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Abstract Point mutations and deletions in mitochondrial DNA
(mtDNA) accumulate as a result of oxidative stress, including
ionizing radiation. As a result, dysfunctional mitochondria suffer
from a decline in oxidative phosphorylation and increased release
of superoxides and other reactive oxygen species (ROS).
Through this mechanism, mitochondria have been implicated in
a host of degenerative diseases. Associated with this type of
damage, and serving as a marker of total mtDNA mutations and
deletions, the accumulation of a specific 4977-bp deletion, known
as the common deletion (D-mtDNA4977), takes place. The
D-mtDNA4977 has been reported to increase with age and during
the progression ofmitochondrial degeneration. The purpose of this
study was to investigate whether ionizing radiation induces the
formation of the common deletion in a variety of human cell lines
and to determine if it is associated with cellular radiosensitivity.
Cell lines used included eight normal human skin fibroblast lines,
a radiosensitive non-transformed and an SV40 transformed
ataxia telangiectasia (AT) homozygous fibroblast line, a Kearns
Sayre Syndrome (KSS) line known to contain mitochondrial
deletions, and five human tumor lines. The D-mtDNA4977 was
assessed by polymerase chain reaction (PCR). Significant levels
of D-mtDNA4977 accumulated 72 h after irradiation doses of 2, 5,
10 or 20 Gy in all of the normal lines with lower response in
tumor cell lines, but the absolute amounts of the induced deletion
were variable. There was no consistent dose–response relation-
ship. SV40 transformed and non-transformed AT cell lines both
showed significant induction of the deletion. However, the five
tumor cell lines showed only a modest induction of the deletion,
including the one line that was deficient in DNA damage repair.
No relationship was found between sensitivity to radiation-
induced deletions and sensitivity to cell killing by radiation.
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Keywords: Ionizing radiation; mtDNA; PCR; Mutation and
common deletion
* Corresponding author. Fax: +1-713-794-5369.
E-mail address: wbrock@mdanderson.org (W.A. Brock).

Abbreviations: mtDNA, mitochondrial DNA; ROS, reactive oxygen
species; AT, ataxia telangiectasia; KSS, Kearns Sayre Syndrome; IR,
ionizing radiation; SF, survival fraction; PCR, polymerase chain
reaction

0014-5793/$22.00 � 2004 Federation of European Biochemical Societies. Pu

doi:10.1016/j.febslet.2004.06.078
1. Introduction

Ionizing radiation (IR) is known to induce multiple cellular

and biological effects either by direct interaction with nuclear

DNA or through the formation of OH radicals, which leads to

additional DNA damage. Although mitochondria undergo

regular exposure to oxidative stress, studies have been focused

on the role of nuclear DNA as the most important target of

radiation induced cell killing. Although this may be true for

cell killing, the long-term effects of radiation in surviving cells

may lead to abnormal function in cells and tissues that survive.

Since mitochondrial degenerative diseases are slow progressing

conditions often associated with impaired oxidative phos-

phorylation, they may serve as interesting models for radiation

effects on mitochondria. Yoneda et al. [1] suggested that oxi-

dative stress leads to mtDNA mutations and deletions, which

then results in disintegrity in the electron-transport chain,

followed by enhanced leakage of reactive oxygen species

(ROS). They commented that mtDNA, which is a major target

for attack by ROS, could be involved in the mechanism.

Each mitochondrion contains 2–10 copies of mtDNA and

there are up to 103 mitochondria per human cell. Human

mtDNA exists as a double stranded closed circular 16 569 bp

molecule, with genes coding for 13 polypeptides involved in

respiration and oxidative phosphorylation, two rRNAs and a

set of 22 tRNA molecules [2–5]. During mitochondrial oxi-

dative phosphorylation, a significant amount of ROS is gen-

erated which can cause mitochondrial and nuclear DNA

damage. Since mtDNA lacks the protective effects of histones

and since mitochondrial DNA is generally repaired less effi-

ciently than nuclear DNA, the mutation frequency of mito-

chondrial DNA is 10- to 1000-fold higher [6]. As all genes in

the mtDNA are essential for the biogenesis and bioenergetic

function of mitochondria, any mutation that leads to altered

expression of these genes would be expected to cause a defi-

ciency in energy metabolism and an enhanced production of

ROS released as intermediates during oxidative phosphoryla-

tion [7,8]. In addition to the mitochondrial degenerative dis-

eases, the life-long accumulation of mtDNA mutations and

deletions has been hypothesized as a contributor to the aging

process [2,9]. This is supported by evidence of an age-related

decrease in oxidative phosphorylation and the accumulation

of mtDNA mutations and deletions. As a marker of these
blished by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/82721708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mail to: wbrock@mdanderson.org


