} is the number of customers in the single queue of the system, and $y \in\{1,2\}$ the position of the server: the server is at the queue only if $y=1$. The dp equation is

$$
\begin{aligned}
W^{n}\left(x_{1}, y\right)= & \min \left\{\hat{W}^{n}\left(x_{1}, y\right), s_{y z}+\hat{W}^{n}\left(x_{1}, z\right)\right\}, z=3-y, \\
\hat{W}^{n+1}\left(x_{1}, 1\right)= & x_{1} c_{1}+\alpha \lambda_{1} W^{n}\left(x_{1}+1,1\right)+\alpha \lambda_{2}\left(\frac{1-\alpha^{n}}{1-\alpha} c_{2}+W^{n}\left(x_{1}, 1\right)\right) \\
& +\alpha \mu_{1} W^{n}\left(\left(x_{1}-1\right)^{+}, 1\right)+\alpha\left(\mu-\mu_{1}\right) W^{n}\left(x_{1}, 1\right), \\
\hat{W}^{n+1}\left(x_{1}, 2\right)= & x_{1} c_{1}+\alpha \lambda_{1} W^{n}\left(x_{1}+1,2\right)+\alpha \lambda_{2}\left(\frac{1-\alpha^{n}}{1-\alpha} c_{2}+W^{n}\left(x_{1}, 2\right)\right) \\
& -\alpha \mu_{2} \frac{1-\alpha^{n}}{1-\alpha} c_{2}+\alpha \mu W^{n}\left(x_{1}, 2\right),
\end{aligned}
$$

with $W^{0}(x, y)=0$. This dp equation can be interpreted as originating from the original model but with an infinite number of class 2 customers. Indeed, if $y=2$ the costs are reduced with a factor $\alpha \mu_{2}\left[\left(1-\alpha^{n}\right) /(1-\alpha)\right] c_{2}$. This is equal to the probability of a class 2 departure, times the expected costs incurred for a class two customer who stays in the system for the remaining n periods.

Note that the dp equation has a somewhat unusual fomm, as the costs depend on n. However, the discounted costs are equal to those for the model with α^{n} replaced by 0 (which can by proved by considering the optimality equation). To distinguish between both models, we will refer to the original model as the V-model, and to the model with value function W^{n} as the W-model.

Lemma 3.2. If $x_{2} \geqslant n$, then $V^{n}(x, y)=W^{n}\left(x_{1}, y\right)+x_{2}\left[\left(1-\alpha^{n}\right) /(1-\alpha)\right] c_{2}$.
Proof. The proof is similar to that of lemma 3.1. Assume that $V^{n}(x, y)-W^{n}\left(x_{1}, y\right)=$ $x_{2}\left[\left(1-\alpha^{n}\right) /(1-\alpha)\right] c_{2}$ for all x with $x_{2} \geqslant n$. For x^{\prime} with $x_{2}^{\prime} \geqslant n+1$, it is straightforward to show, using Lemma 3.1, that

$$
V^{n+1}\left(x^{\prime}, y\right)-W^{n+1}\left(x_{1}^{\prime}, y\right)=x_{2} c_{2}+\alpha x_{2} \frac{1-\alpha^{n}}{1-\alpha} c_{2}=x_{2} \frac{1-\alpha^{n+1}}{1-\alpha} c_{2}
$$

Now we can compute W^{α} and the optimal actions in each state. Based on this optimal policy for the W-model we define a policy R_{T} for the original V-model, which takes as action in (x, y) the optimal action for the W-model, in state $\left(x_{1}, y\right)$. Note that under R_{T}, the original model and the optimal policy for the W-model treat the class 1 customers exactly the same. Obvious improvements can be made to R_{T}, like not switching from queue 1 to queue 2 if $x=(0,0)$.

