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Myostatin is a member of the bone morphogenetic protein/transforming growth factor-β (BMP/TGFβ) super-
family of secreted differentiation factors. Myostatin is a negative regulator ofmusclemass as shown by increased
muscle mass in myostatin deficient mice. Interestingly, these mice also exhibit increased bone mass suggesting
that myostatin may also play a role in regulating bone mass. To investigate the role of myostatin in bone,
young adult mice were administered with either a myostatin neutralizing antibody (Mstn-mAb), a soluble
myostatin decoy receptor (ActRIIB-Fc) or vehicle. While both myostatin inhibitors increased muscle mass, only
ActRIIB-Fc increased bone mass. Bone volume fraction (BV/TV), as determined by microCT, was increased by
132% and 27% in the distal femur and lumbar vertebrae, respectively. Histological evaluation demonstrated
that increased BV/TV in both locations was attributed to increased trabecular thickness, trabecular number and
bone formation rate. Increased BV/TV resulted in enhanced vertebral maximum compressive force compared
to untreated animals. The fact that ActRIIB-Fc, but not Mstn-mAb, increased bone volume suggested that this
soluble decoy receptor may be binding a ligand other than myostatin, that plays a role in regulating bone
mass. This was confirmed by the significant increase in BV/TV in myostatin deficient mice treated with
ActRIIB-Fc. Of the other known ActRIIB-Fc ligands, BMP3 has been identified as a negative regulator of bone
mass. However, BMP3 deficient mice treated with ActRIIB-Fc showed similar increases in BV/TV as wild type
(WT) littermates treatedwith ActRIIB-Fc. This result suggests that BMP3 neutralization is not the mechanism re-
sponsible for increased bone mass. The results of this study demonstrate that ActRIIB-Fc increases both muscle
and bone mass in mice. Therefore, a therapeutic that has this dual activity represents a potential approach for
the treatment of frailty.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license.
Introduction

Myostatin/growth and differentiation factor 8 (Mstn/GDF8) is a
member of the bone morphogenetic protein/transforming growth
factor-β (BMP/TGFβ) superfamily of secreted differentiation factors.
Myostatin null mice (Mstn−/−) develop muscles that are 100–200%
larger than littermate controls due to a combination of muscle fiber hy-
perplasia and hypertrophy [1]. Consistent with its role in mice, genetic
loss of myostatin has been associated with increased muscle mass in
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many different species including sheep [2], cattle [3–5], zebrafish [6,7],
dogs [7,8] and humans [9]. Importantly, dogs with only a single func-
tional myostatin allele have improved muscle function [9]. Pharmaco-
logical inhibition of myostatin activity in rodents by administration of
either neutralizingmyostatin antibodies,mutantmyostatin propeptides
or decoymyostatin receptor-fusion proteins results in increasedmuscle
mass and improved muscle function in both normal and dystrophic
animals [11]. In addition, a soluble decoy receptor administered in a single
ascending dose study in humans resulted in increased muscle mass as
measured by MRI [12]. Collectively, the data imply that inhibiting
myostatin activity in humans may result in increased muscle mass and
function in a variety of muscle disorders including muscular dystrophy,
cancer cachexia, disuse atrophy and sarcopenia.

The biological function ofmyostatin in skeletalmuscle is well studied
andnew roles formyostatin in other physiological systems are beginning
to emerge. Myostatin has been viewed as a myokine [13,14] and its
expression has been detected in white fat, cardiomyocytes and bone,
suggesting that myostatin may regulate homeostasis in all of these
tissues [15,16]. Myostatin was shown to inhibit adipogenesis in primary
pre-adipocyte bovine cultures and has been implicated in adipocyte
ense.
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proliferation [17]. This has further ramifications since adipocytes
expresses adipokines such as leptin which regulate food intake, energy
expenditure and bone mass through the CNS [18]. Myostatin expression
is elevated following cardiomyocyte damage and it has been directly
linked to cachexic loss of muscle mass in heart failure patients [19]. A
role formyostatin in bone homeostasis has been investigated as well. Ex-
amination of bones from myostatin null mice has revealed improved
bone strength and bone mineral density in the limbs [20–22], L5 verte-
brae [23] and jaw [24]. It is unclear from these studies if the increased
bone mass is due to adaptive responses caused by increased load from
larger muscles at these attachment sites rather than a direct effect of
myostatin signaling in bone or simply due to developmental related
effects. More recently, it has been shown that myostatin is expressed at
the fracture callus following injury [25]. In addition, myostatin null
mice have increased blastema size, total osseous tissue and callus
strength in a fibular osteotomy model [26]. The authors suggest that
myostatin may regulate the initial recruitment and proliferation of
progenitor cells in the callus. Together these data support a role for
myostatin in bone homeostasis and repair.

