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INTRODUCTION 

We consider here an example of an elliptic operator in UP, singular at 
the origin. 

Let A, p E C, x E R”, x = (x1 ,..., x,), and 6 = xi xi'. We consider the 
equation 

Lu = L(h, p)u = Ark + p(2/2r) Ytl + Au = f, 

where d = xi 2'/2xi2. 

(1) 

We prove first that iff : 0, any VP function I( satisfying (I) is necessarily 
analytic. 

We also prove that if (A, p) ~2 (L), where x (L) is an exceptional set 
in C2, for any analytic function defined in a neighborhood of the origin 
in FP, there exists a unique function II, analytic in some neighborhood of 0 
and satisfying (1). If (A, p) EC (L) we give a complete description of the 
kernel of L and the compatibility conditions for the solvability of (1). 

The operator L is not hypoelliptic, but we prove that if u is a ?P function 
such that Lu is analytic, then u is also analytic. 

We hope that this particular example may explain and help in the study 
of more general equations, singular at one point. 
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In Section 1 we give some results about the expansion of Vu and analytic 
functions with respect to harmonic polynomials. 

In Section 2, we describe the set x(L) with its properties, which are 
used in Section 3 where the main results are stated and proved. 

1. SPHERICAL HARMONICS EXPANSION 

Let S,,-, be the unit sphere in W. If x E UP, we denote 

x = Ye 

withr >Oande~S,-,. 
In Ls(S,-,), we choose an orthonormal basis of spherical harmonics 

P !.a) with Ed N and I < OL < a(t), where 

@) = w + n - 2)(n + J - 3)! 
(n - 2)! L! 

for n 2 2. 

Therefore, pt’,.,(x) r-7 #PC,,(O) is a homogeneous harmonic polynomial of 
degree /. 

The laplacian can be written in spherical coordinates 

where A, is the Laplace-Beltrami operator on S,-, . We 

Ae(Pc,#)) = -& + fl - 2) p,,,(e). 

Let f be a V” function defined on the closed ball: t 
can write 

have, in particular, 

< f. (ye > 0). \Ve 

(2) 

Each&.= is infinitely differentiable on [0, Y,,]. 
Using the ellipticity of A, on S,,-, and Sobolef’s theorem, for k > (n - 1)/4 

and all (!, (Y), we have 

where C, is a constant. 
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Therefore, there exist C, > 0 and K, E N (k, > (n - 1)/2) such that for 
all (4 4, 

sup I Pc,,(@l < CdkO. 
&S,-, 

(3) 

On the other hand, we have for any k E N, 

Since A, is a partial differential operator with polynomial coefficients and 
f is V” on Y < r. , we get, for any k E N, 

sup c I &Jr) Lk(L + n - 2)k I2 < 03, 
osrsso C,m 

and hence, for each k E NJ, there exists C, > 0 such that for all (/, a), 

sup lic.&)i G ckVk. 
04rCr, 

In particular, (4) together with (3) imply the normal convergence of 
series (2) on the ball Y < r, . 

We define the collection of functions {fr,l} by 

h.a(r2) = 4..(r) for O,<r,<r,. (5) 

We have the following result: 

PROPOSITION 1. Let f be a Va function defined for Y < Y, . 

(1) For any Ed N and any a, 1 < a < a(t), the function fc,= defined by 
(5) is infinitely d#erentiable on [0, ro2]. 

(2) The function f is analytic in some neighborhood of 0 in Iw” ;f and only 
if there exists to > 0 and M > 0 such that, for any [E N, any he N, and 
1 < a < 44, 

sup I(a/at)kg&(t)l < M~fkf’k! 
O<E& 

(6) 

Proof. (1) Using Taylor expansion off at the origin and the orthogonality 
properties of the spherical harmonics, we prove first that 

is a VP function on [0, ro]. 
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We observe next that the latter function may be extended as an even VW 
function on [-Y,, , yo]. The desired result follows immediately. 

