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The work of  al-F~risi on amicable numbers begins with nine propositions of  elementary 
number theory. The purpose of  this article is to produce an English translation of  these 
propositions and to provide a commentary on al-Ffirisi's methods.  In particular we consider 
whether  he proved, or at tempted to prove the Fundamental Theorem of Arithmetic. © 1994 
Academic Press, Inc. 

L 'oeuvre  d'al-F~risi concernant les nombres amiables, drbute  avec neuf propositions de 
la throrie des nombres 616mentaires. Le but de cet article est de donner une traduction en 
anglais de ces propositions ainsi qu 'un commentaire sur les mrthodes  d'al-F~.risi. En particu- 
lier l 'on examine s'il a drmontr r ,  ou essay6 de drmontrer ,  le th ror rme fondamental de 
l 'ari thmrtique.  © 1994 Academic Press. Inc. 

Das Werk fiber befreundete Zahlen von al-F~risi beginnt mit neun S~itzen der elementaren 
Zahlentheorie. Das Ziel dieses Aufsatzes ist, eine englische 0berse tzung dieser S~itze zu 
geben und einen Kommentar  fiber al-F~trisis Methoden beizusteuern. Insbesondere priifen 
wir, ob er den Fundamentalsatz der Arithmetik bewiesen hat oder versucht hat zu 
beweisen.  © 1994 Academic Press, Inc. 
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1. INTRODUCTION 

The Persian mathematician Kam~tl al-Din al-F~risi, who died circa 1320, was 
the author of a mathematical treatise, "Tadhkirat al-Ah, b~b fi bay~m al-Tah.~bb," 
which could be translated as "Memorandum for Friends Explaining the Proof of 
Amicability." Rashed edited the Arabic text in [7] and investigated sections of it 
in [8]. Brentjes disagreed with part of Rashed's analysis in [1]. 

The main concern of al-Farisi was amicable numbers, and his aim was to prove 
afresh the theorem of Th~bit ibn Qurra (see, e.g., Hogendijk [4]) on the construc- 
tion of amicable numbers, which was rediscovered by Fermat and Descartes in 
the 17th century. However, in order to achieve this aim, al-F~risi first set down 
certain theorems of elementary number theory. It is the purpose of this article to 
produce an English translation of these theorems and to give a commentary, in 
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particular with regard to the so-called Fundamental Theorem of Arithmetic (FTA), 
that is, the existence and uniqueness of prime decompositions of positive integers. 

Rashed, in an apt sentence [8, 124] claims that 

Parmi les grands th6or~mes, rares sont, il est vrai, ceux qui ont une histoire, aussi pauvre 
que celle du th6or~me fondamental de l 'arithm6tique, j 

But he sees the FTA in the work of al-Fflrisi. In his view Proposition 1 is a 
statement and proof of the existence of prime decompositions, and Propositions 
4 and 5 are al-F~risi's (unsuccessful) attempt to prove uniqueness. (The latter two 
results are designated Propositions 2 and 3 in [8].) Our analysis of these theorems 
is somewhat different. In one sense al-F~trisi comes out of this badly, because the 
actual statement of uniqueness disappears, while in another, his reputation is 
enhanced. We conclude that Propositions 4 and 5 actually prove what they purport 
to prove (and are thus "successful"), and that, moreover, the statement and proof 
of Proposition 9 come closer to the concept of uniqueness than any other known 
work before its time. Amicable numbers are defined in terms of divisors, and al- 
Fftrisi in this Proposition 9 determined the divisors of an integer in terms of a prime 
decomposition. To our modern eyes it seems inconceivable that a mathematician, 
having proved the existence of prime decompositions and with their uniqueness 
within his grasp, would miss the chance of stating such a celebrated theorem, 
even as a mere corollary to Proposition 9. But al-Farisi clearly was not influenced 
by the number theory produced between 1801 and 1993. He proved that he could 
find the divisors of an integer from a prime decomposition, whose existence he 
also proved. Since he did not need uniqueness, he left it out. It would be tempting 
to add that he also left it out because it was obvious, in much the same way as 
Prestet 400 years later [3] or Legendre 100 years after that [5]. What is obvious, 
although never stated, is that the set of divisors of an integer is unique, but this 
has nothing to do with the FTA. The set of divisors of any element in any system, 
whether this system possesses uniqueness of factorization or not, is a unique set, 
simply because the concept of a divisor is well defined. 