Theorem 3.3. For all $\varepsilon>0$ and x_{1}, there is a N such that $\left|V_{R_{T}}^{\alpha}(x, y)-V^{\alpha}(x, y)\right|<\varepsilon$ if $x_{2} \geqslant N$.

Proof. Using the triangle inequality, we have

$$
\begin{aligned}
\left|V_{R_{T}}^{\alpha}(x, y)-V^{\alpha}(x, y)\right| \leqslant & \left|V^{\alpha}(x, y)-V^{x_{2}}(x, y)\right|+\left|W^{\alpha}\left(x_{1}, y\right)-W^{x_{2}}\left(x_{1}, y\right)\right| \\
& +\left|V^{x_{2}}(x, y)-W^{x_{2}}\left(x_{1}, y\right)-x_{2} c_{2} \frac{1-x^{x_{2}}}{1-\alpha}\right| \\
& +\left|x_{2} c_{2} \frac{1-x^{x_{2}}}{1-\alpha}-x_{2} c_{2} \frac{1}{1-\alpha}\right| \\
& +\left|V_{R_{T}}^{\alpha}(x, y)-W^{\alpha}\left(x_{1}, y\right)-x_{2} c_{2} \frac{1}{1-\alpha}\right| .
\end{aligned}
$$

For each of the terms on the r.h.s. we show that it goes to 0 , as x_{2} tends to ∞.
Let us start with $V^{\alpha}(x, y)-V^{x_{2}}(x, y)$. Discounting can be interpreted as taking the total costs over a geometrically distributed horizon. Thus $V^{\alpha}(x, y)$ can be seen as the minimal costs for a control problem with horizon X, where X is geometrically distributed with parameter α. Similarly, $V^{n}(x, y)$ can be seen as a problem with horizon $\min \{X, n\}$. Note that the policies used to calculate V^{n} differ from the optimal discounted policy; a different horizon gives different optimal policies. As the direct costs for V^{n} are positive, it is easily seen that $V^{n}(x, y) \leqslant V^{\alpha}(x, y)$. Now we bound the costs for the case that $X>n$, which occurs with probability α^{n}. At time n there are $x_{1}+x_{2}+n$ customers in the system or less (the number $x_{1}+x_{2}+n$ corresponds to all events being arrivals). If these customers are not served, their costs after n are bounded by $\alpha^{n}\left(x_{1}+x_{2}+n\right) \max \left\{c_{1}, c_{2}\right\} /(1-\alpha)$. The costs of a customer arriving at time k can be bounded by $\alpha^{k} \max \left\{c_{1}, c_{2}\right\} /(1-\alpha)$. Summing this for $k=n$ to ∞ gives a bound for customers arriving after n, which is equal to $\alpha^{n} \max \left\{c_{1}, c_{2}\right\} /(1-\alpha)^{2}$. The switching
costs can be bounded by $\max \left\{s_{12}, s_{21}\right\} /(1-\alpha)$. Together, this gives

$$
\begin{aligned}
V^{n}(x, y) & \leqslant V^{\alpha}(x, y) \\
& \leqslant V^{n}(x, y)+\alpha^{n} \frac{\left(x_{1}+x_{2}+n+(1-\alpha)^{-1}\right) \max \left\{c_{1}, c_{2}\right\}+\max \left\{s_{12}, s_{21}\right\}}{1-\alpha},
\end{aligned}
$$

from which we conclude that $V^{\alpha}(x, y)-V^{x_{2}}(x, y) \rightarrow 0$, as $x_{2} \rightarrow \infty$.
In a similar way, we can find bounds for W^{α}. The negative costs after n are bounded by $\alpha^{n} \mu_{2} c_{2} /(1-\alpha)^{2}$. Therefore,

$$
W^{n}\left(x_{1}, y\right) \leqslant W^{\alpha}\left(x_{1}, y\right)+\alpha^{n} \mu_{2} c_{2} /(1-\alpha)^{2}
$$