Similar to othermembers of the BMP family, myostatin activates sig-
naling upon binding to a heterodimeric complex made up of two type 2
receptors: Activin Receptor 2B/2A (ActRIIB)/ActRIIA and two type 1 re-
ceptors: Activin Receptor-Like Kinase 4/5 (Alk4/Alk5) [27]. Signals are
transduced via Smad2/3 phosphorylation followed by translocation
into the nucleus to modulate transcription. Both activin receptors,
ActRIIA and ActRIIB, can bind multiple ligands [28,29] including
myostatin although with different affinities [30]. Intact and ovariecto-
mized mice treated with a soluble ActRIIA receptor have been reported
to have induced bone formation, bone volume and biomechanical
strength [31]. Interestingly, these treated animals had no reported in-
crease in bodyweight ormusclemass.While a soluble ActRIIAmolecule
has been shown to neutralize myostatin activity in an in vitro model of
cell differentiation, the lack of any reported muscle phenotype in vivo
may be due to differences in ligand binding affinities or pharmacokinetic
properties of the protein [28]. In contrast, mice treated with a soluble
ActRIIB receptor demonstrate a dramatic increase in body weight and
isolated muscle mass [32]. Furthermore, it was shown that the soluble
ActRIIB receptor increased muscle mass in the myostatin null mice
suggesting that additional ActRIIB ligands may function as negative
regulators of skeletal muscle. ActRIIB is known to be expressed on the
surface of many cell types including osteoblasts [33] and research has
shown bone marrow stromal cells (BMSCs) isolated from the myostatin
null mice express ActRIIB and have enhanced osteogenic potential [34].
Collectively, these data support a potential role of myostatin as well as
other ActRIIB ligands in regulating bone homeostasis.

Of all the TGFβ family members, BMP3 and activins (ligands of
ActRIIB) are highly expressed in bone [35]. While data supports a role
for activins as both positive and negative regulators of bone, the role
of BMP3 as a negative regulator of bone is better documented. Osteo-
blasts and osteocytes secrete BMP3 and targeted deletion of BMP3
results in increased bone mass [36,37]. Further analyses revealed that
BMSCs isolated from BMP3 null mice showed an increase in colony
number, size and ability to differentiate into osteoblasts [36]. Interest-
ingly, transgenic overexpression of BMP3 in mice leads to delayed
osteogenesis and spontaneous rib fractures [38]. Additional in vitro ex-
periments demonstrated that BMP3 can antagonize both BMP2 and
BMP4 through anActRIIB dependentmechanism [36]. The data strongly
supports BMP3 as a negative regulator of bone health.

This study evaluated the role ofmyostatin in regulating bonemass in
young adultmice using twodistinct pharmacologic inhibitors, a neutral-
izing antibody to myostatin and a soluble myostatin decoy receptor
(ActRIIB-Fc). In addition, studies were performed in both Mstn−/−
and Bmp3−/− mice to begin to define the therapeutic mechanism
of action of ActRIIB-Fc. The results of these studies indicate that
ActRIIB-Fc modulates bone mass primarily through myostatin and
BMP3-independent mechanisms.
Materials and methods

Animals and study design

Female C57BLJ/6micewere purchased fromCharles River Laboratory
and group housed (Charles River Laboratory, Andover MA). Myostatin
(Mstn) and BMP3 knockout colonies were housed and managed by
Taconic (Taconic, Germantown NY, USA). All animals were maintained
in a facilitywith a 12 h light–dark cycle and fed standardmouse pelleted
food (PMI Feeds Chow#5001 PharmaServ, Framingham,MA) andwater
ad libitum. All animal procedures were approved by the Institutional
Animal Care and Use Committee (IACUC) and were carried out under
the Association for Assessment and Accreditation of Laboratory Animal
guidelines.

8 week old female C57BLJ/6, Mstn−/− or Bmp3−/− mice were
administered either weekly intraperitoneal injections (i.p.) of vehicle
(Veh) (PBS or Tris–sucrose, n = 8), a neutralizing antibody tomyostatin
(60 mg/kg JA16, Pfizer, Cambridge MA, n = 8) or a soluble myostatin
decoy receptor (10 mg/kg ActRIIB-Fc, Pfizer, Cambridge, MA, n = 8)
for a period of 4 weeks. The neutralizing antibody has previously been
shown to inhibit GDF-8 and -11 but not other members of the TGFβ
family such as activin A, while the decoy receptor was shown to inhibit
many members of the TGFβ family including GDF-8, -11 and activins A,
B and AB [28,39]. Comparing the effects of both molecules on muscle
and bone mass allowed the authors to determine the specific contribu-
tion of myostatin inhibition to these studies. The doses were chosen
based on previous experimentswith thesemolecules and reflect optimal
doses to observe increased muscle mass. The construction, expression
and purification of ActRIIB-Fc were previously described [32]. The
mouse Mstn monoclonal antibodies (clone JA16) were generated and
purified as previously described [40]. In studies involving Mstn−/−
and Bmp3−/− mice, age-matched wild type (WT) littermates were
used as controls. Daily subcutaneous injections of 100 μg/kg parathyroid
hormone (PTH) (Calbiochem, EMD Chemicals Inc., Gibbston NY, USA), a
known bone anabolic agent, were administered toWTmice for 4 weeks
to compare the effects with the two myostatin inhibitors.