2. TRANSLATION AND COMMENTARY 

This work of al-F~risi is clearly modeled on the Elements of Euclid. It takes 
the same form with a list of definitions followed by propositions. The definitions 
are his own, whereas all of Euclid's definitions are assumed to be known. When 
al-F~trisi refers to one of Euclid's propositions to justify a step in a proof, he omits 
the name of Euclid and simply refers to the book and proposition numbers. 

In what follows we have tried to steer a middle course between a literal transla- 
tion and a more modern version. For example, the word for "s ide"  has been 
translated as "factor ,"  and that for "area"  as "product ."  On the other hand the 

1 Rashed then steps aside from al-Fftrisi, and delivers a well-aimed broadside at commentators  who 
see in Euclid 's  Elements something which is plainly not there, or who offer excuses on Euclid 's  behalf  
because it is not there. This section, pages 124-126, is, in our opinion, one of  the best  critiques of  
the mathematical literature concerning Euclid and the FTA. 
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word "measure"  has been retained to emphasize subtraction rather than division. 
We have inserted extra words in square brackets where these are deemed neces- 
sary, either as an explanation of a possible ambiguity or to flesh out the English 
sentence. We begin the translation with the definitions, contained in six para- 
graphs. 

Each number  made up by multiplying a number  with another  number,  I call it (thunfi'i) a 
double number.  And if it is made up by multiplying a number  with another  number  then with 
a third, I call it (thul~th~) a triple. And if it is made up by multiplying a triple with a fourth,  
I call it (rub~tei) fourthfold, and so on. 

And the factors of each composite  [number] are ei ther equal or not. I call the first type 
(mutas~wiyah al-a.dl~?) of equal factors;  the second type (mutaf~.dilah al-a.dl~ e) of different 
factors, e i ther  all of its factors are different as in the [number] composed of a, b, c, or some 
of its factors are different as in the number  composed of a, b, b. 

And if the numbers  of factors of two composite  numbers  are the same, then I call these 
two [composite numbers]  (mutamS.thil~ al-a.dlfi c) corresponding in factors, or if not [I call 
them] (mutaf~dil~,h~.) different in them. 

The word "prime" has not yet been mentioned, and indeed does not occur 
until the first proposition. As for the technical term "corresponding in factors," 
this is not altogether clear, but it seems to indicate that the total number of (not 
necessarily distinct) factors is the same for each composite number, and the 
inference is that al-F~trisi is considering the factors to be prime. 

Two composite  numbers  which have the same decomposit ion into factors (muta.hadd~t al- 
a.dl~ ¢) are those which have equal and corresponding (mutamathil)  factors, where each re- 
peated factor in one of them is repeated the same number  [of times] in the other. 

The genera  [i.e., the powers] of a number  are its (murabba c uhu) square and its (muka ec- 
abuhu) cube and so on indefinitely. 

The (silsilah) chain of a number  is the series of numbers  beginning with the number  itself, 
and second its square, then its cube,  and so on for the rest of the consecutive genera. The 
number  itself and its genera are the terms of this chain. 

PROPOSITION 1. Each composite [number] can necessarily be decomposed into a finite 
number of  prime factors of  which it is the product. 

