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Fourier Transform Infrared (FT-IR) spectroscopy is a robust method for macromolecular analysis and differenti-
ation ofmicroorganisms. However, most studies are performed in controlled conditions and it is unclearwhether
this tool is appropriate for the identification of eukaryotic microalgae species from variable environments. In
order to address this, nine closely-related species of marine and freshwater microalgae were grown under con-
trolled (non-stressed) and variable (non-stressed and stressed) conditions, including nutrient-stressed and
wastewater-stressed conditions. Following optimization of data processing methods, FT-IR spectra from all spe-
cies and conditions were compared. The substantial metabolic changes that were caused by nutrient starvation
restricted the ability of FT-IR spectroscopy todifferentiate themicroalgal species grownunder variable conditions
efficiently. Comparison of unsupervised and supervised multivariate data analysis methods found that principal
component-discriminant function analysis was able best to differentiate between some species under controlled
conditions but still gave poor differentiation under variable environmental conditions.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Fourier Transform Infrared (FT-IR) spectroscopy is a powerful and
potentially under-utilised tool for many aspects of microalgal research,
including metabolic fingerprinting of microalgal strains. These organ-
isms are of increasing interest as sustainable sources of various high-
value chemicals and products. For example, many algal strains can pro-
duce large amounts of the neutral lipid triacylglycerol, which could be
converted to biodiesel through industrial transesterification [1]. At pres-
ent, this is not economically viable and research is needed to screen for
and develop high lipid producing strains, and improve the methods of
algal growth [2]. FT-IR spectroscopy is an extremely useful technique
for such research either to compare rapidly metabolic fingerprints in
different algal species/strains or in strains from different growth
conditions [3–6]. Whole algal cells can be analysed by FT-IR spectrosco-
py, enabling the production of detailed spectra without the need to per-
form any complex and time consuming cell extractions. Chemical bonds
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within functional groups of biochemical molecules have distinct vibra-
tional properties, allowing the relative amounts of these biochemical
macromolecules to be effectively determined through FT-IR spectral
analysis [7]. Thus, the analysis of these spectra can provide important
biochemical information, such as the relative quantification of carbohy-
drates, lipids and proteins found within a sample (Fig. 1a).

While FT-IR spectroscopy could certainly be a useful tool for
bioprospecting novel algal strains for biotechnological applications by
high-throughput metabolic fingerprinting [6], it has been suggested
that the technique could also be used to discriminate and identify differ-
ent species of algae present in a sample taken directly from the environ-
ment [8]. A large body of research has clearly demonstrated that FT-IR
spectroscopy can be successful in the identification of many microor-
ganisms, particularly bacterial and fungal species [9–13]. The identifica-
tion of five cyanobacteria (blue-green algae) species has been achieved
with some success using supervised statistical methods [14]. However,
that study was performed using controlled laboratory conditions for
the cultivation of the strains and a single type of nutrient-rich media,
therefore its success cannot be extrapolated to species classification
under less controlled conditions. In addition, species classification is
likely to be considerably more difficult when the number of species
tested is higher. More recent studies examining cyanobacteria and
eukaryotic algae have used a higher number of species grown to
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https://core.ac.uk/display/82721637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.algal.2015.06.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.algal.2015.06.009
mailto:jon.pittman@manchester.ac.uk
mailto:a.p.dean@sheffield.ac.uk
http://dx.doi.org/10.1016/j.algal.2015.06.009
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/


Fig. 1. FT-IR spectra from C. reinhardtii. Typical FT-IR spectra (wavenumbers 4000–600 cm−1) C. reinhardtii grown in either standard TAP or Low N TAP media (a). Both spectra are nor-
malized to the amide I peak at 1655 cm−1. Major band assignments, including bands associated with lipids, proteins and carbohydrates, are indicated by arrows and defined in the list
below the graph. Comparison of averaged spectra, following EMSC2 normalisation, generated from C. reinhardtii grown in TAP (from 18 replicates), Low P TAP (from 18 replicates), or
Low N TAP media (from 9 replicates) (b). The spectral region referred to as cut-down spectra (wavenumbers 1800–950 cm−1) in subsequent experiments is indicated by dotted lines.
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different growth stages or in two types of media containing different N
sources (nitrate or ammonium) [15–17]. Results again showed a high
percentage of correct species classification, although it could still be
argued that these studies cultivated strains under very controlled and
uniform conditions. However, it is less clear if the identification of
eukaryotic microalgae species grown under variable conditions would
be as efficient using FT-IR spectroscopy.

