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A b s t r a c t - - A  very simple gradient only algorithm for unconstrained minimization is proposed 
that, in terms of storage requirement and computational efficiency, may be considered as an alter- 
native to the conjugate gradient line search methods for large problems. The method effectively 
applies the steepest descent method to successive simple (spherical) quadratic approximations of the 
objective function in such a way that no explicit line searches are performed in solving the minimiza- 
tion problem. It is shown that the method is convergent when applied to general positive-definite 
quadratic functions. The method is tested by its application to some standard and other test prob- 
lems. On the evidence presented, the new method, called the SQSD algorithm, appears to be reliable 
and stable, and very competitive compared to the well-established Fletcher-Reeves and Polak-Ribiere 
conjugate gradient methods. In particular, it does very well when applied to extremely ill-conditioned 
problems. (~) 2001 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - U n c o n s t r a i n e d  minimization, Steepest descent, Ill-conditioning. 

1. I N T R O D U C T I O N  

The method of steepest descent is one of the most fundamental procedures for minimizing a 
differentiable function of several variables. The method proposed by Cauchy in the middle of 
the nineteenth century continues to be the basis of several gradient-based solution procedures [1, 
p. 300]. The performance of the steepest descent method is, however, disappointing compared 
to other first-order (gradient only) line search methods. In spite of using what appears to be 
the "best" search direction, i.e., that which gives the maximum rate of decrease at the point of 
application, the method is not really effective in most problems. The method of steepest descent 
usually works quite well during the early stages of the optimization process, depending on the 
point of initialization. However, as a stationary point is approached, the method often behaves 
poorly, taking small and nearly orthogonal steps. 

Amongst the methods that use only gradient information and perform successive line searches, 
the most popular method is probably the conjugate gradient method of Fletcher and Reeves [2]. 

*Author to whom all correspondence should be addressed. 
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This method generates conjugate directions by taking at each successive point a suitable convex 
combination of the current gradient and the direction used at the previous iteration, as search 
direction. A slight variation of the Fletcher-Reeves method is the method of Polak and Ri- 
biere [3], which is argued to be preferable for nonquadratic functions [1, p. 357]. Gradient only 
methods, such as the Fletcher-Reeves method, remain of great importance because they become 
indispensable when the problem size (number of variables) become very large. When the number 
of variables exceeds approximately 100, second-order methods using Hessian information, or at- 
tempting to construct the Hessian matrix (such as quasi-Newton methods), becomes impractical 
because of the size of the Hessian matrix [1, p. 328]. 

In this paper, an extremely simple gradient only algorithm is proposed that, in terms of storage 
requirement (only 3n-vectors need be stored) and computational efficiency, may be considered as 
an alternative to the conjugate gradient methods. The method effectively applies the steepest de- 
scent method to successive simple (spherical) quadratic approximations of the objective function 
in such a way that no explicit line searches are performed in solving the minimization problem. 
It is shown that the method is convergent when applied to general positive-definite quadratic 
functions. The method is tested by its application to some standard and other test problems. 
On the evidence presented, the new method, called the SQSD algorithm, appears to be reliable 
and stable, and very competitive compared to the well-established conjugate gradient methods. 
In particular, it does very well when applied to extremely ill-conditioned problems. 

2. T H E  C L A S S I C A L  S T E E P E S T  D E S C E N T  M E T H O D  

Consider the following unconstrained optimization problem: 

min f(x),  x e E n, (2.1) 

where f is a scalar objective function defined on E '~, the n-dimensional real Euclidean space, 
and x is a vector of n real components x l ,  x2 , . . .  ,xn.  It is assumed that f is differentiable so 
that the gradient vector Vf(x) exists everywhere in E n. The solution is denoted by x*. 

The steepest descent (SD) algorithm for solving problem (2.1) may then be stated as follows. 