228 S. Prithivirajsingh et al. / FEBS Letters 571 (2004) 227–232
processes, both aging and mitochondrial degenerative diseases

display an accumulation of a 4977 bp mtDNA deletion, re-

ferred to as the ‘‘common deletion’’ [10]. The site of this spe-

cific mtDNA deletion (D-mtDNA4977) is flanked by two 13 bp

direct repeats and it is proposed that DNA damage between

these repeats can result in inappropriate pairing during DNA

replication, thus causing the deletion. This is referred to as a

slip-replication mechanism [11–13] and explains why random

DNA damage can cause such a precise deletion. Studies have

shown that this deletion can be used as a marker of oxidative

damage to mtDNA [14–18], even after very low doses of

damage because the lesion is essentially amplified during

mtDNA replication. Radiation damage to mtDNA results in

many single copy deletions and mutations in mtDNA, which

are not practical to detect or quantify. However, the common

deletion is more easily detected because of its unique mecha-

nism of formation, making it a very sensitive marker of

mtDNA damage. Even though it represents only a fraction of

the mtDNA damage following irradiation, it is a representative

surrogate for total damage.

The purpose of this study, therefore, was to investigate

whether IR induces the accumulation of the common deletion

and to determine if it is associated with cellular radiosensitivity

in 15 human cell lines, including normal, transformed and

tumor cells. The results showed a marked variation among the

cell lines in the levels of D-mtDNA4977 accumulated 72 h after

irradiation. There was no apparent relationship between the

radiosensitivity of the lines and the levels of induced deletions.
2. Materials and methods

2.1. Cell cultures and lines
Normal fibroblast cell lines were obtained under protocols approved

by the institutional review board of the University of Texas, M.D.
Anderson Cancer Center (UTMDACC). The lines were established for
several years, but the procedures were as follows. Dermal fibroblasts
were obtained from patients either by a punch biopsy performed over
the gluteal region or by surgical biopsies. Cultures were maintained in
a-MEM with 20% serum, LL-glutamine, antibiotics and 5% CO2, as
described elsewhere [19]. Ataxia telangiectasia (AT) and Kearns Sayre
Syndrome (KSS) lines were purchased from Coriell Institute, Camden,
NJ. DNA repair glioblastoma lines, MO59J (DNA-PK deficient) and
MO59K (normal DNA-PK proficient) and colon carcinoma lines,
SW620 and HT29, were obtained from the American Type Culture
Collection, Manassas, VA and a glioblastoma line, U251, was ob-
tained from Dr. P. Tofilon, UTMDACC.

2.2. Radiosensitivity assays (SF2)
Radiosensitivity measurements were performed on all cell lines by at

least three independent clonogenic assays according to the procedures
described [19,20].

2.3. Irradiation and hydrogen peroxide (H2O2) treatment
Cultures were irradiated at room temperature using a 137Cs source at

a dose rate of 4.17 Gy/min. Cultures were treated with 200 lM H2O2

for 15 min in serum-free medium.

2.4. Isolation of DNA
Following irradiation, cultures were incubated for various times

before extracting total cellular DNA using the DNeasy Tissue Kit
(Qiagen, Valencia, CA). The extract, containing both nuclear and
mtDNA, were used for polymerase chain reaction (PCR) analysis
without further purification.