Body weight was monitored weekly and the dosages/kg were ad-
justed for changes in body weight. In all of the above studies, fluoro-
chrome bone labels were administered to all animals 10 and 2 days
before the end of the study to quantify bone formation. After 4 weeks
of treatment, mice were euthanized by CO2 asphyxiation and blood
was collected by cardiac puncture. Serum samples were initially stored
for 30 min at 4 °C, then centrifuged for 10 min at 10 K rpm and stored
at −20 °C. Gastrocnemius and quadricep muscles were isolated from
both limbs and the weights recorded. The L4 and L5 lumbar vertebrae
and both left and right femorawere also harvested. The residualmuscle,
ligament and tendon tissues were removed. The L5 vertebrae and left
femora were stored in 70% ethanol and were used for histological
evaluation. The L4 vertebrae and right femora were wrapped in PBS
soaked-gauze, frozen at−20 °C andwere used for biomechanical testing.

Micro-computed tomography (μCT) analysis

L5 vertebrae and distal femora were imaged using a Scanco MCT40
(Scanco Medical AG, Brassersdorg, Switzerland) at a 12 μm isotropic
voxel size. Transverse slices were acquired for the entire length of the
L5 vertebral body. Vertebral trabecular bone was assessed in the region
immediately distal to the cranial growth plate and immediately proxi-
mal to the caudal growth plate resulting in an evaluated region of
~2000 μm. Transverse slices were obtained starting at the midpoint of
the distal growth plate and extending proximally for 3000 μm. For the
distal femora, trabecular bone was assessed over a 1500 μm region im-
mediately proximal to the distal growth plate. Trabecular bone for both
the L5 vertebrae and distal femurwas defined by automated contouring
to the endosteal surface using an inner value of 8 and outer value of
388. Automated contours were defined every 120 mm and remaining



Table 1
Effect of ActRIIB-Fc on body weight and muscle mass.

Parameters Vehicle ActRIIB-Fc PTH

Body weight
Wk 0 (grams) 22.5 ± 1.3 21.9 ± 1.0 22.3 ± 1.2
Wk 4 (grams) 22.5 ± 1.2 23.8 ± 1.6 22.7 ± 1.4

Muscle weights
Gastroc (mg) 136.9 ± 8.1 160.1 ± 10.0a 127.3 ± 5.9
Quadriceps (mg) 180.3 ± 11.3 214.8 ± 18.9a 163.7 ± 4.8a

Data shown are means ± SD.
a p b 0.05 vs. vehicle.
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contours were created using an adaptive–iterative algorithm [41]. Bone
volume fraction (BV/TV), trabecular thickness (Tb.Th) and trabecular
number (Tb.N)were calculated based on automated analyses. For cortical
thickness analyses, a 120 μm region of the distal femur was evaluated
2500 μm proximal to the growth plate.

Histological evaluation

The L5 vertebral bodies and left femur were cut transversely along
themidline with a band saw equipped with a diamond blade. The spec-
imens were fixed in 70% ethanol, dehydrated in graded concentrations
of ethanol, defatted in acetone, and embedded without decalcification
in methyl methacrylate. 8.0 μm and 10.0 μm sagittal sections were cut
using a microtome (Reichert Junt Polycut S, Cambridge Instruments,
Heidelberg, Germany) for histomorphometric measurements as de-
scribed previously [42]. The 8-μm sections were stained with modified
Von Kossa stain while the 10-μm section remained unstained. Static
and dynamic histomorphometric measurements of lumbar vertebral
trabecular bonewere calculated using a computerized digitalmicroscopy
histomorphometry analysis system (OsteoMeasure, OsteoMetrics,
Inc., Decatur, GA, USA). Total tissue area, trabecular bone area, and
trabecular bone perimeter were measured from the 8.0 μm thick sec-
tions. Trabecular bone volume, trabecular number, trabecular thickness,
and trabecular separation were calculated as described previously
[42]. Single-calcein labeled perimeter, double-calcein labeled perim-
eter, and interlabel width were measured on the 10 μm sections.
These data were used to calculate percent labeled trabecular surface,
mineral apposition rate and bone formation rate-surface as described
previously [42].

Evaluation of serum markers

Serum calcium was determined using the Quantichrom Calcium
assay (Bioassay Systems, Hayward, CA). Serum osteocalcin was deter-
mined using the Osteocalcin ELISA (Biomedical Technologies Inc.,
Stoughton, MA). C-telopeptide fragments of collagen Type I (CTX-1) in
serumwas determined using the RATLAPS ELISA kit (Nordic Bioscience,
Herlev, Denmark). Serum procollagen type I N-propeptide (P1NP) was
determined using the PINP ELISA (Immunodiagnostic Systems Ltd.,
Fountain Hills, AZ). All assays were performed following the
manufacturer's protocols.

Biomechanical testing

Prior to testing, L4 vertebrae were thawed at room temperature
and both growth plates were removed. Vertebral bodies were tested
in compression using amaterials testingmachine (Model 5565, Instron,
Norwood,MA) and a 100 N load cell. Loadwas applied at a constant rate
of 3 mm/min until failure. Maximum load and stiffness were collected
from force–displacement curves using Bluehill software version 2.14
(Instron, Norwood, MA). The right femora were potted in hex nuts
usingmethylmethacrylate and tested in torsion using amaterial testing
machine (Model 55MT, Instron, Norwood, MA) and a 2 Nm load cell.
The femora were internally rotated and were tested at a constant rate
of 1°/s until failure. Maximum torque and energy to failure were calcu-
lated using Partner software version 6.3a (Instron Satec, Norwood,MA).

