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This paper extends the methods of special factorization to treat a class of fac- 
torization problems on the half-line. Factorizations involving integral operators 
with stationary and nonstationary kernels are presented. A simple “time domain” 
connection between the factorization problem and the stable regulator problem in 
Hilbert space is developed. fi? 1988 Academic Press, Inc. 

1. INTRODUCTION 

This paper is concerned with the factorization problem for a class of self- 
adjoint operators on a Hilbert space H with respect to a given chain of 
orthoprojectors C on H. It is assumed that these orthoprojectors can be 
parameterized by a mapping P: [0, co] + C with the properties 

(i) P is onto 

(ii) P(O)=O, P(co)=Z 

(iii) P(t,) < P(t2) if and only if t, <t, 

(iv) P( .) is strongly continuous, i.e., t --* P(t)x is continuous for each 
XEH. 

In this context the factorization problem is posed: Given a self-adjoint 
operator KE B(H), find X, , X_ E B(H) such that 

z+K=(z+X-)(z+X+), (1.1) 

where P(t) X, P(t) = P(t)X+ and P(t) X- P(t) = X- P(t) for all t. 
The basic approach to the factorization problem defined above is due to 

Gohberg and Krein [6]. Definitive results for a large class of compact per- 
turbations of the identity were obtained using projection integral methods. 
In [7] it is shown that these methods are also applicable when the pertur- 
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bation of the identity enjoys a certain bounded variation property with 
respect to the chain C. Applications of the factorization include filtering 
and smoothing of nonstationary processes over a finite interval [9], a 
unifying treatment of methods for solving two-point boundary value 
problems [ 121, solutions to matrix Riccati equations 1181, and inverse 
problems in the spectral theory of differential operators [ 111. 

Milman and Schumitzky [lS] motivated by problems in optimal control 
introduced the notion of an operator dominated by a (finite) measure-the 
conditions for which are similar to the bounded variation condition in [7]. 
The formalism that results from the additional structure induced by the 
dominating measure permits (what is loosely speaking) the “Lebesgue” 
analog of the projection integral. This formalism in turn leads to fac- 
torization theorems, a simple proof of Volterra inversion, and applications 
to operator Riccati equations and problems in control and filtering of 
infinite dimensional systems [ 13-l 51. 

The classical Wiener-Hopf factorization problem can be placed into the 
“factorization with respect to a chain” framework by identifying the Hilbert 
space H with L,(O, co), the projections P(t) with the truncation projections 

P(t)x:s+ o 
i 

-4s) s<t 
s > t, 

and the operator K with an integral operator with difference kernel k(t - s), 
k(.)eL,( - co, co). A complete theory exists for the Wiener-Hopf fac- 
torization in both the scalar and matrix cases [IS]. An important and much 
studied generalization of the Wiener-Hopf problem involves factoring a 
nonnegative matrix or operator-valued function M(R) = @*(A) @(A), where 
@ is the boundary value function of an operator function which is analytic 
in the upper-half plane (see, for example, [2, 4, 6, 173). Applications of the 
Wiener-Hopf factorization and its generalizations include filtering and 
prediction of stationary processes [19], optimal control problems on the 
semi-infinite interval [l, 81, and problems in transport theory [lo]. 

A certain gap exists between the factorization problems that can be 
treated by the methods that are applicable to the Wiener-Hopf type 
problems and those problems that are amenable to projection integral 
methods. One set of methods relies heavily on the time-invariance proper- 
ties of the system while the other set requires the operator to be close to the 
identity in some fashion. In this paper we will narrow this gap somewhat 
by extending the projection integral formalism of [ 151 to include operators 
that are dominated by Legesgue measure on the semi-infinite interval. This 
will enable a unified treatment of the factorization problem for a wide class 
of both nonstationary and time-invariant systems. 

The projection integral approaches in [6, 7, 151, all lead to fac- 
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torizations in which the factors are quasinilpotent. Thus it is seen that these 
ideas do not directly extend to the Wiener-Hopf problems, since the factors 
there cannot be quasinilpotent. However, it will be shown that the 
“Lebesgue” theory in [15] extended to the semi-infinite interval, together 
with the following condition on the operator K in (l.l), 

sup I 
m ((I-P(t))KP(t)~(~dt<co. 

XEH 0 
1.x = 1 

(1.2) 

leads to a viable factorization theory that includes the Wiener-Hopf 
factorization. Importantly, (1.2) is also precisely the condition that enables 
an extension of the control approach in [ 141 to infinite time problems. 

It is interesting to note that in the classical Wiener-Hopf factorization 
[S], the compactness of (Z-P(t)) KP(t)) p roved to be crucial. Condition 
(1.2) represents a trade of compactness for a norm condition on the 
operator K with respect to the chain C. Also, with regards to the control 
applications, when K is causal the family of operators (I- p(t)) KP(t) can 
be interpreted as determining the free response of the system after time t to 
inputs that terminate at time t. In this context (1.2) is a sort of stability 
condition. 

Although one motivation for extending the projection integral methods 
is to present this unified treatment, our primary motivation is rooted in 
applications to optimal control problems on the semi-infinite interval, and 
to develop a theory for these problems that parallels the development in 
[14]. These applications will be developed more fully in a future paper; 
however, a control application is presented in Section 4. We now briefly 
review the organization of the paper. 