On the other hand,

$$
W^{\alpha}\left(x_{1}, y\right) \leqslant W^{n}\left(x_{1}, y\right)+\alpha^{n} \frac{\left(x_{1}+n+(1-\alpha)^{-1}\right) \max \left\{c_{1}, c_{2}\right\}}{1-\alpha}+\max \left\{s_{12}, s_{21}\right\}
$$

giving that $W^{\alpha}\left(x_{1}, y\right)-W^{x_{2}}\left(x_{1}, y\right) \rightarrow 0$, as $x_{2} \rightarrow \infty$.
By Lemma 3.2 we know that $V^{x_{2}}(x, y)=W^{x_{2}}\left(x_{1}, y\right)+x_{2} c_{2}\left[\left(1-\alpha^{x_{2}}\right) /(1-\alpha)\right]$, making the third term 0 .

Obviously, $x_{2} c_{2}\left[\left(1-\alpha^{x_{2}}\right) /(1-\alpha)\right]-x_{2} c_{2}[1 /(1-\alpha)] \rightarrow 0$, as $x_{2} \rightarrow \infty$.
To prove that the last term tends to 0 , we do not consider V^{n} or W^{n}, with a possibly different policy for each n, but we restrict ourselves to the policy R_{T}. If we add a term $x_{2} c_{2}$ to the direct costs in W^{n}, resulting in \bar{W}^{n}, the term becomes $\left|V_{R_{r}}^{\alpha}(x, y)-\bar{W}^{\alpha}\left(x_{1}, y\right)\right|$. Now, if R_{T} is employed at all times, then the direct costs in both systems are equal, until $x_{2}=0$. Note that the switching costs and the holding costs in queue 1 are always equal. Therefore, using similar arguments as above, we have

$$
\left|V_{R_{T}}^{\alpha}(x, y)-\bar{W}^{\alpha}\left(x_{1}, y\right)\right| \leqslant \alpha^{x_{2}} c_{2} /(1-\alpha)^{2} .
$$

This gives the bound on the fifth term.
The next step in finding good and simple policies is characterizing the policy R_{T}. As for the V-model, it can be shown that for the W-model the queue should be served exhaustively, thus service is never interrupted. Then we have exactly the model of Bell [1], with holding costs c_{1} and operating costs $\lambda_{2} c_{2} /(1-\alpha)$. It is shown in [1] that a threshold policy is optimal. Note that the computation of R_{T} takes little time compared to the overall optimal policy, due to the reduction in size of the state space. In the next Section we report on the numerical results.

4. Numerical results

First we computed the optimal W-policy for several instances. Table 2 shows the optimal policy, for the same parameters as used in Table 1.

We see that the server switches from serving queue 2 to queue 1 as soon as x_{1} reaches the threshold level (in this case 4), in line with the results in Bell [1].

Table 2
The optimal W-policy for $\lambda_{1}=\lambda_{2}=1, \mu_{1}=\mu_{2}=6, c_{1}=2, c_{2}=1, s_{12}=s_{21}=20, \alpha=0.95$

-		\cdot	\cdot	\cdot	+	+	+	+	+	+	+	+	+	+	+	+
$x_{1}=0$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

Table 3
The policy R_{T} for $\lambda_{1}=\lambda_{2}=1, \mu_{1}=\mu_{2}=6, c_{1}=2, c_{2}=1, s_{12}=s_{21}=20, \alpha=0.95$

$x_{2}=8$	-			.	+	$+$	+	+	+	+	+	+	+	+	+	+
7	-		.	.	$+$	$+$	$+$	$+$	$+$	$+$	$+$	+	+	$+$	+	+
6	-	.	.	.	$+$	$+$	$+$	+	+	$+$	+	$+$	+	$+$	+	+
5		.	.	.	$+$	$+$	$+$	$+$	+	$+$	+	$+$	+	$+$	+	+
4	-	.	.	.	$+$	+	$+$	$+$	$+$	$+$	+	+	+	$+$	$+$	+
3	-	.	.	.	$+$	+	$+$	$+$	+	$+$	+	+	$+$	t	$+$	+
2	-	.		.	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	+
1	-	.	.	.	+	+	$+$	$+$	+	$+$	+	$+$	+	+	$+$	+
0	.	+	$+$	$+$	$+$	$+$	+	$+$	$+$	$+$	+	+	+	+	$+$	+
	$x_{1}=0$		2	3	4	5	6	7	8	9	10	11	12	13	14	15