Statistical analysis

Results are expressed as the mean ± standard deviation. Compari-
sons between two groups were performed using the unpaired Student
t-test or the Wilcoxon–Mann–Whitney exact test. Mouse strain, treat-
ment and their interaction were included in the ANOVA model. The
interaction termwas used to investigate if therewas a differential effect
of treatment due to the genetic differences in the mice. All tests were
considered significant when p b 0.05.
Results

ActRIIB-Fc is an anabolic bone agent

We have previously demonstrated that ActRIIB-Fc is a potent
myostatin inhibitor that can increase muscle mass in normal and dys-
trophic animals [10]. To study the effects of ActRIIB-Fc on bone, mice
were administered ActRIIB-Fc for 4 weeks. Young adult female mice
were used to allow us to compare our results to our previous data.
PTH was included as a comparator as a known anabolic agent. Mice
treated for 4 weekswith ActRIIB-Fc increased bodyweight by 18% com-
pared to vehicle treated control mice (Table 1). Gastrocnemius and
quadriceps muscle masses were increased by 16.4% and 19.1% respec-
tively compared to vehicle-treated controls (Table 1). These data are
consistent with previous results confirming ActRIIB-Fc as an anabolic
muscle agent. Mice treated for 4 weeks with PTH did not show a differ-
ence in bodyweight compared to vehicle-treated controls. Interestingly,
quadricep but not gastrocnemius muscle mass was significantly de-
creased by 9% in the PTH-treated mice compared to vehicle-treated
mice at 4 weeks. MicroCT (μCT) analyses demonstrated that mice treat-
ed for 4 weeks with ActRIIB-Fc had a significant increase in BV/TV in the
distal femora (132%) and L5 vertebrae (27%) compared to vehicle-
treated controls (Fig. 1A). The increase in BV/TV in the distal femora of
ActRIIB-Fc treated mice was due to an increase in both trabecular thick-
ness and trabecular number (Figs. 1B and C). Only trabecular thickness
was significantly increased in the vertebrae. Cortical thickness and
density was unchanged in the femora of ActRIIB-Fc-treated mice while
treatment with PTH increased femoral cortical thickness and density
(Fig. 1D). MicroCT analyses demonstrated that mice treated for
4 weekswith PTHhad a significant increase in BV/TV in the distal femora
(61%) but not in the L5 vertebrae (10%) compared to vehicle-treated con-
trols (Fig. 1A andD). Fig. 2 shows representative μCT images of trabecular
bone fromdistal femurs frommice treatedwith either vehicle, ActRIIB-Fc
or PTH.

To understand better the dramatic increased trabecular bone BV/TV
in the ActRIIB-Fc-treated mice, static and dynamic histomorphometry
wasperformedon the femur and L5 vertebrae. Static histomorphometry
evaluation confirmed the μCT data and showed that both ActRIIB-Fc and
PTH increased bone mass (Supplemental Table 1). Calcein double-
labeling demonstrated that the bone formation rate (BFR) was in-
creased in the femurs and L5 vertebrae by 249% and 174% respectively
in ActRIIB-Fc treated mice compared to vehicle-treated animals
(Table 2). Increased bone formation rate was associated with increased
mineralization surface (MS) and mineralization apposition rate (MAR)
at both sites (Table 2). As expected, PTH treatment increased bone
formation rate 112% in femurs and 69% in L5 vertebrae compared to
vehicle-treated animals. Increased BFR in the femur was associated
with increasedMS andMARwhile onlyMARwas significantly increased
in the vertebrae. Therefore both ActRIIB-Fc and PTH increased bone
mass by enhancing the bone formation rate.

To confirm the anabolic effect of ActRIIB-Fc and PTH, we analyzed
serum markers of osteoblast and osteoclast activity. Serum calcium
levels were significantly increased in ActRIIB-Fc treated mice (7%)
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Fig. 1. ActRIIB-Fc effects trabecular but not cortical bone. μCT analyses of mice treated for 4 weeks with either vehicle, ActRIIB-Fc or PTH. (A) Trabecular bone volume fractions BV/TV (%),
(B) trabecular thickness Tb.Th (μm) and (C) trabecular number Tb.N (#/mm) were measured in the distal femora and L5 vertebrae. (D) Cortical thickness C.Th (μm) and density C.Den
(mg HA/cm3) were measured in the femur mid-shaft. Results are presented as mean ± SD (n = 7–10 per group). Statistical differences from controls are indicated by*p b 0.05.

Vehicle ActRIIB-Fc PTH
Fig. 2. ActRIIB-Fc and PTH increase trabecular bone volume in the femur. Representative images of reconstituted μCT data. Bar represents 300 μm.
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compared to vehicle-treated animals (Table 3). Curiously, significant
changes were not observed in bone serum anabolic markers such as
of osteocalcin or P1NP. Similarly, no changes were detected in CTx,
a serum biomarker of bone resorption, following treatment with
ActRIIB-Fc. In contrast, mice treated with PTH, a known activator of
osteoblast activity, showed significantly increased serum calcium (9%),
Table 2
Effect of ActRIIB-Fc on dynamic histomorphometry parameters.

