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Nomenclature 
 air density 

Dh hydraulic diameter 
h  convective heat transfer  
h duct height 
L duct length 
u+ adimensional velocity 
um mean flow velocity 

P the pressure drop between the inlet and the outlet of the duct 
t sublayer thickness  
 thermal air conductivity 
 fluid kinematic viscosity   
w wall shear stress  

 
conversion, utilization and recovery of energy, invariably involve a heat exchange process, which makes it 
imperative to improve the thermal performance of heat exchangers. Solar collectors, as particular type of heat 
exchangers, are the basic elements in all solar radiation conversion systems into heat at low temperatures. They are 
adapted to applications that need heat temperature between 30° and 70°C. They are used in many applications, such 
as local space heating, water heating and solar drying of agricultural produces.  

Solar air heaters (SAH) are used to convert solar radiation into heat using flowing air. They are composed of a 
glazing, an absorber, and an insulated box. SAH are generally classified into three types according to air passes:  

 type I with air flowing between the absorber plate and the cover glazing;  
 type II with air flowing between the absorber plate and the back panel;  
 and type III with two air channels above and below the absorber plate. 

However, SAH’s thermal efficiency is actually poor because of the bad heat transfer between the flowing air and 
the heated absorber [1]. This is due to the low thermophysical properties of the air in part, and to the viscous 
sublayer that appears in the vicinity of the absorber and which is resistant to the heat transfer in the other part. 

In order to make solar air heaters more efficient, their thermal efficiency needs to be improved. Many techniques 
based on both active and passive methods have been proposed to enhance heat transfer in these applications [2]. 
Among these methods one can find systems involving vortex generators such as ribs and baffles. Disturbance 
promoters increase fluid mixing and interrupt the development of thermal boundary layer, leading to enhancement 
of heat transfer. The heat transfer enhancement techniques are available to achieve this objective by: 
 Increasing the heat-transfer area with the use of extended surfaces, or corrugated ones. 
 Enhancing the convective heat transfer coefficient. This may be attained by broking the laminar sub-layer formed 

in the vicinity of the absorber plate, by introducing artificial roughness on that surface.. 
In the literature , one can find several studies on solar air heat enhancement techniques. Thus, Varun [3] gave an 

overview of the geometry of roughness used in heat exchangers and presented a selection of roughness that are 
adapted to case of solar air collectors . He studied the effect of a large number of parameters such as the shape and 
size of roughness on the air flow regime. Hans et al. [4] reviewed the roughness element geometries employed by 
various investigators to improve the thermal performance of solar air heaters. In view of finding optimal roughness 
pattern, 11 distinct roughness geometries have been compared on the basis of thermohydraulic performance. 
Recently, Bhushan [5] presented an attempt to classify and examine the geometry of artificial roughness used in duct 
of solar air collectors . Correlations giving the heat transfer coefficient and the friction coefficient developed by 
various researchers for solar air heaters provided with artificial roughness were also presented in the paper. 

Research studies on artificial roughness using CFD techniques are less numerous. However, one can cite Lee [6], 
who studied numerically heat transfer and air flow above a horizontal surface provided with two-dimensional 
roughness using a CFD model. Chaube [7] performed a numerical analysis using Fluent6.1to analyze the effect of 
nine types of roughness on heat transfer and friction characteristics enhancement. The author reported that in the 
case of transverse ribs the results obtained from the two-dimensional model are concordant to the experimental 
results and requires less memory and computation time compared to three-dimensional models. Also, in the 
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transverse ribs, the best performance was obtained with rectangular ones in the range of the studied parameters. 
Others authors gave their conclusion after performing CFD analysis to study the effect of artificial roughness on 
heat transfer enhancement in solar air heaters [ 8,9]. 