Eukaryotic microalgae are arguably more complex microorganisms
than bacteria and yeast. They contain a large metabolically active chlo-
roplast that accounts for a significant proportion of each cell's volume,
which has been considered to make species identification through
FT-IR spectroscopy more challenging [16]. In addition to this,
microalgae have considerable phenotypic plasticity in how they re-
spond to environmental stimuli such as N starvation and salt stress
[18,19]. As a result, individual species ofmicroalgae produce very differ-
ent FT-IR spectra under different environmental conditions [6,20]. Thus
the development of a spectral library for microalgal species identifica-
tion may be troublesome, as each species is unlikely to have a single
characteristic FT-IR spectrum to use as a guide.

This study therefore aimed to evaluate whether nutrient availability
affect the ability of FT-IR spectroscopy to classify eukaryotic microalgal
species correctly. To achieve this, optimum data processing methods
were determined using data from Chlamydomonas reinhardtii and a
meta-analysis of C. reinhardtii studies performed under different condi-
tions. These data processing methods were then applied to nine differ-
ent chlorophyte species grown in a number of different media.

2. Materials and methods

2.1. Microalgal strains and growth conditions

Microalgal strains were originally obtained from the UK Culture
Collection of Algae and Protozoa (CCAP), Oban, Scotland, UK or the
Plymouth Algal Culture Collection (PLY), Plymouth, UK: Chlamydomonas
concordia (PLY 491), Chlamydomonas debaryana (CCAP 11/70),
C. reinhardtii (CCAP 1132C), Chlorella luteoviridis (CCAP 211/3), Chlorella
vulgaris (CCAP 211/79), Desmodesmus intermedius (CCAP 258/38),
Dunaliella tertiolecta (PLY 83), Hindakia tetrachotoma (CCAP 222/81)
and Parachlorella kessleri (CCAP 211/11G). All are freshwater species
apart from C. concordia and D. teriolecta, which are marine species.

C. reinhardtiiwas grown photo-heterotrophically in batch cultures of
Tris–acetate–phosphate (TAP) medium, which includes 7 mM N (as
NH4Cl) and 1 mM P (as K2HPO4/KH2PO4) [21], and in modified TAP
media with reduced concentrations of N (0.7 mM in Low N TAP) or
P (0.01 mM in Low P TAP). In Low P TAP the K concentration was main-
tained by adding KCl. C. concordia was grown in TAP medium but with
an addition of 30 g/L NaCl (~0.5 M). D. tertiolecta was grown in ASP2
medium, an enriched artificial seawater medium, which includes
18 g/L NaCl, 0.59 mM N (as NaNO3), 29 μM P (as K2HPO4) and 9 μM Fe
(as FeCl3) [22]. Cultures were also grown in modified ASP2 media
with reduced concentrations of N (0.12 mM in Low N ASP2) or P
(2.9 μM P in Low P ASP2), or a Fertilised-ASP2 medium with 5-fold in-
creased concentrations of P (145 μM), N (2.95 mM) and Fe (45 μM).
Cultures were grown for 20 days until stationary phase in triplicate
under environmentally controlled conditions on an orbital shaker
(120 rpm) at 25 °Cwith a 16 h light:8 h dark light regime, and a photon
flux of either 100 μmol m−2·s−1 (for D. tertiolecta cultures) or
150 μmol m−2·s−1 (for C. reinhardtii and C. concordia cultures). Accli-
mated and non-acclimated strains of C. debaryana, C. luteoviridis,
C. vulgaris, D. intermedius, H. tetrachotoma and P. kessleri were grown
for 10 days in municipal secondary-treated wastewater in a previous
experiment [3]. Overall, there were six independent C. reinhardtii
growth experiments, each with multiple replicates and run under the
same conditions at six different times, with collection of FT-IR spectra
carried out separately after each experiment. In addition, there were
single growth and FT-IR spectroscopy experiments for C. concordia and
D. tertiolecta, also each carried out at different times. In addition to the
majority of the data specifically acquired for this study, the spectral
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data of the wastewater-grown algae had been previously collected and
published [3].
2.2. FT-IR spectroscopy