SD Algorithm 

Initialization: Specify convergence tolerances ~g and ~x, and select a starting point x °. Let k :-- 1 
and go to main procedure. 
Main procedure: 

(1) If IIVf(xk-1)ll < Eg, then x* -~ x c = x k and stop; otherwise let u k := -Vf(xk-1) .  
(2) Let Ak be such that f ( x  k-1 + AkU k) = minf (x  k-1 + Au k) subject to A > 0 (line search 

step}. 
(3) Let x k : = x  k-1 + AkUk; if IIX k --xk-lll < ex, then x* ~ x c = x k and stop; otherwise let 

k :-- k + 1 and go to Step 1. | 

It can be shown that if the steepest descent method is applied to a general positive-definite 
quadratic function of the form f i  x) = (1/2)xTAx+bTx+c,  then the sequence (f(xk)} ~ f(x*). 
Depending, however, on the starting point x ° and the condition number of A associated with 
the quadratic form, the rate of convergence may become extremely slow. 

It is proposed here that for general functions f ix) ,  better overall performance of the steepest 
descent method may be obtained by applying it successively to a sequence of very simple quadratic 
approximations of f ix) .  The proposed modification, named here the spherical quadratic steepest 
descent (SQSD) method, remains a first-order method since only gradient information is used 
with no attempt being made to construct the Hessian of the function. The storage requirements 
therefore remain minimal, making it ideally suitable for problems with a large number of variables. 
Another significant characteristic is that the method requires no explicit line searches. 
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3. THE SPHERICAL QUADRATIC 
STEEPEST DESCENT (SQSD) METHOD 

In the SQSD approach, given an initial approximate solution x °, a sequence of spherically 
quadratic optimization subproblems P[k], k -- 0, 1 ,2 , . . . ,  is solved generating a sequence of 
approximate solutions x k+l. More specifically, at each point x k the constructed approximate 

problem is P[k] 
min 9~(x), (3.1) 

x 

where t h e  approximate objective function ] (x)  is given by 

l ( x _ x  k) c k ( x  xk) ,  (3.2) h(x)  = s (x ~) + v T s (x ~) ( x -  ~ )  + ~ 

and C k = d i a g ( c k , c k , . . .  , c  k) = ckI .  The solution to this problem will be denoted by x *k, and 
for the construction of the next subproblem P[k + 1], x k+l := x *k. 

For the first subproblem, the curvature Co is set to co :=(llVf(x°)ll)/d, where d > 0 is some 
arbitrarily specified steplimit. Thereafter, for k _> 1, ck is chosen such that  ] ( x  k) interpolates S(x) 
at both x k and x k-1. The latter conditions imply that  for k -- 1, 2 , . . . ,  

2 [ f  (X k - l )  -- f (X k) -- V T f  (X k) (X k - i  -- xk)]  (3.3) 

Ck := iixk_l _ xkll 2 

Clearly, the identical curvature entries along the diagonal of the Hessian mean that  the level sur- 
faces of the quadratic approximation ]k (x), are indeed concentric hyperspheres. The approximate 
problems P[k] are therefore aptly referred to as spherical quadratic approximations. 

It is now proposed that  for a large class of problems, the sequence x °, x l , . . ,  will tend to the 
solution of the original problem (2.1), i.e., 

lira x k = x*. (3.4) 

For subproblems P[k] that  are convex, i.e., c k > 0, the solution occurs where V]k(x) = 0, that  
is, where 

v s  (xk) + ck~ (x - x k) = 0. 

The solution to the subproblem, x *k, is therefore given by 

x. k = xk v f  (x k) (3.5) 
Ck 

Clearly, the solution to the spherical quadratic problem lies along a line through x k in the direction 
of steepest descent. The SQSD method may formally be stated in the following algorithmic form. 

SQSD Algorithm 

In i t ia l i za t ion:  Specify convergence criteria eg and Ex, steplimit d > 0 and select a starting 
point x °. Set co := I I V f ( x ° ) l l / d .  Let k := 1 and go to main procedure. 
M a i n  procedure:  

(1) If IIVf(xk-1)ll < cg, then x* -~ x c = x k-1 and stop; otherwise set 

X k :.~X k-1 

(2) If IIx k - xk-lll  > d, then set 

X k : ~ X  k-1 -- d 

V f ( x  k - l )  

Ck-1 

v s  (x ~-1) 
] l V f ( x k - 1 ) l  I ' 

if ][x k - x k - l [ I  ( 8 z ,  then x* -~ x c -- x k and stop. 
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(3) Set 
2 If (xk-1)  _ f (xk) _ v Ts  (xk) (x -I - 

Ck : :  
Ilxk-1 - x ll 2 

if ck < 0, then set ck := 10 -6°. 
(4) Let k := k + 1 and go to Step 1 for next iteration. | 

Stepsize control is introduced in the above algorithm through the specification of a steplimit d 
and the test in Step 2 in the main procedure. Note that  the choice of co ensures that  for P[0], the 
solution x 1 lies at a distance d from x ° in the direction of steepest descent. Also, Step 3 ensures 
tha t  the approximate objective function is always positive-definite. 