2.5. Primer sets and PCR
Primers were synthesized by Sigma-Genosys, The Woodlands,

Houston, TX. To detect D-mtDNA4977, primer sites were chosen at
regions flanking the 4977 bp and PCR was carried out under condi-
tions that allowed a product to form only if the deletion had occurred.
Primers designed to detect non-deleted DNA employ primers across
the deletion break point. The mtDNA sites for all primers and their
oligonucleotide sequences are shown in Fig. 1. The PCR mixture
contained 200 ng cellular DNA as template, 200 M of each dNTPs, 1�
reaction buffer and 2.5 U Taq polymerase (Roche Applied Science,
Indianapolis, IN). Amplification was accomplished by an initial de-
naturation at 94 �C for 3 min followed by 30 cycles of template de-
naturation at 94 �C for 1 min, primer-template annealing at 50 �C for 1
min and primer-extension at 72 �C for 1 min. A final extension was
performed at 72 �C for 10 min. PCR was performed in a GeneAmp
PCR system 9700 (Perkin–Elmer, Boston, MA) using 0.2 ml micro-
centrifuge tubes. PCR products were electrophoresed on 1% agarose
gels and stained with ethidium bromide. Gels were scanned and den-
sitometric analysis was performed using ImageQuant (Molecular Dy-
namics Storm 860 system, Sunnyvale, CA).
3. Results and discussion

3.1. Cell lines and radiosensitivity measurements

Table 1 summarizes the origins of the 16 different cell lines

and the results of radiosensitivity measurements. The end

point of radiosensitivity is survival after 2 Gy of irradiation

(SF2). The normal human dermal fibroblasts displayed a range

of radiosensitivities (SF2¼ 0.17–0.41). The non-transformed

AT and an SV40 transformed AT fibroblast lines were highly

sensitive (SF2¼ 0.02 and 0.04, respectively). The three malig-

nant cell lines (HT29, SW620 and U251) were relatively radi-

oresistant (SF2¼ 0.73, 0.64 and 0.69, respectively). The

glioblastoma wild type line, MO59K, was radioresistant

(SF2¼ 0.39) and its DNA-PK�=� counterpart, MO59J, was

highly radiosensitive (SF2¼ 0.05). KSS cells were relatively

radioresistant with SF2 value of 0.36. Cell lines derived from

KSS patients contain high levels of the common deletion, so

they were used as a positive control for identification of the

deletion. The specific mechanisms that result in differences in

radiosensitivity are not known for all of these cell lines. Sen-

sitivity differences among the normal fibroblast lines are within

the normal range of individuals, although line 3 (Table 1) was

derived from a cancer patient with a family history of radio-

sensitivity and cancer proneness [21]. The AT and protein ki-

nase deficient lines (lines 10, 11 and 13 in Table 1) have altered

functions that directly or indirectly influence the repair of

DNA damage [22,23]. The lines derived from various human

tumors (lines 14–16 in Table 1) do not have identified genetic

defects related to radiosensitivity.

Since it has been reported that cellular radiosensitivity and

the sensitivity to radiation–induction of the common deletion

may be correlated [24], we tested for the possibility of a sig-

nificant correlation between the radiosensitivity of several cell

lines and the accumulation of the common deletion. The re-

sults do not suggest a correlation, although the range in sen-

sitivities of the different lines is quite large (SF2¼ 0.02–0.73).

3.2. Cytotoxic treatment of mtDNA

KSS cells were used to demonstrate that our PCR primers

amplify the common deletion in mtDNA and that it can be

easily detected by PCR. Increased sensitivity was achieved by

using PCR primers to specifically amplify the region flanking

the common deletion. Primers were designed separately to

amplify mtDNA with and without the specific common dele-

tion as shown in Fig. 1. The results (Fig. 2) show the ampli-

fication of the mtDNA from KSS cells and from H2O2 treated
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Fig. 1. Mitochondrial DNA, oligonucleotide positions and sequences of the primers used to amplify the common deletion and the wild type mtDNA
sequence by PCR. The large double circle represents full-length wild type mtDNA and the hatched potion indicates the region of the common
deletion (D-mtDNA4977). The smaller circle on the right represents the size of the mtDNA after the loss of the common deletion sequence. It is 4977
bp smaller than the wild type mtDNA. PCR primers for wild type and D-mtDNA are shown in the table.
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and untreated C46 control cells. KSS cells have the 438 bp

PCR product formed from wild type mtDNA and an 814 bp

product that is only formed from a template of D-mtDNA.

