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a b s t r a c t

In this paperwe consider amodified version of the classical optimal dividend problem taking into account
both expected dividends and the time value of ruin. We assume that the risk process is modeled by a
general spectrally positive Lévy process before dividends are deducted. Using the fluctuation theory of
spectrally positive Lévy processeswe give an explicit expression of the value function of a barrier strategy.
Subsequently we show that a barrier strategy is the optimal strategy among all admissible ones. Our work
is motivated by the recent work of Bayraktar, Kyprianou and Yamazaki (2013a).
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1. Introduction

In this paper we consider the classical optimal dividend prob-
lem of de Finetti for an insurance company whose risk process
evolves as a spectrally positive Lévy process in the absence of div-
idend payments. Over the last decade there has been a great deal
of interest in the insurance risk process as modeled by a Lévy pro-
cess, going back to the work of Klüppelberg et al. (2004). In this lit-
erature, the traditional compound Poisson model is replaced by a
general Lévy process, allowing for much greater flexibility in mod-
eling as well as access to the growing literature on Lévy processes
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which has also developed greatly in the last few decades. In par-
ticular, spectrally positive Lévy processes form a very tractable
subclass which has been much exploited recently both in the the-
oretical and in the actuarial literature, for example, Avanzi et al.
(2007), Avanzi and Gerber (2008), Bayraktar and Egami (2008), Li
andWu (2008), Ng (2009), Yao et al. (2010), Dai et al. (2010, 2011),
Avanzi et al. (2011), Bayraktar et al. (2013a,b) and Yin and Wen
(2013a,b) to name but a few.

The recent paper of Bayraktar et al. (2013a) studied the classical
de Finetti’s optimal dividend problem where the surplus of a
company is modeled by a spectrally positive Lévy process. We
continue this optimal dividend problem but add a component to
the dividend-value function that penalizes early ruin of controlled
risk processes. We now state the control problem considered in
this paper. Let X = {X(t)}t≥0 be a Lévy process without negative
jumps defined on a filtered probability space (Ω, F , F, P), where
F = (Ft)t≥0 is generated by the process X and satisfies the usual
conditions. As the process X has no negative jumps, its Laplace

-ND license.
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exponent exists and is given by

Ψ (θ) =
1
t
ln Ee−θX(t)

= cθ +
1
2
σ 2θ2

+


∞

0
(e−θx

− 1 + θx1{|x|<1})Π(dx), (1.1)

where 1A is the indicator function of a set A, c > 0, σ ≥ 0 andΠ is
a measure on (0, ∞) satisfying ((c, σ , Π) is called the Lévy triplet
of X)

∞

0
(1 ∧ x2)Π(dx) < ∞.

Denote by Px for the law of X when X(0) = x. Let Ex be the
expectation associated with Px. For short, we write P and E when
X(0) = 0. To avoid trivialities, it is assumed that X does not have
monotone sample paths. In the sequel, we assume that −Ψ ′(0+)
= E(X(1)) > 0 which implies that the process X drifts to +∞. It
is well known that if


∞

1 yΠ(dy) < ∞, then E(X(1)) < ∞, and
E(X(1)) = −c +


∞

1 yΠ(dy). Note that X has paths of bounded
variation if and only if

σ = 0 and


∞

0
(1 ∧ x)Π(dx) < ∞.

In this case, we write (1.1) as

Ψ (θ) = c0θ +
1
2
σ 2θ2

+


∞

0
(e−θx

− 1)Π(dx), (1.2)

with c0 = c +
 1
0 xΠ(dx) the so-called drift of X . In particu-

lar, in the case where σ = 0, Π(dx) = λP(dx), the process be-
comes the dualmodel in Avanzi et al. (2007), and in the casewhere
Π(dx) = λP(dx), the process becomes the dual model with diffu-
sion in Avanzi and Gerber (2008). For more details on spectrally
positive Lévy processes, the reader is referred to Bertoin (1996),
Sato (1999) and Kyprianou (2006).