4 .  C O N V E R G E N C E  O F  T H E  S Q S D  M E T H O D  

An analysis of the convergence rate of the SQSD method, when applied to a general positive- 
definite quadratic function, affords insight into the convergence behavior of the method when 
applied to more general functions. This is so because for a large class of continuously differentiable 
functions, the behavior close to local minima is quadratic. For quadratic functions, the following 
theorem may be proved. 

THEOREM. The SQSD algorithm (without stepsize control) is convergent when applied to the 
genera/quadrat ic  function of the form f ( x )  = (1 /2 )x TA x  + bTx,  where A is an n x n positive- 
definite matrix and b E E n. 

PROOF. Begin by considering the bivariate quadratic function f ( x )  = x 2 + 7x~, 7 >- 1, and with 
x ° = [a, f~]T. Assume Co > 0 given, and for convenience in what follows, set Co = 1/6, 5 > 0. 
Also, employ the notation fk = f (xk) .  

Application of the first step of the SQSD algorithm yields 

xl  = x o _ V f0 = [a(1 - 25), fl(1 - 2~5)] T, (4.1) 
O0 

and it follows that  

and 

IIx 1 _ xO]] 2 = 462 (a2 + ,y2f12) , 

V f l  = [2a(1 - 2fi), 2~/f~(1 - 2~/5)] T. 

For the next iteration, the curvature is given by 

(4.2) 

(4.3) 

2 [f0 -- f l  -- v T  f l  ( x0 -- X1)] (4.4) 
cl ---- " " 

IIX 0 -- xlll 2 

Utilizing the information contained in (4.1)-(4.3), the various entries in expression (4.4) are 
known, and after substitution Cl simplifies to 

2 + (4.5) 
cl = (a2 + ~2f~2) • 

In the next iteration, Step 1 gives 

X2 = x l  V f l  (4.6) 
C1 

And, after the necessary substitutions for x 1, V f l ,  and cl, given by (4.1),(4.3), and (4.5), respec- 
tively, (4.6) reduces to 

x 2 = [a(1 - 25)m, f~(1 - 275)Wl] T, (4.7) 
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where 

and 

~1 = 1 1 -[- -~'2/~2/02 
1 "~ '~3~2 /O2  ' (4 .8)  

021 : 1 ")' -}- ~3~2/O/2 
1 + 73/~2/a 2" (4.9) 

Clearly, if ~/= 1, then ~1 = 0 and 031 : 0. Thus, by (4.7) x 2 : 0, and convergence to the solution 
is achieved within the second iteration. 

Now, for 7 > 1, and for any choice of a and/3, it follows from (4.8) that  

0 _< #i < 1, (4.10) 

which implies from (4.7) that  for the first component of x 2 

x~ 2) = la(1 - 25)~1l < [o(1 - 25)[ : x(~ 1) , 

or introducing o notation (with s0 = a) ,  that  

(4.11) 

IO~21 = 1#10/11 <~ lOLl]. (4.12) 

(Note: because Co = 1/5 > 0 is chosen arbitrarily, it cannot be said that  [al] < [a0[. However, 
0/1 is  finite.} 

The above argument, culminating in result (4.12), is for the two iterations x ° -~ x 1 --, x 2. 
Repeating the argument for the sequence of overlapping pairs of iterations x 1 -+ x 2 --. x3; 

x 2 -~ x 3 --* x 4 , . . . ,  it follows similarly that  la3[ = 1#2a21 < la2[; 1041 = [#3a3[ < la31, . . . ,  since 
0 < #2 < 1, 0 _< P3 < 1 , . . . ,  where the #s are given by (corresponding to equation (4.8) for #1) 

,.~2 f42 / 0  2 1 + ,  ~'j-l~ j -1  
# j = l -  1 +  3 2 2 • (4.13) Z -1/o,_1 

Thus, in general 
0 < # j  < 1 ,  

and 

For large positive integer m, it follows that  

(4.14) 