Parameter Vehicle ActRIIB-Fc PTH

Distal femora
MS (%) 15.92 ± 3.61 39.68 ± 5.94a,b 29.28 ± 6.47a

MAR (μm/d) 1.01 ± 0.15 1.42 ± 0.17a,b 1.18 ± 0.1a

BFR (m3/mm2/yr) 0.059 ± 0.019 0.206 ± 0.043a,b 0.125 ± 0.027a

L5 vertebrae
MS (%) 12.37 ± 4.4 24.43 ± 6.3a,b 17.69 ± 6.22
MAR (μm/d) 0.89 ± 0.12 1.19 ± 0.14a,b 0.99 ± 0.03a

BFR (m3/mm2/yr) 0.039 ± 0.01 0.107 ± 0.035a,b 0.064 ± 0.023a

Data shown are means ± SD.
a p b 0.05 vs. vehicle.
b p b 0.05 vs. PTH.
osteocalcin (25%) and P1NP (82%) (Table 3). SerumCTx levels remained
unchanged in PTH treated mice.

To differentiate the effects of ActRIIB-Fc and PTH on bone quality,
vertebral compression and femora torsional strength were assessed.
Mice treated with ActRIIB-Fc showed a significantly increased maxi-
mum compressive failure load (18%) and stiffness (44%) in L4 vertebrae
at 4 weeks compared to vehicle-treated animals (Table 4). Maximum
torsional load, energy and stiffness of the femorawere not increased fol-
lowing treatment with ActRIIB-Fc. Mice treated with PTH did not show
significant improvement in maximum compressive load or stiffness in
L4 vertebrae compared to vehicle-treated mice. However, torsional
Table 3
Effect of ActRIIB-Fc on serum biochemistry.

Parameters Vehicle ActRIIB-Fc PTH

Calcium (ng/ml) 10.0 ± 0.5 10.7 ± 0.4a 10.9 ± 0.5a

Osteocalcin (ng/ml) 88.4 ± 16.6 81.4 ± 20.8 110.3 ± 22.1a

P1NP (ng/ml) 6.3 ± 0.5 6.7 ± 1.7 11.5 ± 4.0a

CTX-1 (ng/ml) 25.4 ± 4.5 39.5 ± 25.9 27.0 ± 8.3

Data shown are means ± SD.
a p b 0.05 vs. vehicle.



Table 4
Effect of ActRIIB-Fc on bone structural analyses.

Parameters Vehicle ActRIIB-Fc PTH

L4 vertebrae
Failure to load (N) 34 ± 3.1 40 ± 5.9a 32 ± 7.4
Stiffness (N/mm) 95 ± 45.8 137 ± 24.2a 109 ± 29.9

Femora
Max torsional (N·mm) 21.0 ± 8.1 22 ± 4.7 29 ± 4.5a

Energy (mJ) 1.9 ± 1.0 2.0 ± 1.2 3.0 ± 1.0a

Stiffness (N·mm/rad) 156.3 ± 40.0 161.3 ± 53.0 186.6 ± 35.7

Data shown are means ± SD.
a p b 0.05 vs. vehicle.

Table 5
Effect of Mstn-mAb on body weight and muscle mass.

Parameters Vehicle Mstn-mAb

Body weight
Wk 0 (grams) 17.6 ± 0.8 17.8 ± 0.7
Wk 4 (grams) 18.3 ± 1.1 20.5 ± 1.2

Muscle weights
Gastroc (mg) 116.7 ± 8.5 139.8 ± 13.8a

Quadriceps (mg) 148.6 ± 11.1 178.3 ± 14.6a

Data shown are means ± SD.
a p b 0.05 vs. vehicle.
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strength was increased in the femora (38%) of PTH-treated animals
compared to vehicle-treated femora (Table 4). Together, these data sup-
port that bone quality was increased in mice treated with ActRIIB-Fc.

Myostatin mAb increases muscle mass but has no effect on bone

Mice were treated for 4 weeks with a Mstn-mAb to determine if
myostatin inhibition alone could explain the increase in both muscle
and bone mass observed in ActRIIB-Fc treated mice. At the end of the
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study, body weight was increased by 15% while gastrocnemius and
quadricepsmusclemasseswere increased by 19.8% and 20% respectively
compared to vehicle-treated control mice (Table 5). The increased body
weight and muscle mass confirmed anabolic activity in muscle between
Mstn-mAb and ActRIIB-Fc. Subsequent μCT analyses did not show signif-
icant differences in BV/TV, trabecular thickness or trabecular number in
either the distal femora or the L5 vertebrae compared to vehicle treated
controls (Fig. 3A–C). In addition, cortical thickness and density remained
unchanged in the Mstn-mAb treated mice (Fig. 3D). Histological analy-
ses, biomechanics and serum markers of bone remained unchanged
(Supplemental Tables 2–4). Therefore, the data demonstrated that neu-
tralization of myostatin significantly increased muscle mass but had no
effects on bone mass.