Let a be a composite  number ;  since it is composite it is necessarily measured by a prime 
from Book VII.31 of the Elements.  Let  this [prime] be b, and let it [i.e., b] measure it [i.e., 
a] by c .  If  c is a prime then it is shown that it [i.e., a] is made up by multiplying prime b 
and prime c. If  it [i.e., c] is composite then let it be measured by a prime d according to the 
number  e [i.e., c = de]. If  e is prime then it is clear that a is made up by multiplying the 
prime numbers  b, d, and e. Otherwise we perform our operation until the composite factor 
is in the end decomposed into two prime factors. Then a is made up from the previous primes 
together  with those two primes. If  it never  can be decomposed into two prime factors, then 
it would necessarily follow that the finite would be made up from an infinite product  of 
numbers ,  which is absurd. And that is what  we wanted. 

This is the first known statement and the first known proof of the existence of 
a prime decomposition of a given composite number. The Euclidean result quoted 
states that "any composite number is measured by some prime number" [2, 332]. 
This is the first step on the road to proving al-F~trisi's Proposition 1, but it is not 
the existence theorem itself. No amount of juggling with words or economizing 
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with the truth can turn the statement of VII.31 into Proposition 1. Note that al- 
F~risi, in the final stage, uses an argument by contradiction. 2 

PROPOSITION 2. I f  there are three numbers a, b, c the ratio of  the first to the third is made 
up from the ratio of  the first to the second and from the ratio of  the second to the third. 

Thus let the square of  b be h, and let its product with a be d, and with c be z. Since d is 
compos i te - - i t s  factors are a, b - - a n d  z is compos i te - - i t s  factors are b, c - - t h e  ratio of  d to 
z is made up from the ratios of  a to b and of  b to c from Book VIII.5. But since b was 
multiplied by itself and a to get h and d [respectively], so the ratio of  a to b is equal to the 
ratio of  d to h from Book VII.18; and similarly the ratio of  b to c is equal to the ratio of  h 
to z. Then ex aequali the ratio of  a to c is equal to the ratio of  d to z, which is made up from 
the other two ratios. And this is what we wanted.  

This proposition raises several questions. The proof itself is a little strange, 
although we are confident of our interpretation. The statement of the result appears 
correct, although it is not entirely clear what al-F~trisFs view of the statement is. 
The difficulty concerns his understanding of the composition of ratios. The only 
likely explanation is that al-Farisi was considering the compounding of ratios, but 
this posed a problem, whether he realized it or not, because nowhere in the 
E l e m e n t s  does Euclid define this operation on ratios [2,132]. The standard practice 
(see Euclid [2, 132] and Mueller [6, 87]) in compounding two ratios k : I and m : n 
was to find u, v, w such that 

k : l = u : v  and m : n = v : w .  

Then 

( k  : l ) ( m  : n )  = u : w ,  

where the compound operation is denoted here by juxtaposition. 
Proposition 2 states that for any three numbers a, b, c 

(a  : b ) ( b  : c)  = a : c ,  

which follows immediately from the standard procedure. There must be some 
explanation as to why al-Ffirisi did not follow this course. It may well be that he 
was unaware of the procedure for compounding ratios. Alternatively he may have 
been concerned about the general definition of compounding. How does one find 
u, v, and w? Without further information it cannot be done, but for natural numbers 
Euclid had already solved the problem in VIII.4 of the E l e m e n t s .  3 

2 This contradiction argument is akin to the use of  the Archimedean axiom. If b is the first prime 
factor of  a determined by the construction, then b < a, and by the axiom there is a multiple of  b 
which exceeds a. Hence the product of  the primes will eventually exceed a if the number of these 
primes is unlimited. Another  method would be to consider the diminishing sequence of composite 
divisors and then use the descending chain condition (i.e., Fermat ' s  method of  infinite descent) or 
the well-ordering principle. 

3 There are other  possibilities. The work was clearly based on Euclid 's  Elements, and it would have 
been natural to follow Euclid 's  way, not give the definition and work within the Euclidean corpus. 
In any case, al-F~risi 's main concern was amicable numbers and not the theory of  proportions. 
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For  the proof  al-F~risi puts 

b 2 = h ,  b a  = d ,  b c  = z .  