The untreated normal fibroblast line, C46, shows the wild type

band, as well as the small band associated with the common

deletion. However, C46 cells treated with H2O2 show a sig-

nificant increase in the deletion, which is consistent with re-
Table 1
Characteristics of the donors and tumors from which the dermal fi-
broblast cell lines were established

No. Cell line SF2 Age/Sex

1 KSS 0.36 10/M
2 C29 0.33 45/F
3 C42 0.17 3/F
4 C46 0.32 42/F
5 C49 0.28 54/F
6 C52 0.27 55/F
7 C65 0.3 66/M
8 C80 0.41 27/F
9 S23 0.25 70+/F
10 AT 0.02 M
11 ATsv40 0.04 18/M
12 MO59K 0.39 33/M
13 MO59J 0.05 33/M
14 HT29 0.73 44/F
15 SW620 0.64 51/M
16 U251 0.69 Not known

SF2: Surviving fraction of fibroblasts at 2 Gy.
ports that oxidative treatment induces formation of the

common deletion. This result demonstrates that cytotoxic

treatments induce the common deletion in the mtDNA.

3.3. D-mtDNA4977 accumulation after IR

As shown in Table 1, a number of cell lines with distinctive

characteristics were used. These include primary and malig-

nant cells with a variety of radiosensitivities and known DNA

repair defects. After DNA extraction, specific PCR primer

sets were used to identify the relative amounts of both
Fig. 2. PCR analysis of mtDNA in KSS and C46 cell lines using
primers 1 and 2 from Fig. 1. C46 was treated with H2O2 to demon-
strate that cytotoxic treatment induces mtDNA damage. KSS and C46
cells show the presence of the common deletion. H2O2 treatment of
C46 followed by 72 h of incubation shows the accumulation of the
common deletion.



Fig. 3. IR induction of the common deletion in mtDNA in primary human fibroblasts. (A) PCR products showing the accumulation of common
deletion with increasing radiation doses 72 h after treatment. (B) Quantitative analysis of the PCR products expressed as the fraction of total mtDNA
copies that contain the common deletion in eight normal fibroblast lines. The bars represent cell lines 2–9 listed in Table 1, in order from left to right.
(C) Average of all the eight fibroblast lines from B versus radiation dose.
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D-mtDNA4977 and total mtDNA in fibroblasts following ir-

radiation. Of the 16-fibroblast cell lines, representative gels

from two normal lines (Fig. 3), AT and ATSV40 lines (Fig. 4),

and tumor lines (Fig. 5) are displayed as individual figures.

However, the data from all cell lines in that category are

summarized in the graphs.

Primary human fibroblasts. Mitochondrial deletions induced

by radiation are not immediately present after treatment,

because their formation requires mtDNA replication [24].

Therefore, cultures were incubated for 72 h after irradiation

with a variety of radiation doses (5, 10 or 20 Gy). Fig. 3

shows the accumulation of the wild type mtDNA and com-

mon deletion after irradiation in 2 normal fibroblast lines

(C29 and C49). The PCR products (Fig. 3A) corresponding to

�5 kb deletion were visible after irradiation of C29 and C49

fibroblasts. In general, increasing radiation dose has no ap-

preciable effect on the level of wild type mtDNA in all the cell

lines studied. C29 has very little to no mtDNA deletion

product without radiation, but it has a very strong induction

of D-mtDNA after IR. There was no evidence of a dose re-

sponse. On the other hand, C49 had significant levels of the

D-mtDNA without IR, which is typical in cultures derived

from older patients (54 years of age). The D-mtDNA in C49

appears to have a dose–response up to 10 Gy, although there

was a decrease at 20 Gy. Perhaps, this was due to the loss of

cells killed by radiation. Fig. 3B shows the quantitative results

from all eight normal human fibroblast lines, expressed as the
fraction of total mtDNA copies, which contains the common

deletion. It shows variability in the initial levels of the dele-

tion, that the magnitude of response to radiation is highly

variable between individual fibroblast lines and that there is a

general increase in levels following irradiation. When the re-

sults from the eight fibroblast lines were averaged (Fig. 3C),

the results show a significant increase in D-mtDNA after ir-

radiation, but there is no evidence of a dose-dependent re-

sponse relationship. There was, however, a statistically

significant increase of D-mtDNA between 0 and 5 Gy, al-

though it is recognized that the degree of variability among

the lines is considerable.