The anabolic effect of ActRIIB-Fc on bone is predominantly
myostatin-independent

The lack of a bone phenotype in Mstn-mAb treated mice was unex-
pected. To help explain this discrepancy, we analyzed Mstn−/− mice
from our own colony. As previously described,Mstn−/−miceweighed
more (25%) and contained larger gastrocnemius and quadriceps mus-
cles (muscle mass was increased 81% and 90% respectively) compared
to wild type littermates (Table 6) [1]. μCT analyses of the distal femora
but not the L5 vertebrae from Mstn−/− mice showed a significant in-
crease in trabecular BV/TV (56%) compared to age-matched wild type
littermates (Fig. 4A). The increase in BV/TVwas due to increased trabec-
ular number and thickness (Fig. 4B, C). Since the genetic data supported
a role for myostatin in bone growth,Mstn−/−micewere administered
ActRIIB-Fc for 4 weeks. ActRIIB-Fc treatment increased bodyweight and
muscle mass in Mstn−/− mice as previously reported [32] (Table 6).
Mstn−/−mice treated with ActRIIB-Fc showed a further significant in-
crease in BV/TV in distal femora (72%) and L5 vertebrae (39%) relative to
age and gender matchedMstn−/−mice treated with vehicle (Fig. 4A).
The increase in BV/TV was due primarily to an increase in trabecular
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Table 6
Effect of ActRIIB-Fc on body weight and muscle mass inMstn−/− and WT littermates.

Wild type Mstn−/−

Parameter Vehicle ActRIIB-Fc Vehicle ActRIIB-Fc

Body weight
Wk 0 (grams) 20.1 ± 1.9 18.9 ± 1.1 25.0 ± 0.9b 23.3 ± 0.3
Wk 4 (grams) 21.0 ± 1.9 24.7 ± 2.0a 26.2 ± 1.0 29.5 ± 1.0a

Muscle weights
Gastroc (mg) 129.5 ± 9.1 166.0 ± 4.0a 234.4 ± 24.7b 278.3 ± 24.3a

Quadriceps (mg) 170.3 ± 11.9 224.5 ± 10.1a 323.2 ± 29.6b 371.9 ± 25.9a

Data shown are means ± SD.
a p b 0.05 vs. vehicle.
b p b 0.05 vs. WT littermates.
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thickness and trabecular number in both bones (Fig. 4B, C). As a control,
WT littermates were also treated for 4 weeks with ActRIIB-Fc. Body
weight, muscle mass and bone mass were increased similar to data
presented above (compare Tables 1 and 6 and Figs. 1 and 4). ANOVAanal-
yses determined that ActRIIB-Fc had a similar effect on bone parameters
onMstn−/− and their WT littermates. Taken together, these pharmaco-
logic and genetic data suggest that the anabolic bone effect of ActRIIB-Fc
involves inhibition of additional ligands other than myostatin.

The anabolic effect of ActRIIB-Fc on bone is BMP3 independent

One potential bone related ligand that signals through the ActRIIB
receptor is BMP3 [37]. To investigate if the anabolic bone activity of
ActRIIB-Fc
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Table 7
Effect of ActRIIB-Fc on body weight and muscle mass in Bmp3−/− and WT littermates.

Wild type Bmp3−/−

Parameter Vehicle ActRIIB-Fc Vehicle ActRIIB-Fc

Body weight
Wk 0 (grams) 22.5 ± 1.3 21.9 ± 1.0 19.7 ± 2.3b 20.7 ± 1.6
Wk 4 (grams) 22.5 ± 1.2 23.8 ± 1.6 21.0 ± 3.1 22.8 ± 2.5

Muscle weights
Gastroc (mg) 136.9 ± 8.1 160.1 ± 10.0a 122.4 ± 15.9b 156.7 ± 11.6a

Quadriceps (mg) 180.3 ± 11.3 214.8 ± 18.9a 162.9 ± 16.8b 210.6 ± 19.1a

Data shown are means ± SD.
a p b 0.05 vs. vehicle.
b p b 0.05 vs. WT littermates.
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ActRIIB-Fc is due to BMP3 neutralization, Bmp3−/− mice were ana-
lyzed. Bmp3−/− mice were smaller than the wild type littermates at
the start of the study (Table 7). As expected, μCT analyses of untreated
Bmp3−/− mice demonstrated increased BV/TV of distal femur (60%)
and L5 vertebrae (16%) compared to age-matched WT littermates
(Fig. 5A). The elevated BV/TV bone mass was due to increased trabecu-
lar thickness and trabecular number in the distal femora and increased
trabecular number in the vertebrae (Figs. 5B, C). Following 4 weeks of
ActRIIB-Fc treatment, Bmp3−/− mice gained 8.6% body mass and in-
creased gastrocnemius and quadricep muscle mass was by 28% and
29.3% respectively compared to vehicle treated Bmp3−/− mice
(Table 7). Bmp3−/− animals treated with ActRIIB-Fc showed signifi-
cantly increased BV/TV in the distal femora (93%) and L5 vertebrae
(57%) compared to vehicle-treated Bmp3−/− mice (Fig. 5A). The in-
crease in BV/TV in both femur and vertebrae was due to an increase in
trabecular thickness and trabecular number. WT littermates treated
for 4 weeks with ActRIIB-Fc also showed similar increases in BV/TV in
the distal femora and L5 vertebrae (131% and 30% respectively).
ANOVA analyses determined that ActRIIB-Fc treatment had a similar
effect on bone parameters on Bmp3−/− and their WT littermates.
These results indicate that the anabolic effect of ActRIIB-Fc on bone
does not involve neutralization of BMP3 activity.
Discussion