Then d : z = b a  : b c  = (a  : b ) ( b  : c)  from VIII.5. For  the proof  that d:  z = a : c al- 
Fflrisi uses ex aequali (VII. 14), although a straightforward application of  VII. 18 
would have seemed the obvious route,  especially as he has to use VII.18 twice 
anyway.  

Since 

and 

then ex aequali 

a : b  = b a : b b  = d : h  (VII. 18) 

b : c  = b b : b c  = h : z  (VII. 18) 

a : c = d : z (VII. 14) 

and the result follows. 4 

PROPOSITION 3. The ratio o f  the unit to any composite number is made up from its ratio 
to each o f  its prime factors. 

Thus  let the composi te  number  be a and let its prime factors be [as follows]. Let  there 
first be two [prime factors] b, c; then  we say that since b was multiplied by c to get a [so] 
the ratio of  b to a is equal to the ratio of  the unit to c. And the ratio of  the unit to a is made  
up f rom the ratios of  the unit to b and of  b to a. So the ratio of  the unit to a is made up from 
its ratios to b and c. 

Let  the factors be more  than two, namely  b, c, d, and let [the number]  made up of  b t imes 
c [be] h. Since a is made up from h and d, the ratio of  the unit to a is made up from its ratios 
to h and d. And the ratio of  the unit to h is made up from its ratios to its two factors [i.e., 
the factors of  hi, I mean  b and c; [therefore] the ratio of  the unit to a is made up from its 
ratios to b and c and d. And  similarly we prove [it] if the factors are more than three. This  
is what  we wanted.  

Here  al-Ffirisi is showing that a ratio 1 : a can be expressed as the compound 
of  several ratios, and he uses Proposition 2. 

f f a  = b c  then b : a  = b : b c  = 1 :c  from VII. 18. And from the previous proposition 

1 : a  = (1 : b ) ( b : a )  

= (1 :b)(1 :c). 

In fact his proof  breaks down when he considers three prime factors b, c, d 
because he cannot  claim that 

1 : a  = (1 : b c ) ( 1  : d )  

4 It is perhaps  worth ment ioning that VII. 14 (ex aequali) can be looked upon as the proof  of  the  
un iqueness  of  the  compounding  operation. Euclid is silent on this point (as are Heath  (in [2]) and 
Mueller [6]). 
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from the first part since bc is not prime. However the situation is easily rectified 
since all references to the word "pr ime"  may be omitted. 

PROPOSITION 4. Any two composite numbers which have the same decomposition into 
factors are corresponding [i.e., identical]; 

such as a and b, each of  which is composed of  the factors e, d, e. The reason is [that] the 
ratio of  the unit to each of  them is made up from its ratios to each of c, d, e, so the ratios 
of  the unit to the two of  them [i.e., a and b] are equal. Therefore they are corresponding. 
This is what  we wanted.  

If a = cde and b = cde then from Proposition 3 

1 : a = (1 : c)(1 : d)(1 : e) and 1 : b = (1 : c)(1 : d)(1 : e). 

Therefore 1 : a = 1 : b and so a = b. This last step is not explained by al-Ffirisi. 
Perhaps it was regarded as obvious or perhaps he was using a result from the 
Elements  without giving a reference. Two likely candidates are V.9 (x : a = x : b 
implies a = b) and VII.19 (u :a  = v: b if and only if ub = va). We note that, 
strictly speaking, al-Farisi requires Proposition 3 in its general form since the 
factors of a and b are not stated specifically to be prime. 

PROPOSITION 5. Any two distinct composite numbers do not have the same decomposition 
into factors, 

but it is necessary that the prime factors of  one [of them] be different from the [prime] factors 
of  the other, either some of  these [factors] are different if they are different in factors, or 
they are different in the number of  repetitions of  some of  them if they are corresponding in 
factors; if not then they have the same decomposit ion into factors and therefore they are 
corresponding [i.e., identical], but they were assumed to be distinct. This is a contradiction. 
That is what  we wanted.  