From this we construct the policy R_{T} for the V-model, by taking in $\left(\left(x_{1}, x_{2}\right), y\right)$ the action which is optimal in $\left(x_{1}, y\right)$ for the W-model. We make an exception for the states with $x_{2}=0$; there we assume the policy to be work conserving, that is, it switches to queue 1 only if there are customers at queue 1 , and in state $((0,0), 1)$ the server does not switch to queue 2 (which is obviously suboptimal). Thus R_{T} becomes as depicted in Table 3.

We compared the optimal policy and R_{T} as derived from the W-model, for various problem instances. We also included two other simple policies in our computations. These are the policy which serves not only queue 1 , but also queue 2 exhaustively, which can be seen as R_{T} with threshold level ∞ (and therefore denoted with R_{∞}), and the list policy which gives priority to queue 1 , which is R_{T} with threshold level 1 (denoted with R_{1}). Note that R_{1} coincides with the μc-rule.

Our first observation is that the performance of the policies depends on the initial states. This is illustrated in Table 4, where we list the discounted costs for various starting states. The computations for the optimal policy R^{*} were done by calculating (2.1) and (2.2), for n large enough. Also the computations for R_{T}, R_{1} and R_{∞} were done with the dp equation, by inserting the policy in (2.1) instead of taking the minimizing actions. To make computations possible we had to truncate the state space. We increased the truncation levels until the outcomes did not change anymore, from which we concluded that these numbers hold also for the model without truncation.

First we observe that the values for R_{T}, R_{1} and R_{∞} do not depend on y, if $x=$ $(0,0)$. This can be explained by the fact that the server serves the first customer that arrives. As $\lambda_{1}=\lambda_{2}$, this occurs at each queue with the same probability. Because also $s_{12}=s_{21}$, we find $V_{R}^{\alpha}((0,0), 1)=V_{R}^{\alpha}((0,0), 2)$, for $R=R_{r}, R_{1}$ and R_{∞}. Furthermore, it is observed that the difference between entries in different columns is often equal to 20 , the switching costs. The differences can easily be explained by looking at the structure

Table 4
Values for different policies and initial states $\left(x^{\prime}, y^{\prime}\right)$, for $\lambda_{1}=\lambda_{2}=1, \mu_{1}=\mu_{2}=6, c_{1}=2, c_{2}=1$, $s_{12}=s_{21}=20, \alpha=0.95$

$\left(x^{\prime}, y^{\prime}\right)$	$((0,0), 1)$	$((0,0), 2)$	$((10,0), 1)$	$((10,0), 2)$	$((0,10), 1)$	$((0,10), 2)$	$((10,10), 1)$	$((10,10), 2)$
R^{*}	40.76	45.01	176.8	196.8	139.6	119.6	332.8	352.8
R_{T}	56.95	56.95	184.1	204.1	146.3	126.3	335.4	355.4
R_{1}	63.60	63.60	189.4	209.4	177.1	157.1	350.4	370.4
R_{∞}	56.95	56.95	184.1	204.1	146.4	126.4	335.6	420.6

Table 5
Values for different policies and discount factors, for $\lambda_{1}=\lambda_{2}=1, \mu_{1}=\mu_{2}=6, c_{1}=2, c_{2}=1$, $s_{12}=s_{21}=20$, and initial state $((5,5), 2)$

α	0.5	0.75	0.8	0.85	0.9	0.95	0.98	1
R^{*}	29.27	56.55	69.39	87.16	114.8	164.6	267.0	2.722
R_{T}	29.47	57.36	69.87	88.41	118.4	170.7	283.9	3.093
T	∞	∞	∞	8	5	4	3	3
R_{1}	48.04	71.69	82.37	98.49	125.7	185.9	313.9	3.470
R_{∞}	29.47	57.36	69.87	88.39	118.6	180.9	302.1	3.088

of the policies involved. Of course R^{*} performs best, but note that R_{T} performs better than the other two.