All FT-IR spectra collection was performed using the samemethodol-
ogy and using the same FT-IR instrument. A 1mL samplewas taken from
each flask for centrifugation at 14000 g for 5 min. The supernatant was
discarded and pelleted wet biomass was weighed. Each sample was
then normalised to a concentration of 60 mg mL−1 with Milli-Q
(Millipore) water. 30 μL of each sample was pipetted onto a well of a
96-well siliconmicroplate and dried at 40 °C overnight. Spectrawere col-
lected using an FT-IR spectrometer (Bruker Equinox 55 FT-IR spectrome-
ter), equippedwith a deuterated triglycerine sulphate detector, and using
an HTS-XT high-throughput microplate extension. A spectral range of
4000–600 cm−1was collected,with four scans co-added for each spectra.
2.3. Comparison of spectral ranges

Resulting spectrawere imported intoMATLAB v.2010a (MathWorks)
and normalised using the extendedmultiplicative scatter correction type
twomethod (EMSC2) [23]. Normalised spectra were then imported into
The Unscrambler v.10.1 (CAMO Software). Principal Component Analy-
sis (PCA) was then performed over two separate spectral ranges: full
spectra (4000–600 cm−1) and cut-down spectra (1800–950 cm−1)
which contained the majority of the spectral information. Resulting
PCA scores and loading plots were compared to determine the optimum
spectral range for microalgal metabolic fingerprinting. PCA was applied
as a non-supervised model that is appropriate since it is representative
of near to the full variance within the dataset. Clustering indicates
which experimental factors are the sources of greatest variance within
the data. For all analyses plotswere generated using Prism v6 (GraphPad
Software).
2.4. Comparison of data processing methods

The results of three data processing options were compared. EMSC2
normalisation on the raw FT-IR data as described above was compared
to 1st derivative and 2nd derivative spectra. Derivatised spectra were
generated from raw spectral data using The Unscrambler v.10.1 using
a Savitzky–Golay algorithm before EMSC2 normalisation in MATLAB.
PCA was then performed on the three separate data sets and compari-
sons between the data processing methods were made.
2.5. Additional data analysis

Lipid content and carbohydrate contentwas estimated throughmea-
suring individual band heights for total lipid (1740 cm−1), amide I
(1655 cm−1) and carbohydrate (1160, 1086, 1050 and 1036 cm−1)
(see Fig. 1a) and calculating lipid:amide I peak height ratios and
carbohydrate:amide I peak height ratios; calculations were performed
in MATLAB. Partial Least Squares Regression (PLSR) analysis was per-
formed in The Unscrambler. PLSR values were calculated using the
more conservativemethod using cross validation. PLSR is a classicmeth-
od of multivariate prediction analysis and so was applied in this case.
Principal Component-Discriminant Function Analysis (PC-DFA) was
performed in MATLAB. PC-DFA is appropriate as a supervised model
in this case since it is based on an a priori PCA performed in step 1.
PLS-DA or OPLS-DA are alternatives, however since they are based on
an a priori PLS rather than PCA, they cannot be related back to the
PCs from the PCA performed in step 1. Supervised methods such as
OPLS-DA are perhaps more likely to over fit the data than PC-DFA.
3. Results and discussion

3.1. Comparison of FT-IR spectral range and data-processing methods

We first ascertained whether use of the full FT-IR spectral range or
specific regions of the spectrum could affect the clustering and discrim-
ination of spectra derived from microalgae grown under non-stressed
and various nutrient stressed conditions. Furthermore, the spectra for
this analysis were derived from C. reinhardtii samples obtained from
six identical but independent experiments performed at different
times. A number of specific bands in the FT-IR spectra can be associated
with specificmacromolecules andmetabolites,manyofwhich are clear-
ly visible in response to stress, such as N limitation (Fig. 1a).While there
are many discernible bands of interest across the full spectra
(wavenumbers 4000–600 cm−1), many key bands can be found within
a fingerprint region of so called ‘cut-down’ spectra (wavenumbers
1800–950 cm−1) (Fig. 1b). PCA plots and loading plots were generated
for both full spectra (Fig. 2a and b) or cut-down spectra (Fig. 2c andd) of
C. reinhardtii grown for 7 days until late exponential phase in nutrient
replete (non-stressed) TAP medium and in N or P limited (Low N and
LowP TAP)media (Fig. 1b). For both the full spectra and cut-down spec-
tra there was clear clustering between stressed and non-stressed treat-
ments along PC1 in each PCA scores plot and also some discrimination
between Low-N and Low-P treatments (Fig. 2a and c). Because this
non-supervised PCA method separated the treatments very clearly, a
potentiallymore successful supervised PC-DFAmethodwas not needed.
Indeed, a PC-DFA scores plot of the same spectra was essentially identi-
cal to the PCA plot (data not shown). According to the PC1 loadings
plots, the differences between the stressed andnon-stressed treatments
were determined by peak changes mainly within the 1800–950 cm−1