This proposition is the contrapositive of the previous one, and is therefore 
equivalent to it. The proof follows immediately via a contradiction argument. But 
there is a prima fac ie  doubt about the status of the first part of the argument 
contained in the opening sentence. It is only here that the word "pr ime"  is used. 
The statement of the proposition and the remaining proof can stand together 
without the word "p r ime"  and without the opening sentence. It is possible that 
al-Ffirisi in this sentence is expressing the proposition in the form in which he is 
going to need it in Proposition 9; that is, if a is a composite number expressed as 
a product of primes, and S is the set of all numbers expressed as products of 
these primes leaving out at least one prime factor when forming each product, 
and if z ~ S, then the prime decomposition of z must differ from the prime 
decomposition of each s E S. 5 

PROPOSITION 6. [For] each composite number which is decomposed into its prime factors, 
[the numbers] composed of  these factors, double and triple and so on, until the product 
named according to the number of  factors minus one, all of  these are parts [i.e., div&ors] 
of  it [i.e., the given number]. 

5 Here al-F~risi is following the Euclid who gave the definition of  a prime number rather than the 
Euclid who proved VII.2; in other  words,  he does not allow a number to divide itself. 
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Let  the composi te  number  be a and let us  decompose  it into the prime numbers  b, c, d, 
e. Then  I say that [the number]  made  up from b and c measures  a, because  if it is composed  
with [the number]  made  up from d and e, then the result  is a. So it measures  it. And  similarly 
for the rest  of  the double and triple [numbers] .  But neither the product  named  according to 
the number  o f  the factors is a part of  it [i.e., the given number]  because  it is not  less than  
it, nor  the products  named  according to a number  more  than [the number  of] the factors,  
since this is not  possible due to the absence  of an additional factor. And  so what  was asked 
has  been established.  That  is what  we wanted.  

This is the first half, the easy part, of  al-F~risi's construction of  the divisors of  
a given composite number. If the composite number is expressed as a product  of  
primes, then the numbers made up from these primes are divisors. The more 
difficult part is to show that these are the only divisors. 

PROPOSITION 7. l f  a number does not measure [another] number, then neither its square 
[i.e., o f  the former] nor any o f  its further powers measure the product [of the latter] with it 
[i.e., that number]. And neither its cube nor any o f  its further powers measure the product 
o f  its square [with the latter]. And neither the square o f  its square [i.e., its fourth power] 
nor any o f  its further powers measure the product o f  its cube with it [i.e., with the latter]. 
And so on. 

Thus  let a not  measure  b. Let  c be the square of  a, e its cube,  h its fourth power,  d the 
product  of  b and a, z the product  of  b and c, and t the product  of  b and e. I say that  neither 
c nor  the fur ther  powers  of  a measure  d, neither e nor  the further powers of  a measure  z, 
and neither h nor  the further powers  of  a m e a s u r e  t .  6 The reason is [that] if a is multiplied 
by itself and by b to give c and d [respectively], the ratio of  c to d is equal to the ratio of  a 
to b, from Book VII.18 of  the Elements, but a does not  measure  b, so c does not  measure  
d. Similarly [for] e and h and the other  fur ther  powers  [of a], because  if one of  them measu res  
d, and c measu res  that power,  7 then c measures  d, and this is a contradiction. Similarly, c 
was multiplied by a and b to give e and z [respectively], so the ratio of  e to z is equal to the 
ratio of  a to b. So e cannot  measure  z either, similarly [for] h and the further powers  [of a]. 
Similarly we show that  h and the further  powers [of a] cannot  measure  t. And  that is what  
we wanted.  

At first glance this result may appear to have some connection with uniqueness 
of  factorization, yet in reality it holds for any nonzero element in a system which 
obeys the Cancellation Law. 