AT fibroblasts. The rationale for examining AT lines is based

on a report that induction of the common deletion in mtDNA

by radiation depends upon the inherent radiosensitivity of the

cells [24]. Two highly radiosensitive AT lines, immortalized

and SV40 immortalized, were given radiation doses of 2, 5 and

10 Gy. Both AT and ATSV40 lines showed increased accu-

mulation in the common deletion after radiation doses of 2, 5

and 10 Gy (Fig. 4A). In this case, the increase in deletion

appears to be dose-dependent in the transformed cells but not

in the non-transformed AT line. The results are shown in

Fig. 4B.

AT cells are highly sensitive to IR [25]. The mutated ATM

protein appears to modulate radiation sensitivity by mecha-

nisms that include repair, cell cycle checkpoints and genome

instability [26]. As reported by Kubota et al. [24], we found an



Fig. 4. Increased levels of total mtDNA and common deletion induced by IR in AT and ATSV40 fibroblasts. (A) PCR showing the progressive
increase in the accumulation of the common deletion in AT and ATSV40 transformed lines after IR. (B) Quantitative results of both cell lines
expressed as the ratio of mtDNA containing the deletion relative wild type mtDNA.

Fig. 5. PCR analysis of the mtDNA common deletion in malignant lines, 72 h after various doses of IR. (A) The top panel shows the levels of total
mtDNA and the bottom panel shows the accumulation of the common deletion in SW620, HT29 and U251 lines. (B) Agarose gel showing the PCR
products of wild type and D-mtDNA in MO59K cells. (C) Wild type and D-mtDNA PCR products in MO59J cells. (D) Quantitative analysis.
(E) Average of the D-mtDNA in all five tumor lines, expressed as fraction of mtDNA containing the deletion.
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increase in mtDNA deletions in AT cells, a radiation dose of

only 2 Gy, while the increase in other cell types was not ob-

served after doses less than 5 Gy. Kubota et al. [24] also re-

ported that AT cells showed D-mtDNA4977 accumulation after

doses as low as 1 Gy. They hypothesized that nuclear genes

involved in the repair of radiation-induced mtDNA damage

may be responsible for any relationship between of the sensi-

tivity of human cells to radiation-induced cell killing and the

sensitivity to the induction of mitochondrial DNA deletions.

Since we found no correlation between sensitivity to cell killing

and deletion induction, our results do not support that

hypothesis.

Tumor lines. It is known that there is considerable variation

in the sensitivity of human tumor cells to killing by radiation

[27,28]. Since mtDNA is more prone to oxidative damage

than genomic DNA and since studies have suggested that

various tissues, such as brain, liver, heart and skeletal muscle,

accumulate point mutations and deletions in their mtDNA

with age [10,11,29], we examined the accumulation of the D-
mtDNA4977 in malignant and DNA repair deficient cell lines.

Fig. 5A shows the PCR amplified products corresponding to

the wild type and deletions in SW620, HT29 and U251 ma-

lignant cell lines. These lines were relatively radioresistant

(Table 1). All three lines had significant baseline levels of the

common deletion, in the absence of IR. With IR, a modest,

but dose-independent, accumulation of the deletion was ob-

served. Two additional glioblastoma lines, MO59K and

MO59J, were examined. Fig. 5B and C show the results.

Neither of these lines exhibited an increase in D-mtDNA.

MO59K is DNA-PK proficient and relatively resistant to IR,

while MO59J is DNA-PK deficient, repair deficient and

highly radiosensitive. This is further evidence that radiosen-

sitivity to cell killing and sensitivity for the induction of mi-

tochondrial DNA deletions are independent. Quantitative

analysis of all the five tumor lines is shown in Fig. 5D. The

average data of the five malignant cell lines are shown in

Fig. 5E and that confirms the absence of significant deletion

induction.

In summary, these studies suggest that IR induces an in-

crease in mtDNA deletions. This increase is (1) radiation dose

independent, (2) requires 72 h to accumulate to detectable

levels, (3) occurs in normal and in tumor cell lines, (4) the

extent of the induction is highly variable in magnitude, and (5)

there is no correlation with radiosensitivity.
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