region (the cut-down spectra) with little spectral change within the
4000–1800 cm−1 region (Fig. 1b). Thus, the Low-N and Low-P treat-
ments were characterized by an increase in lipid and carbohydrate as
well as a relative decrease in protein for both sets of spectra (Fig. 2b
and d). However, the PC2 loadings varied considerably between the
two sets of spectra, with PC2 of the full spectra being characterized by
a significant amount of non-biological data, principally vO–H stretching
of water within the wavenumber range 3639–3029 cm−1 (Fig. 2b). In
addition, in the full spectra, PC2 accounts for 10% of total variation
(Fig. 2b), compared to 4% in the cut-down spectra (Fig. 2d). As a result,
there is more variation accounted for by non-biological data when the
full range of the FT-IR spectra is used.

There are arguments for and against the use of full or ‘cut-down’
spectra for microalgal FT-IR spectroscopy analysis. Previous studies
have used full spectral ranges [15], whilst others have used cut-down
spectra [17,24]. Results from this study clearly show that the cut-
down spectra enabled more efficient clustering of different groups by
PCA (Fig. 2), and that the clustering was based on more biologically
relevant information. One argument against the use of a reduced
spectral range is that somemetabolic information is lost, such lipid asso-
ciated vsCH2 and vasCH2 bands of associated with lipids (ca. 3000–
2800 cm−1) and the region associated with vN–H and vO–H stretching
(ca. 3600–3000 cm−1) (Fig. 1a). Nevertheless, the analysis here sug-
gests that whilst there is more information available in the full spectra,
this informationwas not as important to discriminate between different
treatment groups of microalgae in this study. As a result the cut-down
spectra of 1800–950 cm−1 was used for the remainder of analysis in
this study. A previous study evaluating six cyanobacteria species
found that use of the same cut-down spectral region in comparison to
the full spectrum or more discrete spectral windows was the most ap-
propriate for discriminating between all six species [17].

Many previous FT-IR spectroscopy studies have used different data
pre-processing methods before spectral analysis by clustering. We also
investigated the effect of different processing methods on PCA cluster-
ing of the spectra derived from C. reinhardtii grown in standard TAP,
and Low P or Low N TAP media. Cut-down spectra (wavenumbers



Fig. 2. Comparison of the effect of full or cut-down FT-IR spectral ranges on sample clustering. PCA scores plots (a) and PC1 and PC2 loading plots (b) for full spectra (wavenumbers 4000–
600 cm−1) and scores (c) and loading plots (d) for cut-down spectra (wavenumbers 1800–950 cm−1) generated from C. reinhardtii grown in either standard TAP (18 replicates), Low
P TAP (18 replicates), or Low N TAP media (9 replicates).
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1800–950 cm−1) were processed using EMSC2 normalisation without
derivatisation (Fig. S1a, b), spectra converted to their 1st derivative be-
fore EMSC2 normalisation (Fig. S1c, d), and spectra converted to their
2nd derivative before EMSC2 normalisation (Fig. S1e, f). There was
very little difference between the resulting scores plots with each plot
showing clear clustering between stressed and non-stressed samples,
and equivalent differentiation between Low-P and Low-N samples. As
a result EMSC2 normalisation without derivatisation was used for spe-
cies analysis as it is the closest to raw spectral data and there is less
risk of important biological data being removed through data
processing.