(4.15) 

and clearly for 7 > 0, because of (4.14) 

lira laml = 0. ( 4 . 1 6 )  
m---*c¢ 

Now, for the second component of x 2 in (4.7), the expression for wl, given by (4.9), may be 
simplified to 

1 - ~ /  
wl = 1 + ~3~2/O/2"  (4.17) 

Also, for the second component 

X~ 2) ----- ~ ( 1  --  2~/(~)(M1 = 0JlX(21), 

or introducing f~ notation 

/~2 =- ~-~I/~I • 
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The above argument is for x ° - -~  x I ~ x 2 and again, repeating it for the sequence of overlapping 
pairs of iterations, if follows more generally for j = 1, 2 , . . .  that  

~ j + l  = 0"3jt~j, (4 .18)  

where wj is given by 
I - 7  

,v3/42 /O~2 " (4.19) 
Wj = 1 + I ~ j - l l  j - i  

Since, by (4.16), lain[ --* 0, it follows that  if I/3ml --* 0 as m --* ec, the theorem is proved for the 
bivariate case. Making the assumption that  If~ml does not tend to zero, then there exists a finite 
positive number e such that  

I jl -> (4.20) 
for all j .  This allows the following argument: 

lu)j [ = 
1 + 3 2  2 1 1 - 7  I < 73"~'2 - -  2 = - -  + 7 g /O~ j -1  

(1 oz 2 - ~ )  j-1 
0/2_1 + ")'3E2 

(4.21) 

Clearly, since by (4.16) larn[ ~ 0 as m ~ oo, (4.21) implies that  also IWml ~ O. This result taken 
together with (4.18) means that  If~rn[ ~ 0, which contradicts the assumption above. With this 
result, the theorem is proved for the bivariate case. 

Although the algebra becomes more complicated, the above argument can clearly be extended 
to prove convergence for the multivariate case, where 

f (x)  = ~ V,x~, V1 = 1 < V2 < ")'3 < " "  < Vn. (4.22) 
i = l  

Finally, since the general quadratic function 

f (x)  = l x T A x  + bTx, A positive-definite, (4.23) 

may be transformed to the form (4.22), convergence of the SQSD method is also ensured in the 
general case. | 

5.  N U M E R I C A L  R E S U L T S  A N D  C O N C L U S I O N  

The SQSD method is now demonstrated by its application to some test problems. For compari- 
son purposes, the results are also given for the standard SD method and both the Fletcher-Reeves 
(FR) and Polak-Ribiere (PR) conjugate gradient methods. The latter two methods are imple- 
mented using the CG+ FORTRAN conjugate gradient program of Gilbert and Nocedal [4]. The 
CG+ implementation uses the line search routine of Mor~ and Thuente [5]. The function and gra- 
dient values are evaluated together in a single subroutine. The SD method is applied using CG+ 
with the search direction modified to the steepest descent direction. The FORTRAN programs 
were run on a P-II 266 MHz system using double precision computations. 

The standard (references [6-9]) and other test problems used are listed in the Appendix, and 
the results are given in Table 1. The convergence tolerances applied throughout are ~g = 10 -5 and 
¢z -- 10 -s ,  except for the extended homogeneous quadratic function with n = 50000 (Problem 12) 
and the extremely ill-conditioned Manevich functions (Problems 14). For these problems, the 
extreme tolerances, % ~= 0 (= 10 -~5) and ¢x = 10-12, are prescribed in an effort to ensure very 
high accuracy in the approximation x c to x*. For each method, the number of function-cum- 
gradient-vector evaluations (NFG) are given. For the SQSD method, the number of iterations is 
the same as NFG. For the other methods, the number of iterations (Iter.) required for convergence, 
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Table 1. The performance of the SQSD algorithm relative to the performances of 
the SD, FR, and PR algorithms when applied to the test problems listed in the 
Appendix. 