The process X is an appropriate model of a company driven
by inventions or discoveries, or the cash fund of an investment
company before dividends are deducted. Let π = {Lπ

t : t ≥ 0} be a
dividend strategy consisting of a nondecreasing, right-continuous
and F-adapted process starting at 0, where Lπ

t stands for the lump-
sums of dividends paid out by the company up until time t . The
risk process with initial capital x ≥ 0 and controlled by a dividend
strategy π is defined by Uπ

= {Uπ
t : t ≥ 0}, where

Uπ
t = X(t) − Lπ

t , t ≥ 0.

The ruin time is then given by

τπ = inf{t > 0|Uπ
t = 0}.

A dividend strategy is called admissible if Lπ
t − Lπ

t− ≤ Uπ
t−, for all

t < τπ , in other words the lump sum dividend payment is smaller
than the size of the available capital. We define the dividend-value
function Vπ by

Vπ (x) = E
 τπ

0
e−qtdLπ

t + Se−qτπ |Uπ
0 = x


,

where q > 0 is an interest force for the calculation of the present
value and S ∈ R is the terminal value. Let Ξ be the set of all ad-
missible dividend policies. De Finetti’s dividend problem consists
of solving the following stochastic control problem:

V (x) = sup
π∈Ξ

Vπ (x), (1.3)

and to find an optimal policy π∗
∈ Ξ that satisfies V (x) = Vπ∗(x)

for all x ≥ 0.
Next, we shall have a review on the related literature. This opti-
mal dividend problem has recently gained a lot of attention in ac-
tuarial mathematics for spectrally negative Lévy processes. Avram
et al. (2007), Loeffen (2008) and Kyprianou et al. (2010) studied
the case of S = 0 for spectrally negative Lévy processes. The case
S < 0 was studied by Thonhauser and Albrecher (2007) for the
compound Poisson model and Brownian motion risk process. The
case S ∈ R was studied by Loeffen (2009) and Loeffen and Renaud
(2010) for spectrally negative Lévy processes. It was shown that
the optimal dividend strategy is formed by a barrier strategy for
this type model under some conditions imposed on the Lévy mea-
sure. Moreover, Azcue and Muler (2005) have provided a counter-
example for the case S = 0 showing that a barrier strategy cannot
be optimal. However, this is in contrast to the dividend problem in
the case of S = 0 for spectrally positive Lévy processes considered
by Bayraktar et al. (2013a), which shows that there a barrier strat-
egy always forms the optimal strategy, no matter the form of the
jump measure. Motivated by the work of Bayraktar et al. (2013a),
the purpose of this paper is to examine the analogous question for
the same model in the case of S ≠ 0.

The rest of the paper is organized as follows. In Section 2
we state some facts about scale functions. In Section 3 we give
the main results. Explicit expressions for the expected discounted
value of dividend payments are obtained, and it is shown that the
optimal dividend strategy is formed by a barrier strategy.

2. Scale functions

For an arbitrary spectrally positive Lévy process, the Laplace
exponent Ψ is strictly convex and limθ→∞ Ψ (θ) = ∞. Moreover,
Ψ is strictly increasing on [Φ(0), ∞), where Φ(0) is the largest
zero of Ψ . Thus there exists a function Φ : [0, ∞) → [Φ(0), ∞)
defined by Φ(q) = sup{θ ≥ 0 : Ψ (θ) = q} (its right-inverse) and
such that Ψ (Φ(q)) = q, q ≥ 0.

We now recall the definition of the q-scale function W (q) and
some properties of this function. For each q ≥ 0 there exists a
continuous and increasing function W (q)

: R → [0, ∞), called
the q-scale function defined in such a way that W (q)(x) = 0 for all
x < 0 and on [0, ∞) its Laplace transform is given by

∞

0
e−θxW (q)(x)dx =

1
Ψ (θ) − q

, θ > Φ(q). (2.1)

Closely related to W (q) is the scale function Z (q) given by

Z (q)(x) = 1 + q
 x

0
W (q)(y)dy, x ∈ R.

We will also use the following functions:

W
(q)

(x) =

 x

0
W (q)(z)dz,

Z
(q)

(x) =

 x

0
Z (q)(z)dz, x ∈ R.

Note that

Z (q)(x) = 1, Z
(q)

(x) = x, x ≤ 0.