The use of spectra derived from six independent but identical exper-
iments also allowed an assessment of the variability between separate
experiments and whether individual experiments performed at differ-
ent times could be distinguished by FT-IR spectroscopy. By plotting
the data shown in Fig. 2c on the basis of experiment, it could be
shown that clustering of non-stressed (standard TAP) and nutrient
stressed (Low-P and Low-N TAP) samples was good even though spec-
tral data was derived from different experiments (Fig. S2). Whilst there
was some variation accounted for by experimental timing, such as some
variation from Experiment 6 (Fig. S2b, c), these differences do not affect
the ability of PCA to distinguish between samples grown in different nu-
trient replete and nutrient limited media. It should be noted that all six
experiments were performed under environmentally controlled condi-
tionswith parameters such as light intensity and temperature as identi-
cal as possible. This suggests that if a standard metabolic fingerprint is
obtained, such as a species-specific fingerprint, with a high level of ex-
perimental control species classification may be possible, depending
on whether species-dependent characteristics can be determined from
FT-IR spectral information.
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3.2. FT-IR spectroscopy can discriminate responses to nutrient limitation in
a marine microalga

To demonstrate the significant metabolic plasticity that eukaryotic
microalgae, including a marine microalga, can display in response to
an environmental stress such as nutrient starvation, analysis was per-
formed using the marine alga D. tertiolecta. D. teriolecta cultures grown
for 20 days until late exponential phase in artificial seawater (ASP2)me-
diumwere compared to those cultivated in fertilised seawater medium.
As would be expected, growth of the cultures was significantly in-
creased following fertilisation with an approximately 2.5-fold increase
in wet weight biomass (data not shown). The EMSC2-normalised FT-
IR spectra showed that the metabolic fingerprint of D. tertiolecta varies
markedly when grown in the different media (Fig. 3a), while the PCA
scores plot generated from these spectra showed distinct clustering of
spectra derived from ASP2-grown cells from those grown in fertilised
medium along PC1 (Fig. 3b). The PC1 loading plot suggests that ASP2-
grown nutrient-stressed cells are clustered towards the negative side
of the PC1 axis as a result of having higher (negative on loading plot)
carbohydrate peaks (vC–O of carbohydrates at 1160, 1086, 1050 and
1036 cm−1) and a total lipid peak (vC_O of ester functional groups
from lipids and fatty acids at 1745 cm−1), as well as a reduction (posi-
tive on loading plot) in protein peaks (vC_O of amides associated
with proteins; amide I at 1655 cm−1 and δ N–H of amides associated
with protein; amide II at 1545 cm−1) (Fig. 3c). Relative quantification
of carbohydrate and lipid content by calculating carbohydrate:amide I
Fig. 3. An example of nutrient stress-induced metabolic response determined by FT-IR spectros
950 cm−1) generated from D. tertiolecta grown in artificial seawater (ASP2)media or fertilised
spectra. Carbohydrate:amide I and lipid:amide I peak height ratio values generated from rep
(p b 0.05) are indicated with an asterisk.
and lipid:amide I peak height ratio values (Fig. 3d) demonstrated that
both metabolic classes are significantly higher in the nutrient stressed
seawater grown cells than in fertiliser-grown cells.

Previouslywe have demonstrated thatmetabolic responses to N or P
limitation, notably carbohydrate and lipid induction, can be clearly de-
termined by FT-IR spectroscopy for two freshwater microalgae species,
C. reinhardtii and Scenedesmus subspicatus [5,6,25]. Here we show that a
marinemicroalga displays a similar nutrient limitation response, which
elicits a substantial change in FT-IR spectra, and thus two very distinct
spectra can be generated from the same species cultivated in just two
different conditions. This is similar to N limitation responses detected
by FT-IR spectroscopy analysis described previously for the related ma-
rine alga Dunaliella salina [26].