The role ofmyostatin in regulatingmusclemass has been extensively
studied in normal and pathological conditions but a putative role in reg-
ulating bone mass has not been as thoroughly investigated [11]. The
analyses of Mstn−/− mice identified increased trabecular bone in the
distal femora but not the vertebrae in 12 week old females. In
12 week-old male Mstn−/− mice, increased trabecular bone was also
observed in the vertebrae but not in the distal femora (data not
shown). In addition, cortical bone was unchanged. Differences in bone
parameters observed in this study compared to published reports may
be explained by differences in age, sex, methods of analyses and
colony-specific effects [20,22]. The aggregate of the genetic data does
support a role for myostatin in regulating bonemass, albeit, a potentially
developmental one. Mstn−/− mice treated with ActRIIB-Fc showed an
anabolic activity in bothmuscle and bone at all sites analyzed suggesting
that myostatin is only one of the several ligands antagonized by ActRIIB-
Fc that are important in homeostasis.

Mice treated with either Mstn-mAb or ActRIIB-Fc showed modest
increases in muscle mass in this study but only treatment with
ActRIIB-Fc resulted in a dramatic increase in BV/TV in L5 vertebrae
and distal femora. Interestingly, the distal femora from mice treated
with the Mstn-mAb showed a trend towards increased BV/TV. It is pos-
sible that prolonged administration of Mstn-mAb beyond 4 weeks may
result in increased bone mass and strength. The lack of a significant
improvement to bone by a Mstn-mAb also suggests that the adaptation
of bone to increasedmuscle mass is a slower process than expected. On
the other hand, unloading of bone by reduction of gravity during space
flight or hindlimb suspension in rodents results in a rapid loss of bone
mass [43–46]. Recently, data demonstrated that bone mass can be in-
creased via in vivomechanical loading of the tibia [47]. Our data demon-
strates that a rapid gain inmusclemass does not translate to a rapid gain
in bone mass, suggesting that the effect of ActRIIB-Fc on bone involved
other regulatory pathways.

Both molecules inhibit myostatin activity in cell-based reporter
assays and both increase muscle mass in vivo [32,48]. The differential
effects ofMstn-mAb and ActRIIB-Fc on bone are likely due to the inhibi-
tion of other TGFβ/BMP ligands or other non-TGFβ/BMP ligands by
ActRIIB-Fc. Several labs have demonstrated that ActRIIB-Fc can interact
with many of these secreted factors in mouse and human serum and
modulates their activities [28,49,50]. The role of ligands other than
myostatin in the modulation of both muscle and bone mass is likely
given the fact that Mstn−/− mice treated with ActRIIB-Fc gain addi-
tional muscle mass [32] and show increased BV/TV at multiple sites as
reported here.

The role of BMP3 as a potential ligand responsible for ActRIIB-Fc's
anabolic activity on bone was investigated in this study. Previous re-
ports demonstrated that Bmp3−/− animals exhibit increased bone
mass [37] aswe have now independently confirmed here. This is consis-
tent with BMP3's ability to inhibit osteoblast differentiation of bone
marrow cells in vitro [36]. Interestingly, BMP3 requires ActRIIB to inhib-
it osteoblast differentiation even though it can bind to both type II
activin receptors, ActRIIA and ActRIIB. This study demonstrated that
ActRIIB-Fc increased trabecular bone volume in Bmp3−/− mice and
their WT littermates to the same extent. If BMP3 inhibition by
ActRIIB-Fc was primarily responsible for the increased bone mass,
then BV/TV should be similar to WT mice treated with ActRIIB-Fc com-
pared to Bmp3−/− controls and that ActRIIB-Fc would not increase
BV/TV in the Bmp3−/− animals. The observation that ActRIIB-Fc signif-
icantly increased bonemass in Bmp3 nullmice to the same extent asWT
mice suggests that BMP3 neutralization is not required for the anabolic
activity of ActRIIB-Fc on bone. Increased bone mineral density following
treatment with ActRIIA-Fc in Bmp3−/− mice was previously reported
but this is first report to demonstrate this by ActRIIB-Fc [31,51,52].