If X has paths of bounded variation then, for all q ≥ 0,W (q)
|(0,∞) ∈

C1(0, ∞) if and only ifΠ has no atoms. In the case that X has paths
of unbounded variation, then for all q ≥ 0, W (q)

|(0,∞) ∈ C1(0, ∞).
Moreover if σ > 0 then C2(0, ∞). Further, if the Lévymeasure has
a density, then the scale functions are always differentiable (see
e.g. Chan et al., 2011).

The initial values ofW (q) and its derivative can be derived from
(2.1):

W (δ)(0+) =

 1
c0

, if X has paths of bounded variation,

0, otherwise,
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and

W (δ)′(0+) =


2
σ 2

, if σ ≠ 0,
q + Π(0, ∞)

c20
, if X is compound Poisson,

∞, if σ = 0 and Π(0, ∞) = ∞.

The functions W (q)(x) and Z (q)(x) play a key role in the solution
of two-sided exit problem. The following results can be extracted
directly out of the existing literature. See for example Korolyuk
et al. (1976), Bertoin (1997), Avram et al. (2004) and Kuznetsov
et al. (2013) in a somewhat different form. Define the first passage
times for a < b, with the convention inf∅ = ∞,

T+

b = inf{t ≥ 0 : X(t) > b},

T−

a = inf{t ≥ 0 : X(t) < a}, τab = T−

a ∧ T+

b .

Then we have for x, y ∈ (a, b), q ≥ 0, z ≥ b,

Ex(e−qT−
a 1

{T−
a <T+

b }
) =

W (q)(b − x)
W (q)(b − a)

, (2.2)

Ex(e−qT+

b 1
{T+

b <T−
a }

) = Z (q)(b − x) − W (q)(b − x)

×
Z (q)(b − a)
W (q)(b − a)

, (2.3)

Ex

e−qτab1{X(τab)=b}


=

σ 2

2


W (q)′(b − x) − W (q)(b − x)

×
W (q)′(b − a)
W (q)(b − a)


, (2.4)

Ex

e−qτab1{X(τab−)∈dy,X(τab)∈dz}


= u(q)(x, y)Π(dz − y)dy, (2.5)

where

u(q)(x, y) = W (q)(b − x)
W (q)(y − a)
W (q)(b − a)

− W (q)(y − x).

The identities (2.2) and (2.3) together with the strong Markov
property imply that

e−q(t∧τab)W (q)(b − X(t ∧ τab)), e−q(t∧τab)Z (q)(b − X(t ∧ τab))

and

e−q(t∧τab)


Z (q)(b − X(t ∧ τab)) − W (q)(b − X(t ∧ τab))

×
Z (q)(b − a)
W (q)(b − a)


are martingales.

3. Main results

Denoted by πb = {Lbt , t ≤ τ b
} the constant barrier strategy

at level b and let Ub = {Ub(t) : t ≥ 0} be the corresponding
risk process, where Ub(t) = X(t) − Db(t), with Lb0− = 0 and
Lbt = (b∨sup0≤s≤t X(s))−b. Note that Ub(t) is a spectrally positive
Lévy process reflected at b, πb ∈ Ξ and Lb0 = x−b if X(0) = x > b.
Denote by Vb(x) the dividend-value function when using the divi-
dend strategy πb, that is,

Vb(x) = Ex

 Tb

0
e−qtdLbt + Se−qTb


, 0 ≤ x ≤ b,

where Tb = inf{t > 0 : Ub(t) = 0} with Tb = ∞ if Ub(t) > 0
for all t ≥ 0. Here q > 0 is the discount factor and S ∈ R is the
terminal value.
We will now present the main results of this paper.

Theorem 3.1. The dividend-value function of the barrier strategy at
level b ≥ 0 is given by

Vb(x) =


Λ(b)Z (q)(b − x) − Z

(q)
(b − x)

−
Ψ ′(0+)

q
, if 0 ≤ x ≤ b,

x − b + Λ(b) −
Ψ ′(0+)

q
, if x > b,

(3.1)

where

Λ(b) =


Z

(q)
(b) +

Ψ ′(0+)

q
+ S


1

Z (q)(b)
.