3.3. FT-IR analysis of nine microalgal species grown in stressed and
non-stressed conditions

Using the data processing methods chosen for the C. reinhardtii data,
this alga was directly compared with eight other eukaryotic microalgae
species, including D. tertiolecta and another marine alga C. concordia,
plus six other freshwater species, under conditions classified as stressed
or non-stressed, in order to assess the prospects of eukaryoticmicroalgae
species classification by FT-IR spectroscopy. For C. reinhardtii, C. concordia
and D. tertiolecta the stressed and non-stressed conditions were nutrient
starved and nutrient replete conditions, respectively. For C. debaryana,
C. luteoviridis, C. vulgaris, D. intermedius, H. tetrachotoma and P. kessleri,
copy in a marine microalga. Mean EMSC2 normalised FT-IR spectra (wavenumbers 1800–
seawater media (a). PCA score plot (b) and PC1 loading plot (c) derived from the replicate
licate spectra (d). Data are mean values ±SE of three replicates. Significant differences
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the stressed and non-stressed conditions were dependent on whether
the strains were non-acclimated (by never previously being exposed to
raw municipal wastewater) or acclimated (after 8 weeks exposure), re-
spectively to growth in municipal wastewater, as described previously
[3]. The mean spectra for each species and growth condition are shown
in Fig. S3. PCA scores plots of EMSC2 normalised cut-down FT-IR spectra
were generated for the nine algal species grown in non-stressed condi-
tions (Fig. 4a) and a combined plot of the species grown in non-
stressed and stressed conditions (Fig. 4b). As was expected from the
analysis of C. reinhardtii (Fig. 2) and D. tertiolecta (Fig. 3) separately, the
degree of individual species clustering was greater in non-stressed con-
ditions than in the combined plot of the species grown in all conditions
Fig. 4. PCA score plots of EMSC2 normalised cut-down FT-IR spectra of nine algal species
grown for 7 days in non-stressed conditions (a) and a combined plot of the species
grown in non-stressed and stressed conditions (b). Different species are highlighted
using different symbols. C.r. = C. reinhardtii, C.c. = C. concordia, D.t. = D. tertiolecta,
P.k. = P. kessleri, C.l. = C. luteoviridis, H.t. = H. tetrachotoma, D.i. = D. intermedius,
C.d. = C. debaryana, C.v. = C. vulgaris.Mean spectra for each species is shown in Fig. S3.
(Fig. 4). Nevertheless, even for the non-stressed samples, individual spe-
cies could not be easily discerned by PCA. In particular, therewas consid-
erable overlap of the C. reinhardtii samples with the clusters of other
adjacent species (Fig. 4a). C. reinhardtii is the only species that has been
analysed over numerous separate experiments and therefore the larger
sample size would likely have exacerbated the variation within the
C. reinhardtii samples, which is almost as great as the variation between
all other species. Thus, due to the similarity of the metabolic fingerprints
from these microalgae species, the experimental-derived variation for
the C. reinhardtii samples may affect the ability to differentiate between
all the species, even when grown under non-stressed conditions.

Previous studies have shown that under very controlled conditions,
the identification of eukaryotic microalgae by using FT-IR spectroscopy
can be possible [15,16]. However, it was not clear whether the same
level of classification would be gained with highly similar species
grown under a number of different conditions. When the added com-
plexity of stress-inducing conditions was added, species clustering
was even poorer when analysed by PCA. For example, there are three
separate clusters for C. concordia within the PCA scores plot (Fig. 4b),
which can be accounted for by the three different conditions (TAP,
Low-P TAP and Low-N TAP) that this algawas grown in (Fig. S4). Similar
variationwas seen formost of the other species, and once again, the var-
iation within the C. reinhardtii samples was considerable (Fig. 4b).

The ability of FT-IR spectroscopy to discriminate individual species
under either controlled (non-stressed) or variable (combined non-
stressed and stressed) conditions was further quantified by PLSR analy-
sis. This analysis assessed the ability of a PLSmodel to separate each spe-
cies. The PLS scores plots used to generate the models are shown in
Fig. S5, and like the PCA plots, show the poor separation of each species.
A regression slope gradient value was calculated for each species under
both the non-stressed or combined stressed and non-stressed condi-
tions (Table 1). Only the C. reinhardtiinon-stressedmodel gave a regres-
sion value closest to 1 and thus indicates that the model would be
moderately successful at discriminating this species from the rest from
this spectral data set. However, the model for C. reinhardtii is consider-
ably weaker using the combined stressed and non-stressed data set as
the FT-IR spectra are significantly more variable. The values for all
other species models are very low (b0.2), confirming the inability to
discriminate individual species. The distinction between C. reinhardtii
and the other species PLSR scores may be partly due to sample number
for each species used in this analysis. Here 45 individual C. reinhardtii
samples were used in the full dataset, whereas for some other species
like C. vulgaris or C. luteoviridis there were only six samples. An analysis
of Actinobacteria found that up to 15 replicate strains per species were
needed in a reference dataset to obtain 80–90% identification rates,
while for some more closely related bacterial species, higher numbers
of strains were needed [27,28].

