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INTRODUCTION

We consider here an example of an elliptic operator in R®, singular at
the origin.

Let A, ueC, xeR", x = (% ,..., ¥,), and 72 == Y, x;2. We consider the
equation

Lu = L\, p)u = Artu + p(8)er) ru -+ du = f, (1)

where 4 = Y°; &%/ox 2.

We prove first that if f - = 0, any €= function u satisfying (1) is necessarily
analytic.

We also prove that if (A, u)€ (L), where 3 (L) is an exceptional set
in C% for any analytic function defined in a neighborhood of the origin
in R*, there exists a unique function #, analytic in some neighborhood of 0
and satisfying (1). If (A, p) €3 (L) we give a complete description of the
kernel of L and the compatibility conditions for the solvability of (1).

The operator L is not hypoelliptic, but we prove that if u is a €= function
such that Lu is analytic, then u is also analytic.

We hope that this particular example may explain and help in the study
of more general equations, singular at one point.

* Supported during this work by NSF Grant G.P. 35825.
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In Section 1 we give some results about the expansion of €= and analytic
functions with respect to harmonic polynomials.

In Section 2, we describe the set Y (L) with its properties, which are
used in Section 3 where the main results are stated and proved.

1. SpHeErIcAL HARMONICS EXPANSION

Let S,_, be the unit sphere in R*. If x € R", we denote

x =17l

withr > 0and e S, _, .
In L%S,_;), we choose an orthonormal basis of spherical harmonics
P,,,withZeN and 1 < a < «f), where

Qf+n—2)n+¢—3)

of) = (n =2/

for n > 2.

Therefore, P, (x) = r’P, (f) is a homogeneous harmonic polynomial of
degree 7.
The laplacian can be written in spherical coordinates

ok n—1

A=zt

é 1
o e
where 4, is the Laplace-Beltrami operator on S,,_; . We have, in particular,

4o(Pr.o(0)) = =4/ + n — 2) P, o(8).

Let f be a €~ function defined on the closed ball: r < 7, (ry > 0). We
can write

w0 al)

f(x) = z ij.m(') P(.a(a),

¢=0 a=1

; @)
Jeaolr) = [ f(r6) P (@) db.

Each f, , is infinitely differentiable on [0, 7,].
Using the ellipticity of 44 on S,,_, and Sobolef’s theorem, for 2 > (n — 1)/4
and all (/, «), we have

sup | P, o(0)i < Gyl 46*Py o1 t2is,_p + i Proaliczs, p)s

0€S,_y

where C, is a constant.
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Therefore, there exist Cy > 0 and k,e N (%, > (n — 1)/2) such that for
all (4, o),

sup | P, ,(0)] < Cy/™. )

88,

On the other hand, we have for any ke N,

S oalr) 05 = 2P 2 = [, 1adsayeas.

n—1

Since 4, is a partial differential operator with polynomial coefficients and
fis€® onr < ry, we get, for any ke N,

sup Y | fr.or) 5 +n— 2)% 2 < o0,

0<r<rg f,a

and hence, for each k € N, there exists C,, > 0 such that for all (4, «),

sup | f2.a(r)i < Gt 4)

0<r<ry

In particular, (4) together with (3) imply the normal convergence of
series (2) on the ball r < r,.
We define the collection of functions {f, .} by

Jeor®) = 17%4(r)  for 0 <r<r. ()

We have the following result:

ProrosiTION 1. Let f be a €= function defined for r < r,

(1) For any feN and any o, | < a < off), the function f, , defined by
(5) is infinitely differentiable on [0, r,?].

(2) The function f is analytic in some neighborhood of 0 in R" if and only
if there exists t, > 0 and M > 0 such that, for any £e N, any ke N, and
1 < o < oY),

p [(9/0t)* ge.o(8)] < M#+*+1k! (6)

Proof. (1) Using Taylor expansion of f at the origin and the orthogonality
properties of the spherical harmonics, we prove first that

ri—> r"f;_u(r)

is a €= function on [0, 7,].
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We observe next that the latter function may be extended as an even €=
function on [—r,, 7,]. The desired result follows immediately.

(2)()) Let us assume that (6) holds. We shall prove that there exist
p > 0 and C > 0 such that for any ke N,

| A% il 2peyn < CFH(RY? 0

[B(p) is the open ball centered at 0 in R", of radius p].

Using a very well-known result (see, for example, [1]), the analyticity
of f in B(p) follows from (7).

The condition (6) implies that f, , is analytic on a neighborhood of 0.
We can write its Taylor serics:

fl.a(t) = z.f/.a.jﬂy
j=0
and we have
| friai < M1 (for any (¢, «, ).

Hence, we can write

af

~

)

Ms

f(x): f(aar P(a(“x)

||M8

(=0 «

I
-

On the other hand, we have
A(r¥P, ) = 2j(n + 2 + 2j — 2) r¥2P, .