Theorem 3.2. The barrier strategy at b∗ is an optimal strategy for
the control problem (1.3) regardless of the Lévy measure, i.e. V (x) =

Vb∗(x), where

b∗
=


(Z

(q)
)−1


−

Ψ ′(0+)

q
− S


, if −

Ψ ′(0+)

q
− S > 0,

0, if −
Ψ ′(0+)

q
− S ≤ 0,

(3.2)

Vb∗(x) =


−Z

(q)
(b∗

− x)

−
Ψ ′(0+)

q
, if −

Ψ ′(0+)

q
− S > 0,

x + S, if −
Ψ ′(0+)

q
− S ≤ 0,

(3.3)

for any x ≥ 0.
To prove Theorems 3.1 and 3.2, we need several lemmas.
Denote by A the extended generator of the process X , which

acts on C2 function g defined by

Ag(x) =
1
2
σ 2g ′′(x) − cg ′(x)

+


∞

0
[g(x + y) − g(x) − g ′(x)y1{|y|<1}]Π(dy). (3.4)

Lemma 3.1. Let S = 0. Assume that Vb(x) is bounded and twice
continuously differentiable on (0, b) with a bounded first derivative.
Then Vb(x) satisfies the following integro-differential equation:

AVb(x) = qVb(x), 0 < x < b,

together with the boundary conditions

Vb(0) = 0, V ′

b(b) = 1,
Vb(x) = x − b + Vb(b) for x > b.

Proof. Similar to the case of jump–diffusion (cf. Yin et al., 2013 or,
Yin and Wen, 2013a,b), applying the Itô’s formula for semimartin-
gales one has

Ex

e−q(tn∧Tb)Vb(Ub(tn ∧ Tb))


= Vb(x) + Ex

 tn∧Tb

0
e−qs

[(A − q)Vb(Ub(s))]ds

− Ex

 tn∧Tb

0
e−qtdLbt


,

where {tn, n ≥ 1} is an appropriate localization sequence of stop-
ping times. Letting n → ∞ and note that Vb(0) = 0 we have

Vb(x) = Ex

 Tb

0
e−qtdLbt


.

This ends the proof.
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Remark 3.1. With Π(dx) = λP(dx), where λ > 0 and P(y) is a
probability distribution function on (0, ∞), the result of Lemma3.1
reduces to the results of Avanzi and Gerber (2008, (2.3)–(2.6)).

Lemma 3.2. For b, q ≥ 0 and 0 ≤ x ≤ b, we have

Ex

e−qTb


=

Z (q)(b − x)
Z (q)(b)

. (3.5)

Proof. Let Yb(t) = b − Ub(t), then Yb is a reflected Lévy process
with initial value b − x. Define T̃b = inf{t > 0 : Yb(t) ≥ b}, then

E

e−qTb |Ub(0) = x


= E


e−qT̃b |Yb(0) = b − x


=

Z (q)(b − x)
Z (q)(b)

,

where in the last step we have used the result of Proposition 2(i) in
Pistorius (2004); see also Theorem 2.8(i) in Kuznetsov et al. (2013).
This ends the proof.

The following lemma due to Bayraktar et al. (2013a). Here we
give a different proof.

Lemma 3.3. For b, q ≥ 0 and 0 ≤ x ≤ b, define

V (x, b) = Ex

 Tb

0
e−qtdLbt


,

then we have

V (x, b) =
Z

(q)
(b)

Z (q)(b)
Z (q)(b − x) − Z

(q)
(b − x)

+
Ψ ′(0+)

q


Z (q)(b − x)
Z (q)(b)

− 1


. (3.6)

Proof. By the law of total probability and the strongMarkov prop-
erty as in Yin et al. (2013), we have

V (x, b) = h1(x)V (b, b) + h2(x), (3.7)

where

h1(x) = Ex

e−qT+

b 1
{T+

b <T−

0 }


,

and

h2(x) = Ex

e−qT+

b (X(T+

b ) − b)1
{T+

b <T−

0 }


.