These data show that the ability to classify species identity using
FT-IR spectra is further complicated when growth conditions are not
strictly controlled and demonstrates the challenges of phenotypic vari-
ance for microalgae. With substantial physiological and metabolic
Table 1
PLS regression values of EMSC2 normalised, cut-down FT-IR spectra for nine algal species
grown in stressed and/or non-stressed conditions.

Species PLS regression slope gradient

Non-stressed media Non-stressed and stressed media

C. concordia 0.1404 0.1742
C. debaryana 0.0551 −0.0005
C. luteoviridis −0.0029 0.1955
C. reinhardtii 0.6814 0.3845
C. vulgaris 0.0109 0.1346
D. intermedius 0.0112 0.0224
D. tertiolecta 0.1432 0.0327
H. tetrachotoma 0.0492 0.0308
P. kessleri 0.0702 0.0778
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changes occurring within the microalgal cell when nutrient availability
differs, including the large induction of carbohydrates (principally as
starch) and lipids (principally as triacylglycerol) (Fig. 1), resulting
FT-IR spectrawill also changemarkedly, and as a result the classification
of an individual species from amixed sample is considerablymore chal-
lenging. Therefore FT-IR spectra alone may be insufficient to separate
such closely-related species unless the environmental conditions used
for growth are carefully controlled.

3.4. Evaluation of supervised statistical analysis for species classification

Supervised data analysis methods have been commonly used for
species identification [29]. As PCA was unable to distinguish between
Fig. 5. PC-DFA scores plots of EMSC2 normalised cut-down FT-IR spectra of nine algal spe-
cies grown for 7 days in non-stressed conditions (a) and a combined plot of the species
grown in non-stressed and stressed conditions (b). Different species are highlighted
using different symbols as described in Fig. 4.
the nine species, the supervised PC-DFA statistical method was exam-
ined to see if better clustering of these species could be achieved. Com-
parison of PC-DFA scores plots with the PCA scores plots shown in Fig. 4
demonstrates that clustering of individual species was much stronger
using PC-DFA (Fig. 5). C. reinhardtii, C. concordia and D. tertiolecta sam-
ples from the non-stressed growth conditions could bemore easily dis-
tinguished from each other and from the other six species samples,
which still overlap (Fig. 5a). However, although individual species clus-
tering from the combined non-stressed and stressed data set was im-
proved considerably by PC-DFA compared to PCA, there was still
considerable overlap between some samples (Fig. 5b). This indicates
that there may be some regions within the spectra that are characteris-
tic for someof the species but not all. It is particularly noticeable that de-
spite the marked differences within C. reinhardtii and D. tertiolecta
spectra under nutrient replete and nutrient starved conditions (Figs. 1
and 3) all samples from each of these species can be tightly grouped
by PC-DFA. The main conclusion from this study is that large stress-
induced variation in metabolic fingerprints in closely related eukaryotic
microalgae restricts the ability of analytical techniques such as FT-IR
spectroscopy to differentiate individual species. However, the PC-DFA
results indicate that further development of supervised methods of
data processing and data analysis, in combination with the generation
of large species reference datasets, may allowmore efficient discrimina-
tion of closely related microalgae from non-controlled environmental
samples in the future.

4. Conclusion

FT-IR spectroscopy is a highly informative and robust tool for the
analysis of microalgae in controlled environments. High phenotypic
plasticity of eukaryotic microalgae in response to environmental condi-
tions such as nutrient limitation results in substantial macromolecular
and metabolic change that is easily recorded within an FT-IR spectrum.
Previous studies have demonstrated the ability of FT-IR spectroscopy to
differentiate and thus identify individual species of cyanobacteria in
controlled conditions. This study suggests that the substantialmetabolic
changes that result fromenvironmental variability restricts the ability of
FT-IR spectroscopy to differentiate closely related eukaryoticmicroalgae
efficiently when they are cultured under variable conditions or taken
from natural systems.
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