I 
Prob.# I n SQSD 

d NFG 

1 3 1 12 

2 2 1 31 

3 2 1 33 

4 2 0.3 97 

5(a) 3 1 11 

5(b) 3 1 17 

6 4 1 119 

7 3 1 37 

8 2 10 39 

9 2 0.3 113 

10 2 1 43 

11 4 2 267 

12 20 1.E+04 58 

200 1.E+04 146 

2000 1.E+04 456 

20000 1.E+04 1318 

50000 1.E+10 4073 

13 10 0.3 788 

100 1 2580 

300 1.73 6618 

600 2.45 13347 

1000 3.16 20717 

14 20 1 3651 

10 3301 

40 1 13302 

10 15109 

60 1 19016 

10 16023 

100 1 39690 

10 38929 

200 1 73517 

10 76621 

*Convergence to a local minimum with 
$Solution to machine accuracy. 

Steepest Descent (SD) 

RE NFG 

3.E-14 41 

1.E-14 266 

3.E-08 2316 

1.E-15 >20000 

1.E-12 60 

1.E-12 49 

9.E-09 >20000 

1.E-12 156 

1.E-22 12050* 

5.E- 14 6065 

1.E-12 1309 

2.E-11 16701 

1.E-11 276 

4.E-12 2717 

2.E-10 >20000 

6.E-09 >10000 

3.E-16 >10000 

2.E-10 >20000 

1.E-12 >20000 

1.E-10 >20000 

1.E-11 >20000 

2.E-10 >30000 

2.E-27 >20000 

9.E-30 

5.E-27 >30000 

2.E-33 

7.E-39 >30000 

6.E-39 

1.E-49 >50000 

3.E-53 

5.E-81 >100000 

4.E-81 

Iter. RE/IN 

20 6.E-12 

131 9.E-11 

1157 4.E-08 

3.E-09 

29 6.E-08 

23 6.E-08 

2.E-06 

77 3.E-11 

6023* 26* 

3027 2.E-10 

652 1.E-10 

8348 4.E-11 

137 1.E-11 

1357 1.E-11 

2.E-08 

8.E+01 

5.E+02 

4.E-07 

3.E+01 

2.E+02 

5.E+02 

9.E+02 

9.E-01 

1.E+O0 

I.E+O0 

1.E+O0 

1.E+O0 

f (x  c) = 48.9. 

175 

and which corresponds  to the  number  of line searches executed,  is also l isted separately.  In 

addi t ion,  the  re la t ive  error  (RE) in o p t i m u m  funct ion value, defined by I f (x*)  - f (xC)[ / (1  + 

If(x*)[) ,  where  x c is the  approx imat ion  to  x* at  convergence,  is also listed. For the  Manev ich  

problems,  wi th  n _> 40, for which the  o ther  (SD, FR,  and PR)  a lgor i thms fail to converge after  

the  ind ica ted  number  of  steps, the  infinite norm of the  error  in t he  solut ion vec tor  (IN), defined 

by I]x* - xCl[oo, is also tabula ted .  These  entries,  given ins tead of  the  re la t ive  er ror  in funct ion  

value (RE) ,  are made  in italics. 

Inspec t ion  of  the  results  shows t h a t  the  SQSD a lgor i thm is consis tent ly  compe t i t i ve  wi th  t he  

o ther  th ree  me thods  and per forms no tab ly  well for large problems.  Of  all the  methods ,  the  SQSD 
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Table 1. (cont.) 

J 
Prob.# ] n Fletcher-Reeves 

NFG ~er. 

1 3 7 3 

2 2 30 11 

3 2 45 18 

4 2 180 78 

5(a) 3 18 7 

5(b) 3 65 31 

6 4 1573 783 

7 3 132 62 

8 2 72* 27* 

9 2 56 18 

10 2 127 60 

11 4 193 91 

12 20 42 20 

200 163 80 

2000 530 263 

20000 1652 825 

50000 3225 1161 

13 10 >2000O 

100 >20000 

300 >20000 

600 >20000 

i000 >30000 

14 20 187 75 

40 >3O0O0 

60 >30000 

100 >50000 

200 >I00000 

(FR) 

RE/IN NFG 

05 7 

2.E-11 22 

2.E-08 36 

1.E-11 66 

6.E-08 18 

6.E-08 26 

8.E-10 166 

4.E-12 57 

26* 24* 

5.E-11 50 

6.E-12 30 

1.E-12 99 

9.E-32 42 

5.E-13 163 

2.E-13 530 

4.E-13 1652 

1.E-20 3225 

2.E-02 548 

8.E+01 1571 

3.E+02 3253 

6.E+02 5550 

1.E+03 8735 

8.E-24 1088 

1.E+O0 >30000 

1.E+O0 >30000 

1.E+O0 >50000 

1. E-/- 00 > 100000 

Polak-Ribiere (PR) 