(2)(i) Let us assume that (6) holds. We shall prove that there exist 
p > 0 and C > 0 such that for any k E N, 

[B(p) is the open ball centered at 0 in DP, of radius p]. 
Using a very well-known result (see, for example, [I]), the analyticity 

off in B(p) follows from (7). 
The condition (6) implies that fp,, is analytic on a neighborhood of 0. 

We can write its Taylor series: 

and we have 

(for any (4 a,i)). 

Hence, we can write 

f&4 = 1 c c h.a.~Y2cx(4. 
C=O a=1 j=O 

On the other hand, we have 

Ll(Y2jP&J = 2j(n + 2L + 2j - 2) Y2j-2F&a . 

Therefore, we get 

Iz a(C) e 
I’; = c c c h.a., 

py j 4. ; .’ /- I)! 
( 
----___- y2j-Zk~c,n(x)s 

C-0 0-l j-k 
(j-k)!(j i-;+t- I A?)! 

Since 
4i+21-Ok- n 

I. y ‘j-““PC o &(d) = . I 
P 

4j+2/“-44K+n’ 

wc obtain 

cc a(l) oc 

O”f ‘~LzcB(,,J) .< C C C ~~~Z-~+i~t124k+2i-tln;2)+1-1 tk!J2 P2i+‘-ni2 
C-O a=1 i-0 (4i + 2d + .)I’2 ’ 

and hcncc we proved (7) with suitable p and C. 
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(ii) Conversely, we prove now that the analyticity off (in some neighbor- 
hood of 0 in UP) implies (6). In order to do so, we write the Taylor series 
off at the origin: 

with 

I a, I < A iv +I (A is a positive constant). 

Hence, we get, for small positive t, 

By means of the Cauchy-Schwarz formula we can write 

where u,, denotes the area of the unit sphere S,-, . 
We finally obtain 

which proves (6) with suitable t, and M. 
We have also shown the following: 

PROPOSITION 2. Let f be an analytic function defined in a neighborhood 
of the origin in R”. There exists a unique collection of complex numbers (fc,.,,), 
IEN,~EN, I <or<ar(~),andaconstantM>Osuchthat 
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and 

ftx) = 1 h,m,iy2ip~,a(X) 
C.a.1 

in a neighborhood of the origin. 

(9) 

Conversely, if (fr,a,j) is a collection of complex numbers satisfyin (8), then 
the series (9) dejnes an analytic function in some neighborhood of the origin. 

Let us point out that (8) and (3) imply the normal convergence of (9) 
on a neighborhood of the origin. 

We also observe that f/,.,j is a linear combination of partial derivatives 
off at the origin of order t $ 2j. 

Remark 1. Let a=[[& ,..., X,]] be the space of formal series in n variables 
with complex coefficients. It is easy to see that any f E C[[X, ,..., X,]] has 
a formal expansion (9), where f/,a,j are complex numbers uniquely defined, 
each fc,.,j is a linear combination of “partial derivatives off at the origin” 
of order & + 2j. (Same formula as in the analytic case). Of course, (8) is not 
required here any more. 

Conversely, any collection of complex numbers (f/,,,j) defines by means 
of (9) a unique f E c[[X, ,..., X,]]. 

Remark 2. Let f be as in Proposition 2 above. We define 

Hj(x) = ~h.m.jF~c.a(x)~ 
/,2 

Hi is uniformly convergent near the origin and harmonic. We get from (9) 

f(x) = f r*jH,(X), 
j=O 

the latter series being uniformly convergent for small , x I. 
This is the Almansi expansion of analytic functions studied more 

extensively in [I]. 