The proposit ion states that if a I b then 

aZ l ab, aa lab . . . .  

aa~aEb, a4~aZb . . . .  

aa~aab, aS~aab , . . .  

and so on. 
al-F~trisi sets c = a 2, d = ab; then c : d  = a2:ab  = a : b  from VII.18 and c fd .  
Also e : z = a 3 : a2b = c : d. Hence  if e I d then e ]ad, or e [z. But then c l d. 

Contradiction. 

6 This last sentence  is a translation of  a suggest ion of  Rashed  based on a corrupt  text.  
7 Choosing  the  variant  reading " c . "  
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PROPOSITION 8. I f  a composite number is decomposed into its prime factors and one 
number of  them [i.e., one of  these factors] does not repeat, then it [i.e., the composite 
number] is not measured by the square of  this [prime] number nor by one of  its powers. And 
if  it [i.e., the prime factor] repeats once only then amongst its powers its square alone 
measures it, but not the remaining [powers]. And similarly if  it repeats twice only then its 
square and cube alone measure it but not the remaining [powers] and so on. 

Let the composite number be a. It has been decomposed into its prime factors b, c, d, 
then I say that b, for example, since it does not repeat in it [i.e., in a] so its square [b 2] does 
not measure it [i.e., a]. This is because b is relatively prime to c and d, so is also relatively 
prime to the product of  c and d by Book VII.24. [The number] b has been multiplied by itself 
and by the product of  c and d, to give its square and a [respectively], so the square does 
not measure a by Book VII.25, and then clearly its power cannot measure a. 

Also let b repeat among them [i.e., the factors], and let the factors be b, b, c, d. It is 
evident that its square which is one of  its double products measures it [i.e., a]. But I say 
that its cube does not measure it, since b does not measure the product o fc  and d as previously 
[proved], and its square has been multiplied with the two of  them and the results were its 
cube and a [respectively] which are in the same ratio. So the cube cannot measure a, and 
clearly the further powers cannot measure it. 

If it [i.e., b] repeats twice, as for example b, b, b, c, d, so the square of  b and the cube 
of b measure a, but not the remaining [powers], because b does not measure the product of  
c and d, and its cube has been multiplied by them to give its fourth power  and a [respectively], 
which are in the same ratio, so its fourth power does not measure a. Similarly [for] the rest 
of  its powers,  and this is what we wanted. 

Unlike the previous proposition, this one does concern uniqueness of prime 
factorization. This is clear from the statement, and also from the use of VII.24 in 
the proof. Euclid's result is that if (k, n) = I = (l, n) then (kl, n) = 1. al-F~risi 
also used VII.25 which is the special case of VII.24 with k = I above. 8 

In symbols the statement of Proposition 8 is as follows, where different letters 
denote different numbers. 

If a = bcd, a prime decomposition, then b2 ta ,  b 3 t a  . . . .  

If a = b2cd, a prime decomposition, then b3~a, b41a . . . .  

If a = b3cd, a prime decomposition, then b4~a, bSla . . . .  
and so on. 

The proof involves a mixture of VII.24, VII.25, and Proposition 7, although as 
was the custom with al-F~trisi, the use of his own propositions is not spelled out. 
The actual thought process of al-F~trisi in the initial stages of this proof is not 
clear. He had to prove that b lcd, but is it enough to prove that b and cd are 
relatively prime? We would say " y e s , "  but perhaps al-F~risi said " n o "  since he 
used VII.25 presumably to prove that b 2 and cd are relatively prime. He began 
by saying that b is relatively prime to c and to d, and hence also to cd by VII.24. 
Here he does not claim that blcd, although in the second paragraph he asserted 

8 Euclid could have used VI1.24 and VII.25 to prove the "un iqueness"  proposition VII.30, i.e., if 
a prime divides a product then it divides one of  the factors. For suppose that p lab but pla  and plb. 
From VII.29 the pairs p and a and p and b are relatively prime, from VII.24 p and ab are relatively 
prime, and from VII.25 p2 and ab are relatively prime, which is false. Note that although we accept 
the equivalence of  the two statements "(k, n) = 1" and "k  and n are relatively pr ime,"  Euclid would 
not recognize the former since for him a greatest common measure has to be nonunit. 
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that this result had already been proved. Instead he multiplies both by b to obtain 
b 2 and a, and then concludes that b2Ia using VII.25. It appears that al-F~risi 
missed the following steps: 

(i) b 2 and cd are relatively prime (VII.25) and hence (ii) blcd. 
He then used Proposition 7 to complete the proof. 9 

No indication of the proofs for higher powers or repeated factors was given, 
but clearly the repeated use of VII.24 and/or VII.25 suffices for this purpose. 