Iter. RE/IN 

3 05  

8 2.E-12 

14 6.E-11 

18 1.E- 14 

8 6.E-08 

11 6.E-08 

68 3.E-09 

26 1.E-12 

11" 26* 

17 1.E-15 

11 1.E-11 

39 9.E-14 

2O 4.E-31 

80 5.E-13 

263 2.E-  13 

825 4.E-13 

1611 1.E-20 

263 4.E-12 

776 2.E-12 

1605 2.E-12 

2765 2.E-12 

4358 2.E-12 

507 2.E-22 

1.E+O0 

1.E+O0 

1.E-t-O0 

1.E+O0 

*Convergence to a local minimum with f (x  c) = 48.9. 
$Solution to machine accuracy. 

m e t h o d  appea r s  to  be  t he  most  re l iable  one in solving each of t he  posed  problems.  As expec ted ,  

because  line searches are  e l imina ted  and  consecut ive search d i rec t ions  are  no longer  forced to  be  

o r thogona l ,  t he  new m e t h o d  comple te ly  overshadows the  s t a n d a r d  SD me thod .  W h a t  is much  

more  gra t i fy ing ,  however,  is t he  pe r fo rmance  of  t he  SQSD m e t h o d  re la t ive  to  t he  wel l -es tab l i shed  

and  wel l - researched con juga te  g rad ien t  a lgor i thms.  Overal l  the  new m e t h o d  a ppe a r s  to  be  very  

compe t i t i ve  wi th  respec t  to  c o m p u t a t i o n a l  efficiency and,  on the  evidence presented ,  r e m a r k a b l y  

s table .  

In  t he  i m p l e m e n t a t i o n  of t he  SQSD m e t h o d  to h ighly  nonquad ra t i c  and  nonconvex  funct ions ,  

some care  mus t  however be  t aken  in ensur ing t h a t  t he  chosen s tep  l imi t  p a r a m e t e r  d is no t  t oo  

large.  A value  which is too  large m a y  resul t  in excessive osci l la t ions  occur r ing  before  convergence.  

Therefore ,  a re la t ive ly  smal l  value,  d = 0.3, was used for t he  Rosenbrock  p rob l e m wi th  n = 2 

( P r o b l e m  4). For  t he  ex t ended  Rosenbrock  funct ions  of larger  d imens iona l i ty  (P rob l ems  13), 

co r re spond ing ly  larger  s tep  l imi t  values (d = v/-n/10) were used wi th  success. 

For  q u a d r a t i c  funct ions,  as is ev ident  from the  convergence analys is  of Sec t ion  4, no s tep  

l imi t  is r equ i red  for convergence.  Th i s  is borne  ou t  in p rac t ice  by  the  resul ts  for t h e  e x t e n d e d  

homogeneous  q u a d r a t i c  funct ions  (Prob lems  12), where  t he  very  large value  d = 104 was used 
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th roughout ,  with the  even more  ex t reme value of d = 10 l° for n = 50000. T he  specification 
of  a s tep limit in the  quadrat ic  case also appears  to have little effect on the  convergence rate,  
as can be seen from the results for the ill-conditioned Manevich functions (Problems 14), t ha t  
are given for bo th  d = 1 and d = 10. Here, convergence is obta ined to  at  least 11 significant 
figures accuracy  (llx* -xClloo < 10 -11) for each of the variables, despite the occurrence of  ex t reme  
condi t ion numbers ,  such as 1060 for the  Manevich problem with n = 200. 

T h e  successful applicat ion of  the  new method  to  the ill-conditioned Manevich problems, and the  
analysis of  the  convergence behavior  for quadrat ic  functions, indicate t ha t  the  SQSD algor i thm 
represents  a powerful approach to  solving quadrat ic  problems with large numbers  of variables. In 
part icular ,  the  SQSD me thod  can be seen as an unconditionally convergent, stable, and economic 
al ternat ive  iterative method  for solving large systems of linear equations,  i l l-conditioned or not,  
th rough  the  minimizat ion of the sum of the squares of the residuals of  the equations.  