Therefore, we get

. o0 2451 (j 45+ — 1)t
Af) = Y. S Y o = ro-P, (x).
par P (j—k)!(j F3+l—1—k)
Since
ik 1j+2/—ak-n
& Pe’ a| L3(B(o)) = 4 + 26— 4k +n’
we obtain
« «lf) o (k')2 P2i+lfn/2
" ARF 1Y iS22 WAL ST LI L o) SR Vht N o —— R
f 1L2(B() zo XZ] Z:o (41 + 24 + n)1/2

and hence we proved (7) with suitable p and C.
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(i) Conversely, we prove now that the analyticity of f (in some neighbor-
hood of 0 in R*) implies (6). In order to do so, we write the Taylor series
of f at the origin:

fx) =) ax,
veN®
with
|a,| << A+ (4 is a positive constant).

Hence, we get, for small positive ¢,

fall) = L apwimon [ 0P, (6)> b,

yelN? Sp_1
|ly| -fe2N
and then
o0 k
() £0

AvIs ('l'z*_/)'

NI T e et | L 2L
ty|—C)/2—ke yi—c -
(Ho—— &)

By means of the Cauchy-Schwarz formula we can write

[ oF 1(0)(10’ < ol
Sn—l ’

where o, denotes the area of the unit sphere S, _, .
We finally obtain

k o
(2] 4] < 5 ettwarsoscs e
j=0

which proves (6) with suitable ¢, and M.
We have also shown the following:

PROPOSITION 2. Let f be an analytic function defined in a neighborhood
of the origin in R”. There exists a unique collection of complex numbers (£, ;),
feN,jeN, | < a << off), and a constant M > O such that

|fewil < MO for all (4, o, f) (8)
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and

f@) = T foad™euls) 9)

£oa,)
in a neighborhood of the origin.

Conversely, if (f;...;) s a collection of complex numbers satisfying (8), then
the series (9) defines an analytic function in some neighborhood of the origin.

Let us point out that (8) and (3) imply the normal convergence of (9)
on a neighborhood of the origin.

We also observe that f, ,; is a linear combination of partial derivatives
of f at the origin of order £ + 2j.

Remark 1. Let C[[X,,..., X,]] be the space of formal series in » variables
with complex coefficients. It is easy to see that any fe C[[X],..., X,]] has
a formal expansion (9), where f, , ; are complex numbers uniquely defined,
each f, ., ; is a linear combination of “partial derivatives of f at the origin”
of order £ + 24. (Same formula as in the analytic case). Of course, (8) is not
required here any more.

Conversely, any collection of complex numbers (f;, ;) defines by means
of (9) a unique f € C[[ X, ,..., X,]}.

Remark 2. Let f be as in Proposition 2 above. We define
Hy(x) = ,Z.ff.a.jpl.a(‘x)‘

H, is uniformly convergent near the origin and harmonic. We get from (9)

1) = 3. rH )

the latter series being uniformly convergent for small | x |.
This is the Almansi expansion of analytic functions studied more
extensively in [I].

2. THE SPECTRUM OF L

Let u and f be two €= functions defined in a neighborhood of 0 in R~*.
We consider their spherical harmonics expansions defined in the previous
section:

u(x) = ?: r or%) P o),

fx) = ;f/,n(f2) P, o).
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Let r, be a positive real number. We have

LemMA 1. The functions u and f satisfy (1) in B(ry) if and only if for
each £ e N and each o, | < o < of), u,, and f, , satisfy the following dif-
Jerential equation in [0, r?]:

COMQAL%JWJ

d \? d
=}qu)+xn+#+y+ntz+a4+m+xf#+nb%
s fo. (10)
Proof. In spherical coordinates, L becomes

(0or¥)r2 + ((n — 1)fr)(ejor) r? — Ay + w(Bfer)r 4 A

An easy computation shows that
L(u or?) P, of%))

=} 0 I YIS S Adp+2 2

= (Jrgr) T Fr 2D g €A )+ A 20 )

X Py o(x).

We point out that under the change of variable ¢ = r2, the operator
r(d/dr) becomes 2¢(d|dt). The rest of the proof is straightforward by termwise
differentiating the expansion of .

Lemma 1 reduces the solvability and the uniqueness problems of (1)
to the study of the ordinary differential equations (10), which are of Fuchs

type.
The characteristic polynomial associated to Eq. (9) is

o(7) == o(A, u, 4, 7)
=472 + 2n+pu+ 24+ 2+ LA+ p)+ A+ p+ 2n

The roots of C(7) :-- 0 (or characteristic roots) are

—(n 424 2) LB
o =nA )= ( £ 4 )
Il
(22— B (n
Te = 72(’\) Hy /) == 4

505/ 15/3-9
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with

d=Mm+20+p+2-4@+p+A+p+2n),
and the solution of the homogeneous equation

o\, 4, Hdjdt) u(t) = 0 for ¢ >0,

Cit™ + Gyt (C; , C, are constant),

when 7, 5 7,, and with the usual modification if 7, == r,. In particular,
there exists a nontrivial C= (near 0) solution of the homogeneous equation
if and only if 7; or 7, is nonnegative integer j; that is to say,

oA, s, £, 7) = 0. (12)

We define the following sets:

Z(L) A, w)eC? A eN, Fje N, oA, 1, £, ) = 0}, (13)

ZO(L) A ) eC:IeN, p o =44 1) A=2(7+ )2 —n = 2)}.