Let us see what the influence of α on the results is. For α ranging from 0.5 up to 1 (representing average costs) we computed the values in state $((5,5), 2)$. Note that for $\alpha=1, W^{n}$ is not defined. We derived R_{T} in this case directly from R^{*}. Note that taking α close to 1 , reduces the dependence on the starting state. Furthermore, $\alpha=0.95$ corresponds to a reasonable interest rate of ≈ 0.05. No low values of α are considered, as a discount rate of $\beta=0.1$ in the continuous time model gives in the discrete time model $\alpha=\gamma /\left(\log \left(\beta^{-1}\right)+\gamma\right) \approx 0.78$. The results can be found in Table 5. In the table one can also find the values of T, the threshold level on which R_{T} is based. Note that, in case $\alpha=1, V^{n+1}(x, y)-V^{n}(x, y)$ converges to the minimal average costs.

It is interesting to note that, as long as $\alpha \leqslant 0.75$, the optimal policy does not switch to the other queue. The optimal policy for the W-model has threshold level ∞ here. For $\alpha=0.8 R^{*}$ switches to queue 1 in states $\left(\left(x_{1}, 0\right), 2\right)$ if $x_{1} \geqslant 5$. Note that for the average cost case R_{∞} performs better than R_{T}. As the traffic is low, this can be explained by the fact that R_{∞} approximates the "nose" of the optimal policy better than R_{T} does. (We call the roughly triangular subset of the state space where R^{*} deviates from R_{T}, which is best illustrated in Table 1, the nose of the optimal policy.)

Finally, we change the parameters of the system, keeping the discount rate and the initial state constant. First, let us change λ_{2}. We expect the nose to be larger if λ_{2} is small, to avoid having to return to queue 2 after serving queue 1 exhaustively. Such a large nose is best approximated by R_{∞}. Indeed, we see in Table 6 that for $\lambda_{2}=0.1$, R_{∞} is slightly better than R_{T}. However, for λ_{2} large, we see that R_{T} outperforms R_{∞}. For $\lambda_{2}=5$, the system is unstable. As we are considering discounted costs, this

Table 6
Values for different policies and different values of λ_{2}, for $\lambda_{1}=1$, $\mu_{1}=\mu_{2}=6, c_{1}=2, c_{2}=1, s_{12}=s_{21}=20, \alpha=0.95$, and initial state $((5,5), 2)$

λ_{2}	0.1	0.5	1	2	4	5
R^{*}	133.9	150.3	164.6	190.9	248.7	278.1
R_{T}	138.1	155.5	170.7	195.6	249.7	278.6
T	4	4	4	4	4	3
R_{1}	152.9	170.4	185.9	211.6	265.9	293.7
R_{∞}	137.0	160.9	180.9	212.6	280.2	315.4

Table 7
Values for different policies and different values of c_{1}, for $\lambda_{1}=\lambda_{2}=1$, $\mu_{1}=\mu_{2}=6, c_{2}=1, s_{12}=s_{21}=20, \alpha=0.95$, and initial state $((5,5), 2)$

c_{1}	1	2	3	5	10
R^{*}	114.1	164.6	192.7	246.4	375.0
R_{T}	122.7	170.7	198.3	251.9	381.1
T	∞	4	3	2	1
R_{1}	161.5	185.9	210.3	259.1	381.1
R_{∞}	122.7	180.9	239.1	355.4	646.4