PROPOSITION 9. Each composite [number] decomposed into its prime factors has no other 
part [i.e., divisor] except the unit and its prime factors, and also the double [numbers] made 
up from [two] o f  its factors i f  there are more than two, and also the triple [numbers] i f  there 
are more than three and so on until we end at the product named according to the number 
o f  factors minus one. 

Let a be a composite [number] and let us decompose it into its prime factors b, c, d, e. I 
say that it has no part except  the unit and b, c, d, e, and the double [numbers] made up from 
b and c, b and d, b and e, c and d, c and e, d and e, and the triple [numbers] made up from 
b and c and d, b and c and e, b and d and e, c and d and e, and these are [the products] 
named according to the number of  factors minus one. 

The reason is if it were possible that it has a part other than those which have been 
mentioned then let it be z which is either prime or composite.  If it is prime and measures a 
[which is] made up from b, c, d times e, then by Book VII.30 it [i.e., z] necessarily measures 
one of  its [i.e., a 's]  two factors, and [it] cannot measure the prime e, so it has to measure 
[the number] made up from b, c, d. But since it measures this product which is made up 
from the product of  b and c times the prime d, then as in the previous argument, it has to 
measure the [number] made up from b, c and since it measures this product then it measures 
one of  its two prime factors, or it is one of  them, and both cases are impossible. 

If z is a composite [number], and it is distinct from the abovementioned products,  then 
necessarily its prime factors cannot be identical with the factors of  those products. Therefore 
either there exists amongst the prime factors of z one which does not appear amongst the 
factors of  a, or not. If it does not exist either there is among them one factor of  z [which] 
repeats itself a number [of times] but is not repeated [as many times] amongst the factors of  
a, or one factor of  a [which] repeats itself a number [of times] but is not repeated [as many 
times] amongst  the factors of  z. And these are three cases. 

If it is the first then let this prime [factor] distinct from all the factors of  a be h. Then h 
is prime, and the abovementioned contradiction follows when z was assumed prime. 

If it is the second, one factor from the factors of z, let it be b, is repeated [say] once [in 
z], and b is not repeated in the factors of  a. So the [number] made up from b and itself 
measures z, and [so] it measures a and [yet] it is not repeated in the factors of  a, which is 
impossible. And similarly we can prove a contradiction if it [i.e., b] is repeated twice or 
more. And let b be repeated twice in the factors of z and once in the factors of  a, so [the 
cube of  b] necessarily measures z and so measures a, but it is not repeated more than once 
in its [i.e., in a 's]  factors, and this is a contradiction. And similarly the contradiction occurs 
whenever  the number of times b repeats in the factors of z is more than its number [of 
repetitions] in the factors of  a. If it is the third [case], I mean some factor of  a is repeated 
a number of  times in it [but] not repeated as [many times] in the factors of  z, then it is clear 
that in this case z becomes one of  the parts of  the product [already mentioned]. Therefore 
the theorem is established. This is what we wanted. 

9 The alternative reading is to consider VII.25 as a step in the proof that b3Ia rather than in the 
proof that bEIa. Since b and cd are relatively prime it follows that blcd, and by Proposition 7, b21a. 
Now use VII.25 to prove that b 2 and cd are relatively prime. This implies that bElcd and Proposition 
7 again gives b31a. 
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In other  words,  all the divisors of a given number can be found from any prime 
factorization whatever.  One more step is required to show that this implies the 
existence of  a single prime factorization for any number but this step is not taken 
by al-F~risi. 