By (2.3),

h1(x) = Z (q)(b − x) − W (q)(b − x)
Z (q)(b)
W (q)(b)

. (3.8)

By (2.5),

Ex

e−qT+

b X(T+

b )1
{T+

b <T−

0 }


=

 b

y=0


∞

z=b
zu(q)(x, y)

× Π(dz − y)dy
≡ I1(x) − I2(x), (3.9)

where

I1(x) =

 b

y=0


∞

z=b

W (q)(b − x)
W (q)(b)

W (q)(y)zΠ(dz − y)dy

= −
bZ (q)(b)
W (q)(b)

W (q)(b − x) + bcW (q)(b − x)

+
W (q)(b − x)
W (q)(b)


Z

(q)
(b) −

Ψ ′(0+)

q
Z (q)(b)

+
Ψ ′(0+)

q


, (3.10)
I2(x) =

 b

y=0


∞

z=b
W (q)(y − x)zΠ(dz − y)dy

= −bZ (q)(b − x) + bcW (q)(b − x)

+ Z
(q)

(b − x) −
Ψ ′(0+)

q
Z (q)(b − x) +

Ψ ′(0+)

q
, (3.11)

Substituting (3.10) and (3.11) into (3.9) we get

Ex

e−qT+

b X(T+

b )1
{T+

b <T−

0 }


=

W (q)(b − x)
W (q)(b)


Z

(q)
(b) − Ψ ′(0+)W

(q)
(b) − bZ (q)(b)


− Z

(q)
(b − x) + Ψ ′(0+)W

(q)
(b − x) + bZ (q)(b − x),

from which and (3.8) we arrive at

h2(x) =
W (q)(b − x)
W (q)(b)


Z

(q)
(b) − Ψ ′(0+)W

(q)
(b)


− Z
(q)

(b − x) + Ψ ′(0+)W
(q)

(b − x). (3.12)

Substituting (3.8) and (3.12) into (3.7) and using the boundary con-
dition V ′(b, b) = 1 in Lemma 3.1, we get

V (b, b) =
Z

(q)
(b)

Z (q)(b)
+

Ψ ′(0+)

qZ (q)(b)
−

Ψ ′(0+)

q
,

and the result follows.

Proof of Theorem 3.1. The result follows from Lemmas 3.2 and
3.3.

Proof of Theorem 3.2. By differentiating (3.1), we obtain that

V ′

b(x) =

−qΛ(b)W (q)(b − x)
+ Z (q)(b − x), if 0 < x ≤ b,

1, if x > b.
(3.13)

It follows that V ′

b(b) = 1 if and only if Λ(b) = 0, or, equivalently

Z
(q)

(b) = −
Ψ ′(0+)

q − S. Denote our candidate barrier level by

b∗
=


(Z

(q)
)−1


−

Ψ ′(0+)

q
− S


, if −

Ψ ′(0+)

q
− S > 0,

0, if −
Ψ ′(0+)

q
− S ≤ 0.

(3.14)

The dividend-value function when using the barrier strategy πb∗ is
given by

Vb∗(x) =


−Z

(q)
(b∗

− x)

−
Ψ ′(0+)

q
, if −

Ψ ′(0+)

q
− S > 0,

x + S, if −
Ψ ′(0+)

q
− S ≤ 0,

(3.15)

for any x ≥ 0.
According to Lemma 5 in Loeffen (2008), to prove the theorem,

it suffices to show that Vb∗(x) satisfies

(A − q)Vb∗(x) ≤ 0 for x > b∗. (3.16)

As in the proof of Theorem 2.1 in Bayraktar et al. (2013a), when
b∗

= 0, then Vb∗(x) = x + S and (A − q)Vb∗(x) = −Ψ ′(0+) −

q(x + S) ≤ −qx ≤ 0 for x ≥ 0.
Now suppose that b∗ > 0. Since (e−q(t∧τ0b∗ )

[Z
(q)

(b∗
− X(t ∧

τ0b∗))+
Ψ ′(0+)

q ])t≥0 is a Px-martingale, by the Itô’s formula one can
deduce that

(A − q)Vb∗(x) = 0 for 0 < x < b∗. (3.17)
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In particular (3.17) holds for x = b∗ since Vb∗ is sufficiently smooth.
Hence Vb∗(x) satisfies the condition (3.16) since (A − q)Vb∗(x) is
decreasing on [b∗, ∞). This completes the proof of Theorem 3.2.

Remark 3.2. Letting S → 0 in Theorem 3.2, the result reduces to
the result of Theorem 2.1 in Bayraktar et al. (2013a).
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