2. THE SPECTRUM OF L 

Let u and f be two %‘= functions defined in a neighborhood of 0 in I%“. 
We consider their spherical harmonics expansions defined in the previous 
section: 
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Let rU be a positive real number. R’c have 

LEMMA 1. The functions Y and f sari& (1) in B(Y,,) $ and only if for 

each CE hJ and each a, 1 < a < a(P), II,,, and ft.. satisfy the following dif 
femztiul equation in [0, TO*]: 

= 14 (t 1)’ + 2(” -t- p -1x + 2) t ; i q4 + p) + x T p + 2n u,., I 

==h.. * (10) 

Proof. In spherical coordinates, L becomes 

(2*/2r*) Y* + ((n - l)/y)(2/2~) Y* 7 A, + p(2/2~) Y + A. 

An easy computation shows that 

L(Uf,m(Y2) L(4) 

= (I (Y-g)* + (n -t p -t- 2L + 2) Y g -t ([(4 -t- CL) + h + CL + 2n)l Ur..(r*)) 

x Pf,&)- 

We point out that under the change of variable t = Y*, the operator 
r(d/dr) becomes 2t(d/dt). The rest of the proof is straightforward by termwise 
differentiating the expansion of I(. 

Lemma 1 reduces the solvability and the uniqueness problems of (1) 
to the study of the ordinary differential equations (IO), which are of Fuchs 

type. 
The characteristic polynomial associated to Eq. (9) is 

U(T) -z up, I*, f, T) 
= 472 + 2(n + p + 2.t + 2)T + L(4 + p) + x + p + 2n. 

The roots of C(T) :-. 0 (or characteristic roots) are 

T* = T*(h, p, L) =: 
-(n I p -+- 2L -r 2) - w* 

4 

(11) 
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with 

6 = (n + z + p + q2 - qq4 + r) + h + r + 2n), 

and the solution of the homogeneous equation 

a(& p, 4 t(Wt)) u(t) = 0 for t > 0, 
is 

CJ’ + C2f7f (C, , C, are constant), 

when pi # TV, and with the usual modification if pi = TV. In particular, 
there exists a nontrivial Cm (near 0) solution of the homogeneous equation 
if and only if r1 or rZ is nonnegative integer-j; that is to say, 

o(h, p, f,j) r= 0. (12) 

We define the following sets: 

C(L) -{(/\,~)E@2,3/E~,3jE~,u(h,r,C,j) =O}, (13) 

J?,(L) .: {(A, p) E C2, 3js N, p --- -4( j i- l), h = 2( j + 1)(2j - n L 2)). 

We have 
(14) 

x:, CL) c c CL)> 

and we note 

c, V,) :-= c CL) - c, CL)- (1% 

We say that the exceptional set x (L) is the spectrum of I,. 
It is easy to prove the following lemmas which summarize the properties 

of Ix CL)- 

LEMMA 2. (i) Zf (A, CL) E C2, (A, CL) $x (L), there is no pair (/, j) E N2 such 
that o(h, CL, /, j) : 0. So, fool i 1, 2 and all LE N, 

Ti(A PI 0 e N. 

(ii) Zf (A, CL) E x1 (L), there exists only a $nite number of pairs (!, j) E N2 
satisfring a(h, CL, P, j) = 0. Then, fog i = I, 2, 

Ti(& I*, 4 E KJ 

only for a jinite number of f’s. 
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o(h, p, t, -((p + 4)/4)) = 0 joy all t E N, 

and there exists at most a jSzite number of pairs (t,j) E N*, j # -(p + 4)/4, 
such that u(1\, ~1, l, j) = 0. 

In this case, rl(l\, p, L) is the same integer -(CL + 4)/4 for all t, while 
7*(h, p, 1) belongs to N joy at most a jinite number of /. 

LEMMA 3. For any (h, CL) E C”, there exists K,,, > 0 such that, for any 
(,‘, j) E N*, one of the following relations holaY 

(i) u(A, p, C, j) --= 0, 

(ii) 4 P, f, j)l 3 K,, . 

3. UNIQUEKESS, SOLVABILITY, AND REGULARITY 

We are ready now to state and prove our main results about Eq. (1). 