A P P E N D I X  

T E S T  P R O B L E M S  

Minimize f ( x ) :  

(1) f ( x )  -- x~ + 2x 2 + 3x32 - 2x 1 - 4x 2 - 6x 3 -~- 6, x 0 = (3, 3, 3), x* = (1, 1, 1), f(x*) = 0.0. 
(2) f ( x )  ---- x 4 - 2x2x2 + x 2 +x~ - 2Xl + 1, x ° = (3, 3), x* = (1, 1), f i  x* ) = 0.0. 

(3) f ( x )  = x~ - 8x 3 + 25x 2 + 4x~ - 4xlx2 - 32xl + 16, x ° = (3,3),  x* = (2, 1), f ( x * )  = 0.0. 

(4) f ( x )  = 100(x2 - x12) 2 + (1 - Xl) 2, x ° = ( -1 .2 ,  1), x* = (1, 1), f ( x * )  = 0.0 (Rosenbrock's  
parabolic  valley [6]). 

(5)  f ( x )  = x l  + - + - + + x ]  - z 3  + 
(a) x ° = ( 1 , - 1 ,  1) and 
(b) x ° (0 ,0 ,0 ) ,  x* = (0.57085597,-0.93955591,0.76817555),  f ( x * )  = -1 .91177218907 

(Zlobec's function [7]). 

(6) f ( x )  = (xl  + lOx2) 2 + 5(x3 - x 4 )  2 -~ (x2 - 2x3)  4 q- lO(xl - x4) 4, x ° = ( 3 , - 1 , 0 , 1 ) ,  
x* = (0, O, O, 0), f ( x * )  = 0.0 (Powell's quart ic  function [6]). 

(7) 

( l q - ( x l l - - x 2 )  2 ( 1 ) z  [ ( X l q - X 3 ) 2 ] )  f i x  ) = -  4- sin -~Trx2x3 q-exp - 2 , 
\ x2 

x ° = ( 0 , 1 ,  2) ,  x *  = ( 1 , 1 , 1 ) ,  f ( x * )  = - 3 . o  [6]. 

(8) f ( x )  = { - 1 3  +Xl  + [(5 - x 2 ) x 2  - 2]x2} 2 + { - 2 9  q-x1 + [(x2 + 1)x2 - 14]x2} 2, x ° ---- (1/2,  - 2 ) ,  
x* = (5, 4), f ( x * )  = 0.0 (Freudenstein and Roth  function [6]). 

(9) f ( x )  = 1 0 0 ( x 2 - x ~ ) 2 + ( 1 - X l )  2, x ° = ( -1 .2 ,  1), x* = (1, 1), f ( x * )  = 0.0 (cubic valley [8]). 

(10) f i  x)  = [1.5 - Xl(1 - x2)] 2 + [2.25 - x l (1  - x~)] 2 -{- [2.625 - Xl(1 - x3)] 2, x ° = (1, 1), 
x* = (3, 1/2), f ( x * )  = 0.0 (Beale's function [6]). 

(11) f i  x)  = [10(X2 -- X12)] 2 + (1 --Xl) 2 + 90(x4 --x2) 2 q- (1 --x3) 2 -t- 10(X2 q-X4 -- 2) 2 +0.1(X2 --X4) 2, 
X ° = (--3, 1, --3, --1), X* = (1, 1, 1, 1), f ( x * )  = 0.0 (Wood's  function [6]). 

(12) f ( x )  = ~ i n l i x 2 ,  x ° = ( 3 , 3 , . . . , 3 ) ,  x* = ( 0 , 0 , . . . , 0 ) ,  f ( x * )  = 0.0 (extended homoge- 
neous quadrat ic  functions).  

(13) f ( x )  ---- ~$~1[100(x~+1 - x~) 2 + (1 - xi)2], x ° = ( -1 .2 ,  1 , - 1 . 2 ,  1 , . . .  ), x* = (1, 1 , . . . ,  1), 
f ( x * )  = 0.0 (extended Rosenbrock functions [6]). 

(14) f i  x)  = ~in=t(1 - x i ) 2 / 2  i-1,  x ° = ( 0 , 0 , . . .  ,0), x* -- (1, 1 , . . . ,  1), f ( x * )  = 0.0 (extended 
Manevich functions [9]). 
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