We have (14)
YL CY (L)

and we note

YiL) =Y (L) = Y, (L) (15)

We say that the exceptional set 3 (L) is the spectrum of L.
It is easy to prove the following lemmas which summarize the properties

of ¥ (L).

Lemma 2. () If (A, ) e C%, (A, p) ¢ X (L), there is no pair (£,5) € N? such
that o(A, u, 2,7) = 0. So, for i -- 1,2 and all £ e N,

A, £) € NL

(i) If (A, p) €3y (L), there exists only a finite number of pairs (£,7) € N2
satisfying o(A, u, £, ) = 0. Then, for i = 1,2,

A w £) €N

only for a finite number of {’s.
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) 17 (\ k) € So (L), then
oA, —((n+4)/4) =0  forallfeN,

and there exists at most a finite number of pairs (£,5) e N2, j = —(u + 4)/4,
such that o(A, p, £, §) == 0.

In this case, 7\(A, p, £) 1s the same integer —(u + 4)/4 for all £, while
7o(A, 1, £) belongs to N for at most a finite number of £.

Lemma 3. For any (A, u) € C?, there exists K, , > 0 such that, for any
(7, 7) € N2, one of the following relations holds:

(1) U(A’ s /’]) =0,
() ol mh) = K.

3. UNIQUENESS, SOLVABILITY, AND REGULARITY
We are ready now to state and prove our main results about Eq. (1).

THEOREM 1. Let 2 be a connected open set in R"™ containing the origin.
The kernel of L in €=(Q2) consists of analytic functions in Q. More precisely,
1t 1s:

(i) =eroif (A )¢ 2 (L)
(ii) a finite dimensional space of polynomials if (A, p)e 3" (L).

(iil) the sum of a finite dimensional space of polynomials and r—'+~9/2H(8),
where H(§2) 1s the space of harmonic functions in 2, if (A, n) € 3 4(L).2

Proof. Because of the ellipticity of L in 2 — {0}, if ue%=(2) and
satisfies Lu = 0, it is necessarily analytic in £ — {0}. Therefore, since 2
is connected, we can assume without loss of generality that £ is an open
ball B(r,) (r, > 0).

Then, using Lemma 1, the problem is reduced to the investigation of
the homogeneous solutions of Eq. (10); and Theorem 1 follows easily from
the study of the spectrum " (L) (Lemma 2).

Now, we are going to look at the solvability of (1) in the analytic case.

Let ¢, be the space of convergent entire series in 7z variables, identified
to the space of analytic functions (germs) at the origin.

If fu--€0,, we denote by (f;.,.;), (#.,.;), - the collection of complex
numbers associated to f, u, ... by Proposition 2. (See (9).)

! We recall here that if (A, p) € To(L), we have —(u + 4)/2 = 2; with je N.
(See (14).)
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The differential operator L is a linear operator in &, . Its kernel is described
in Theorem 1. The following theorem tells us about its range:

THEOREM 2. An element fe €, is in LC, if and only if
fewi =0 foralll,j

satisfying oA, u, 0,7) = 0 and 1 < o < of/).
In particular,

) FAp) ¢ (L)L, =C,.
(ii) If (A, w) € 3", (L), the codimension of LC, in G, is finite.
(i) If (A, u) € 34 (L), the codimension of LG, is infinite.

Proof. An easy computation shows that
L(r¥P; o(x)) = o(A, iy £,) 1Py o(x) (16)

for all (£,7)eN? and | < o« < o). A straightforward application of
Proposition 2 and Lemma 3 together with (16) completes the proof of the
first part of Theorem 2. Then, Lemma 2 takes care of the rest.

Remark 3. L is also a linear operator in C[[X,,..., X,]]. We consider
the formal expansion (9) for any formal series (see Remark 1). Then we have:

Let f be a formal series. f belongs to the kernel of L in C[[X],..., X,]]
if and only if

frei =0 for all (4, 7) e N2

such thato(A, i, 7, j) # 0and 1 < o < «f¢). Also, f belongs to LC[[ X} ,..., X,]]
if and only if

fra; =0 forall (£,5) e N2

such that o(A, 1, /,j) = 0 and | < &« << af).
We state now the following regularity result:

THEOREM 3. Let 2 be an open set in R™ and u € €=(82) such that Lu is
analytic in §2; then u is also analytic in Q.

Proof. We must prove the analyticity of  only at the origin.

Remark 3 shows that necessarily Lue L€, . Then there exists ve 0,
satisfying Lv : - f. Since L(u — v) -- 0 in some neighborhood of O, the
use of Theorem 1 yields to the desired result.
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Remark 4. Let us point out that for any (A, u) € C?, the operator L
is not hypoelliptic.

More precisely, there exist £ € N, i€ {l, 2}, such that the characteristic
root, T,(A, u, £), defined in (11) is not a nonnegative integer, therefore

u(x) = r2fip€.a(x)

(defined in a suitable way as a distribution in R") satisfies

Lu = 0in R", u ¢ €<(R").
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