As the air flows over the heated absorber, a viscous sublayer (laminar) appears in the vicinity of the absorber. 
This sublayer is resistant to the heat transfer between the absorber and the fluid (air). To break it, artificial roughness 
are provided on the absorber surface. The obstacles or rough elements, whatever their shape, are generating 
secondary flows or recirculations, which result in two separation zones on both sides of the obstacle. The generated 
vortices are responsible of the turbulence and thus increase the heat transfer and pressure losses. Secondary fluid 
circulation promote a better convective heat transfer. However, it is desirable that the turbulence takes place only in 
the near-wall region, that is to say within the laminar sub-layer, where the heat transfer takes place, to minimize 
friction losses, Bhatti [10]. This is achieved by keeping the height of the rough element relatively small in 
comparison to duct dimensions. For remind, the laminar sublayer thickness is given by [10]: 

 
            (1) 

 

for a smooth surface , we have, [4]: 

 

    (2) 

 

    (3) 

 
and we have  

yu for the laminar sublayer, 5y     (4) 

5.3ln5 yu  for the transition layer (buffer), 305 y    (5) 

5.5ln5.2 yu  for the turbulent layer, 30y     (6) 

There are some basic dimensionless geometrical parameters that are used to characterize roughness [5] :  

  Relative roughness pitch (p/e): it is defined as the ratio of distance between two consecutive ribs (p) and height 
of the rib(e).  

 Relative roughness height (e/D): Relative roughness height (e/D) is the ratio of rib height (e) to equivalent 
diameter of the air duct (D).  

 Angle of attack ( ): Angle of attack is inclination of rib with direction of air flow in duct.  

  Aspect ratio: It is the ratio of duct width to duct height. This factor also plays a very crucial role in investigating 
thermo-hydraulic performance. 
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Inlet: T=T0= 298 K, u0=0.5 to 4 m/s, v0=0, I0=5% 

On the top plate: u=o,v=o, q=0 (adiabatic) 

On the bottom plate : u=o, v=o, q= 600 W/m2 

Outlet : P= Patm 

3. Mathematical modelling 

Considering the air flow in the channel with heat transfer, the mathematical model applied is composed of the 
conservation equations of mass, momentum and energy for incompressible flow in two dimensions with the 
following assumptions: 

  The flow is two-dimensional, turbulent and stationary.  

 The thermophysical properties of the air are supposed to be constant.  

 The thermal conductivity of the walls and ribs is supposed to be constant. 

            (11) 

 

            (12) 

 

            (13) 

 

With  

xi , cartesian coordinates (xi  x, y), 

ui, velocity component in xi direction,  

  dynamic viscosity coefficient.  

Since the flow is turbulent, we used Reynolds decomposition to write:  
uuu            (14) 

 
where u is the mean velocity and u the fluctuation.  
In what follows , u is simply expressed by u  
substituting (14) in (11,12,13), we obtained in tonsorial notations: 
 
            (15) 
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5. Results and discussions 

Configuration1 
We solved continuity, momentum and energy equations in turbulent mode using four closure models (two-

equations models): 
 k-   RNG (Renormalization GroupTheory) 
 k-   RZ (Realizable) 
 k-  Standard 
 k-  SST 

For each turbulence model, Reynolds number varied from 3000 to 15000. The same simulation, have been 
conducted for a smooth duct of same dimensions as roughened one, in order to compare the results and thus 
highlight the heat transfer enhancement due to artificial roughness. 

Stanton number is one of the most important parameters in heat transfer, so we calculated it for different 
Reynolds numbers. The results obtained using the four turbulent closure models have been compared with Dittus–
Boelter empirical correlation for smooth duct given below [17]: 

 
4.08.0 PrRe023.0Nul          (14) 

 
The curve representing the ratio between the Stanton number (St) for the rough duct and smooth one (Stl), versus 

Reynolds number, is represented in Fig. 4a for different turbulence models used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. (a)(St/Stl) versus Re, predicted by the four turbulence models, (b) Friction  
factor ratio(fr/frl ) evolution according to Re (SST k- ) 

 
We noticed that the ratio (St/Stl) increases with the Reynolds number, whatever the turbulence model used. The 

increase in roughned duct Stanton number is 1.3 to 1.8 times, higher than smooth duct, reaching a peak for Re = 
10000. Furthermore this comparison, it is clear that the SST k-  model gives the best results because its values are 
close to Karwa's [15] experimental results. Therefore, we will use exclusively this model in further simulations. 