The proof  of  the proposition is valid in general, but, as usual, al-F~trisi deals 
only with a specific case. 

Let  a -- bcde be a prime factorization; then the only divisors of a are 1, b, c, 
d, e, bc, bd, be, cd, ce, de, bcd, bce, bde, cde. The proof  is by a reductio ad 
absurdum. Suppose a number z different from those above divides a. If  z is prime, 
then z divides (bcd)e, and by repeated use of VII.30, z must divide one of the 
prime factors b, c, d, e, which is impossible. 

If z is composite it has a prime factorization (Proposition I) and since z is not 
one of the divisors listed above,  it cannot have the same prime factorization as 
any of these divisors (Proposition 5). So there are three cases. 

(i) z has a prime factor which is not a factor of  a. 
If (i) does not hold then all prime factors of z appear amongst the factors of  a. 

This possibility splits into two cases. 
(ii) There is a prime factor of z which repeats more times in z than in a. 
(iii) There is a prime factor of  a which repeats more times in a than in z. 

The first case reduces to the previous possibility of z prime. The second case 
requires Proposition 8. If b 2 divides z but b appears only once in the factorization 
of  a then b 2 divides a and b 2 does not divide a. The other possibilities can be 
dealt with similarly. In the third case z must be one of the numbers already made 
up from the prime factors of  a. 

3. I N T E R P R E T A T I O N  

The internal structure of  these nine propositions is as follows. (An upper number 
is used in the proof  of a lower number.) 

~ 7 

191 

J 
J 
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The structure is self-contained apart from a handful of Euclidean theorems, and 
it shows clearly that most roads start from Proposition 1 and end with Proposition 
9, propositions proving the existence of a prime factorization and the consequent 
determination of all divisors. It also shows that Propositions 4 and 5 are merely 
links in the chain which al-F~risi constructs in order to get to his ultimate aim of 
proving Proposition 9. It does not indicate that Propositions 4 and 5 are equivalent, 
but either this was not known to al-F~risi or it was known but of no particular 
interest to him in this study. As we have seen, all the statements of his propositions 
are valid. So too are all the proofs, including the proof of Proposition 2. Rashed 
claims that the proof of Proposition 5 is flawed [8, 123], but in our reconstruction 
this is not so, as al-F~trisi used a simple contradiction argument. 

Let us now return to the question of al-F~risi and the FTA. There is no doubt 
that he proved the existence part of the FTA, namely that every positive integer 
(> 1) can be expressed as a product of primes. Although the statement of Proposi- 
tion 1 concerns composite numbers only, all al-F~risi lacks is the trick of calling 
a prime number a product of one prime factor. As far as we know, this is the first 
statement and proof of the theorem. 

As for uniqueness, Rashed's opinion is plainly stated: "Ces deux derni~res 
propositions [our Propositions 4 and 5] sont, de toute 6vidence, destin6es ~ 6tablir 
l'unicit6 de la d6composition en facteurs premiers" [8, 123]. 

Our reading of the text disagrees with this verdict. In our estimation, al-F~trisi 
neither stated nor proved uniqueness, and it was not his intention to do so. As 
we have seen, Propositions 4 and 5 fit snugly into the general scheme of his overall 
argument. In claiming too much for al-F~trisi, Rashed paradoxically casts doubt on 
his reputation as a mathematician. For if al-F~risT was trying to prove uniqueness in 
Propositions 4 and 5, he clearly confused the theorem with its converse. Our 
analysis, on the contrary, suggests that al-Farisi expressed precisely what he 
wanted to say. The statement and proof of Proposition 9 indicate that he was well 
aware of the uniqueness of a prime decomposition. If he had wanted to prove 
uniqueness, then he certainly would have been able to do so. He would not have 
bungled the statement, getting it the wrong way round (twice), and forgetting to 
mention that the factors should be prime. 
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