THEOREM 1. Let IR be a connected open set in UP containing the orlgin. 
The kernel of L in P(Q) consists of analytic junctions in 52. More precisely, 
it is: 

(9 zero ;f (4 I*) 4 II (Lb 

(ii) a finite dimsional space of polynomials ij (h, CL) E 1 (L). 

(iii) the sum of a finite dimensional space of polynomials and Y-(~-~)~*H(Q), 
where H(Q) is the space of harmonic junctions in 52, ij (h, CL) E x0 (L).’ 

f’yooj. Because of the ellipticity of L in Q - {0}, if u EV=(Q) and 
satisfies Lu = 0, it is necessarily analytic in Q - {O}. Therefore, since Q 
is connected, we can assume without loss of generality that Q is an open 
ball B(Y,,) (Y,, > 0). 

Then, using Lemma 1, the problem is reduced to the investigation of 
the homogeneous solutions of Eq. (10); and Theorem 1 follows easily from 
the study of the spectrum x (L) (Lemma 2). 

iiow, we are going to look at the solvability of (1) in the analytic case. 
Let 0, be the space of convergent entire series in n variables, identified 

to the space of analytic functions (germs) at the origin. 

Iff,u ... E 0, ) we denote by (jc,.,j), (u~,,,~), ... the collection of complex 
numbers associated to j, 11, . . . by Proposition 2. (See (9).) 

1 We recall here that if (A, p) E Z.,(L), we have -(p + 4)/2 = 2 j with j E N. 
(See (14).) 
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The differential operator L is a linear operator in ~5” . Its kernel is described 
in Theorem I, The following theorem tells us about its range: 

THEOREM 2. An element f E G, is in LG, if and only if 

ft,a,j = 0 for all i, j 

satisjying a(h, p, /, j) .-= 0 and 1 < OL < a(/). 
In particular, 

0) If (A P) $1 CL), LG, == E’, . 

(ii) If (h, p) E x1 (L), the codimension of LC, in fin is finite. 

(iii) Zj (h, p) E x0 (L), the codimension of L6, is in.nite. 

Proof. An easy computation shows that 

L(r*jFf,,(X)) = u(X, p, e,j) 9jFfC.a(X) (16) 

for all (/,j) E N2 and 1 .< cx < a(!). A straightforward application of 
Proposition 2 and Lemma 3 together with (16) completes the proof of the 
first part of Theorem 2. Then, Lemma 2 takes care of the rest. 

Remark 3. I, is also a linear operator in C[[Xr ,..., X,]]. \Ve consider 
the formal expansion (9) for any formal series (see Remark I). Then we have: 

Let f be a formal series. f belongs to the kernel of L in C[[X, ,..., X,]] 
if and only if 

fC.d = 0 for all (/, j) E N* 

such that o(h, p, L,j) # 0 and 1 < (Y ,< CC([). Also,fbelongs toLC[[X, ,..., X,]] 
if and only if 

h.,*.i L- O for all (/,j) E N* 

such that a(& p, F,j) = 0 and 1 < cx < a(/). 
We state now the following regularity result: 

THEOREM 3. Let B be an open set in W and u E F’(Q) such that Lu is 
analytic in J2; then II is also analytic in Q. 

Proof. We must prove the analyticity of u only at the origin. 
Remark 3 shows that necessarily Lu EL-C, . Then there exists w E 0, 

satisfying LV .-f. Since L(u - w) 0 in some neighborhood of 0, the 
use of Theorem I yields to the desired result. 
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Remark 4. Let us point out that for any (A, p) E C*, the operator L 
is not hypoelliptic. 

More precisely, there exist GE N, i E { 1,2}, such that the characteristic 
root, T~(A, II, P), defined in (11) is not a nonnegative integer, therefore 

U(X) = Y*'iP[c.o(x) 

(defined in a suitable way as a distribution in R”) satisfies 

Lu = 0 in W, u $i u=(w). 
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