To verify that the improved heat transfer induced by artificial roughness is not followed by too much friction 
loss, we calculated the rough duct friction factor (fr) and smooth duct one (frl), for different values of Reynolds 
number. The latter is calculated by the relation of Blasius, [17]: 

 
            (15) 
 
The ratio (fr/frl) evolution according to Re is shown in Fig. 4b. We observed that our curve shape is similar to 

Karwa's one [15]. Friction factor values although they are increased by the presence of roughness remain within an 
acceptable range. 
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The Figure 7a represents the Nusselt number mean evolution according  Reynolds number for rectangular ribs. 
We observed that Nu increases in an almost linear way with Re. This result was foreseeable because at low 
Reynolds numbers (laminar flow), Nusselt number for all surface types is barely constant, because of the resistance  
of the viscous sub-layer to heat transfer. The use of artificial roughness has for effect to break this resistance, and 
thus increase the heat transfer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7:(a) Nusselt number Vs Re; (b)Heat transfer coefficient vs Re 

One can note that the heat transfer coefficient (hc) evolution’s curve has the same shape as that of Nusselt 
number (Fig. 7b). Indeed, this one increases regularly with the Reynolds number. However, a high value of Num or 
hc coefficient doesn’t guarantee a good thermal efficiency. Because when the Reynolds number increases, the 
generated vortex causes also losses of pressure.  

For this reason it is significant to estimate the friction factor for the surfaces provided with roughness. This 
parameter variation has been plotted in Figure 8a. As found in the literature, the friction factor [4] decreases with the 
increase in the Reynolds number. We can also observe that the values of the factor of friction remain moderate in all 
the range of Reynolds numbers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 (a). Effect of Reynolds number on friction factor, (b) Effect of Reynolds Number 
on global thermohydraulic performance parameter 
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On Figure8b, we plotted the curve of the global thermohydraulic performance parameter ET, introduced by  

Kumar [8]. A good parameter of performance (ET> 1) is recorded in all the range of Reynolds numbers. Moreover, 
ET  increases appreciably with the increase in the Reynolds number. 

 
The outlet temperature Ts is another significant parameter in solar air heaters because it  determines its use (space 

heating, greenhouse heating or solar drying). We plotted the Ts curve according to Reynolds number on Figure 9. 
We can note that this one decreases when the speed of the fluid increases. This is a direct consequence of the 
increase in the factor of friction which decrease the effective heat transfer rate of the wall heated towards the fluid 
and thus contributes to lower its average temperature at exit. 
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Fig. 9. Outlet temperature Ts versus Reynolds Number 

 
Conclusion 

In this paper, we have presented the results obtained by numerical analysis of flow and heat transfer in the air 
duct of a solar air collector, whose absorber is provided with artificial rectangular ribs. The analysis is based on 
CFD techniques and was performed using numerical software. This numerical analysis allowed us to found out the 
effect of absorber roughness on the air flow and heat transfer enhancement in solar air heaters. 

The first part of the analysis aims to validate the numerical model by comparing our results to Karwa's 
experimental results [15]. We have compared between four turbulence closure models and from the results, it is 
clear that the k-w SST gives the best results. 

The second part is an approach to the solar air heater in real operating conditions. This analysis allowed us to 
visualize the separation and reattachment zones. We also distinguished the over-speed area, where the velocity fluid 
reaches over 150% its initial velocity.  

We have also plotted Nusselt number, hc and Ts evolution with Reynolds number. The global thermohydraulic 
performance parameter ET is a good indicator of the effect of artificial ribs in the heat transfer enhancement in solar 
air heaters. The curve representing its evolution with Reynolds number shows good performance for rectangular ribs 
used. 

Moreover, the geometric shape of roughness studied gave rise to friction factors and therefore not penalizing the 
thermal-hydraulic performance. So, we recommend the use this type of roughness to improve the thermal 
performance of solar air collectors. 
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