Table 8
Values for different policies and different values of s, for $\lambda_{1}=\lambda_{2}=1$, $\mu_{1}=\mu_{2}=6, c_{1}=2, c_{2}=1, s_{12}=s_{21}=s, \alpha=0.95$, and initial state $((5,5), 2)$

s	0	5	10	20	100
R^{*}	1110.5	127.5	141.0	164.6	236.2
R_{T}	110.5	127.6	142.2	170.7	327.1
T	1	2	3	4	12
R_{1}	110.5	129.4	148.2	185.9	487.3
R_{∞}	144.3	153.5	162.6	180.9	327.1

does not cause problems. We also see that for larger values of λ_{2}, R_{T} behaves better compared to R^{*}. This can be explained by the fact that under high loads x_{2} is relatively big. It is for these states that R_{T} approximates R^{*} best.

We now vary the value of c_{1}, ranging from 1 to 10 . The results can be found in Table 7. For $c_{1}=1$, we know by Theorem 2.2 that both queue 1 and queue 2 should be served exhaustively. Therefore the values for R_{T} and R_{∞} are equal, and lower than the value for R_{1}. The policy R_{∞} behaves poorer and poorer if we increase c_{1}, and the optimal threshold value becomes 1 , making R_{T} and R_{1} equal.

Finally, we change the switching costs s_{12} and s_{21}. The results can be found in Table 8. In case $s=s_{12}=s_{21}=0$, then R_{1} is optimal. This is indeed what we expect, because in this case the μc-rule, which is equal to R_{1}, is optimal. As the switching costs increase, R_{1} gets worse and R_{∞} better.

References

[1] C.E. Bell, Characterization and computation of optimal policies for operating an $\mathrm{M} / \mathrm{G} / 1$ queuing system with removable server, Oper. Res. 19 (1971) 208-218.
[2] O.J. Boxma, G.M. Koole and I. Mitrani, Polling models with threshold switching, in: F. Baccelli, A. Jean-Marie and I. Mitrani, eds., Quantitative Methods in Parallel Systems, Esprit Basic Research Series. (Springer, Berlin 1995) 129-140.
[3] C. Buyukkoc, P. Varaiya and J. Walrand, The $c \mu$ rule revisited, Adv. Appl. Probab. 17 (1985) 237-238.
[4] R. Cavazos-Cadena and L.I. Sennott, Comparing recent assumptions for the existence of average optimal stationary policies, Oper. Res. Lett. 11 (1992) 33-37.
[5] I. Duenyas and M.P. Van Oyen, Stochastic scheduling of parallel queues with set-up costs, Queueing Systems 19 (1995).
[6] M. Hofri and K.W. Ross, On the optimal control of two queues with server setup times and its analysis, SIAM J. Comput. 16 (1987) 399-420.
[7] A. Hordijk and G.M. Koole, On the optimality of LEPT and μc rules for parallel processors and dependent arrival processes, Adv. Appl. Probab. 25 (1993) 979-996.
[8] Z. Liu, P. Nain and D. Towsley, On optimal polling policies, Queueing Systems 11 (1992) 59-83.
[9] M.I. Reinan and L.M. Wein, Dynarnic scheduling of a two-class queue with setups, Oper. Res., to appear.
[10] S.M. Ross, Introduction to Stochastic Dynamic Programming (Academic Press, New York, 1983).
[11] L.I. Sennott, Average cost optimal stationary policies in infinite state Markov decision processes with unbounded costs, Oper. Res. 37 (1989) 626-633.
[12] R.F. Serfozo, An equivalence between continuous and discrete time Markov decision processes, Oper. Res. 27 (1979) 616-620.

[^0]: * E-mail: koole@cs.vu.nl.
 ${ }^{1}$ This research was carried out at CWI, Amsterdam, and supported by the European Grant BRA-QMIPS of CEC DG XIII.