ActivinA is also highly expressed in bone but the role of activins and
their antagonists in bonemetabolism both in vitro and in vivo has dem-
onstrated conflicting results [53]. In bone-marrow derived osteoclast
cultures, activinA stimulates osteoclastogenesis while its effects on cul-
tured osteoblasts is less clear [54,55]. In vivo, activinA has been shown
to promote callus formation when directly applied to the fracture site
[56]. Furthermore, activinA administration can increase bone mineral
density in vertebrae of aged ovariectomized rats [57]. In contrast, trans-
genic over expression of inhibin, an antagonist of activinA activity, in-
creased bone formation, bone mass and strength [58]. Administration
of a soluble decoy receptor of activinA, ActRIIA-mFc, was reported to
increase trabecular bone mass and strength by stimulating osteoblast
activity [31]. This phenotype is very similar to ActRIIB-Fc treatment
although there are some distinct differences. Both agents increased
bonemass to a similar extent by stimulating osteoblast activity as mea-
sured by dynamic histomorphometry. However only ActRIIA-mFc
increased serum osteocalcin expression. Prolonged treatment of
ActRIIA-mFc also resulted in increased cortical bone thickness and
enhanced femoral strength which was not observed in our shorter
ActRIIB-Fc treatment. The similarities in bone phenotypes between
ActRIIB-Fc andActRIIA-Fc certainly suggest that bothmoleculesmay an-
tagonize a common ligand or group of ligands responsible for regulating
bone mass. ActRIIB-Fc inhibits activinA, activinB and activinAB in cell-
based reporter assays with the similar potency as myostatin [28]. Neu-
tralization of one of the activins may be responsible for the enhanced
bone phenotype from either or both decoy-receptors. In contrast,
ActRIIB-Fc increased muscle mass while ActRIIA-mFc did not, further
supporting the hypothesis that some aspects of the regulation of bone
mass and muscle mass are independent.
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The anabolic effect of ActRIIB-Fc on bone was compared to PTH, a
known anabolic bone agent [59]. Both therapies increased bone mass
and strength but some significant differences in the phenotypes were
observed. While PTH increased both trabecular and cortical bone thick-
nesses in the femur, ActRIIB-Fc dramatically increased femoral trabecu-
lar bone but had no effect on cortical bone thickness. This combination
of increased trabecular and cortical bone in the femur of PTH treated
mice resulted in enhanced torsional strength and stiffness that was
not observed in femurs from ActRIIB-Fc treated animals. In contrast,
PTH treatment did not significantly increase vertebral bone volume or
strength while ActRIIB-Fc increased vertebral trabecular bone volume
and enhanced vertebral compression strength. It is tempting to specu-
late that PTH treatment enhanced periosteal bone formation while
ActRIIB-Fc did not. Certainly, dynamic histomorphometry analyses sug-
gest that ActRIIB-Fc and PTH increase trabecular bone formation. Bio-
chemical analyses of serum from PTH treated mice detected increases
in sCa, P1NP and osteocalcinwhich support the evidence that PTH stim-
ulates bone formation. Other than a mild but significant increase in sCa,
ActRIIB-Fc treatedmice did not display typical changes in either P1NP or
osteocalcin which one might expect given the dramatic increase in
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trabecular bone formation. It is possible that we missed detecting
changes in these anabolic markers by only analyzing serum at the end
of the study. Alternatively, it is possible that ActRIIB-Fc and PTHenhance
bone formation via different mechanisms. Other groups reported that
ActRIIB-Fc treatment increased P1NP in aged mice [60]. In addition,
treatment of postmenopausal women with ActRIIB-Fc (ACE-031) dem-
onstrated changes in serumbone turnovermarkers such as BALP [12]. In
both studies, it may be easier to detect changes in these serummarkers
since osteoblast activity is known to diminish with age in both rodents
and humans. It remains unclear why changes in P1NP and osteocalcin
were not observed in our study. Additionally, the effect of ActRIIB-Fc
on sCa is puzzling. Multiplemechanisms associatedwith hypercalcemia
have been described including elevated PTH, abnormal FGF23 levels,
Paget's disease, rheumatoid arthritis, autoimmune responses and cancer.
Further studieswill be necessary to understandwhether ActRIIB-Fc influ-
ences sCa directly or if this is through an indirect mechanism.

The dynamic histomorphometry data from this work supports that
administration of ActRIIB-Fc for 4 weeks is anabolic to bone. Effects on
bone resorption, as measured by serum CTx levels, do not appear to
be a major contributor to the measured bone parameters. Similarly,
short term intermittent PTH administration, as performed in this
study, did not alter CTx levels. In contrast, chronic or sustained PTH sig-
naling and neutralizing antibodies to SOST [61–63] have demonstrated
changes in osteoclast activity and in CTx levels in addition to their initial
effects on stimulating osteoblast activity. Antiresorptive therapies with
diverse mechanism of actions, such as raloxifene, denosumab, stron-
tium ranelate, odanacatib or bisphosphonates demonstrated decreases
in CTx or TRAP-5b serum levels [64–68]. Therefore we hypothesize
that ActRIIB-Fc would not have a major anti-resorptive contribution to
the dramatic increase in trabecular bone without affecting CTx levels.

The results of this study demonstrated that treatment with a neu-
tralizing myostatin antibody increased only muscle mass while treat-
ment with ActRIIB-Fc increased both muscle and bone masses in mice.
The anabolic effect of ActRIIB-Fc onmusclemass appears to be the result
of inhibition of myostatin and non-myostatin ligands while increased
bone mass is largely independent of inhibition of myostatin. More
work will be necessary to identify these additional factors that interact
with ActRIIB to regulate bone homeostasis. Based on these results, treat-
ment with ActRIIB-Fc may be beneficial not only for diseases associated
with muscle atrophy but also for diseases associated with bone loss as
well.
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