The second section introduces the class of operators that serves as the 
focal point of the paper. An example (Example 2.5) is given to demonstrate 
the nontriviality of the class. Section 3 begins with a couple of general 
remarks on causal invertibility (similar to Feintuch [3]), and then the 
main factorization theorem with some extensions are proved. The fourth 
section is devoted to applications. The first application recovers the 
Wiener-Hopf factorization in the matrix case. A couple of straightforward 
extensions involving operator valued kernels are also presented. A second 
application is to the particular factorization problem that arises in the 
infinite time regulator problem for infinite-dimensional systems. The feed- 
back solution to the regulator problem is then derived using the methods 
of the paper. 
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2. BACKGROUND AND PRELIMINARY RESULTS 

In this section we introduce the class of operators that will be the focal 
point of the paper. We will also discuss some of its elementary properties. 
Before doing so, it is necessary to set some notations and groundwork for 
further discussion. 

Let C denote the class of Bore1 subsets of [O, co) and let 3. denote 
Lebesgue measure. For each s < 00, the measure i, is defined by n,(u) = 
n(w n (0, s)), o EC. Now let H be a separable Hilbert space and let 
E: Z -+ B(H) denote a resolution of the identity. We will use the notations 
P’= E( [0, t]) and P, = I- P’. Furthermore, we assume that the projec- 
tions P’ are strongly continuous, i.e., P”x -+ P’x whenever t, + t, and we 
adopt the conventions that P” = I and P” = 0. Given two Hilbert spaces 
H, and H, with resolutions of the identity E, and E,, respectively, a map 
TE B(H,, H,) is said to be causal if Pi TP; = Pi T and memoryless if 
E,(o) T= TE,(o) for all o E C. The subspace of memoryless maps in 
B(H,, H,) will be denoted M(H, , H2) in the sequel. 

Let H and E be defined as in the paragraph above. A map TE B(H) is 
said to be dominated by I,s (written T< A,) if there exists a constant LY such 
that (E(w)T( <LX A(m) f or all o E 2. We also define Lis c B(H) by 
LAS= {T: T< A,), s < co. With each s d co we associate with H the Hilbert 
space H,y= L2((0, s), H) and resolution of the identity E, [&w)x](t)= 
X(o)(t)x(t). Then if T<1 we can define the mapping F(T)EM(H,, H) by 
its action on simple functions in H,7 (cf. [IS]), 

F(T)x= f E(q) TX,; x(t)= i X(wi)(t)xi. (2.1) 
r=l i= I 

In addition to the mapping above we will have occasion to deal with 
several other mappings on an between the spaces H and H,. For simplicity 
we will gather some of these here: For s < co define G- E B(H, H,) by 

[G+x](t) = P’x 

[G-x](t) = P,x. 
(2.2) 

For KE E B(H) define the mappings 

KE M(H,); [Rx](t) = Kx(t), 0dSGCf.l (2.3) 

P E B(H); K” = p”KP”, O~S~CC (2.4) 

h(K) E 4H, C((O, ~0 1, WI; h(K)x: t -+ P,KP’x (2.5) 

a(K) E WH,); a(K)x: t + (I+ P,KP,)-‘x(t) (when defined). (2.6) 
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The map defined in (2.5) provides the link between the factorization and 
control theory developed for operators dominated by a finite measure in 
114, 153 and the extension which is developed in the present paper. The 
following two results from [15] will be called upon repeatedly in the 
sequel. 

THEOREM 2.1. Suppose K, K* < A, for s < 00 and a(k) E M( H,). Then 
I+ K has the unique (right) factorization 

Z+K=(I+X-)(1+X+) 

with X, respectively causal and anticausal and X, , X: <A,. Furthermore 
W- = (I + X- )-’ - I has the representation 

W_ = -F(K) a(K)G-. 

THEOREM 2.2. If s < CO and X-C Iz, with X causal (anticausal) then X is 
quasinilpotent. 

If K < A then clearly K” < A, for each s < ~13. It follows from results in 
[ 151 that F( K’)G’ are projections on L”’ such that 

(i) F( K”) G * is causal (anticausal) 

(ii) K” = F(K”)G+ + F(K’)G- (2.7) 
(iii) F(K”)G’ <I,. 

Now define the subset S c B(H), 

S= (K: K<I and lim F(K”)G’xexistsforallxEH}, (2.8) 
s-rm 

and the mapping p + : S -+ B(H) by 

p+(K)x = lim F(K) G+x. 
s-w 

We note that when KE S, p+(K) E B(H) by virtue of the Banach-Steinhaus 
theorem, and that p+(K) is causal since it is the strong limit of causal 
maps. For each K E S we also define p- (K) = I - p’(K). 

With this bit of background we define the class R as 

R=(KES:K*ES, and h(K),h(K*)EB(H,H,)}. (2.9) 

The following proposition collects some of the elementary properties of R. 

PROPOSITION 2.3. The following hold: 

(i) R is a vector space 
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(ii) If KE R, then p (K) is anticausal 

(iii) pk arcprqjections on R andR=p+(R)@p-(R) 

ProoJ (i) The proof of this is straightforward and is omitted. 

(ii) Using (2.7) we have for each S-C a, p (K’) =K’- p+(K’) = 
F(K”)G-. Thus p-(R) is anticausal and consequently so is p (K), since it 
is the strong limit of pm~ (K”) as s -+ co. 

(iii) Noting that we can write each KER as K=p+(K)+p-(K), 
using (i) it suffices to show that p ’ is a projection on R. Since pm (K) is 
anticausal, 

P,p+(K)P’= P,KP’ for all t. 

Hence, h(p+(K)), h([p+(K)]*)EB(H, H,). It remains then to show that 
p+(K), [p+(K)]*<I. So assume (E(o)K( <aJ(w) for all ~EC. Now 
fix o E C and choose E > 0. Then we can find an x E H with (xl= 1 such 
that IE(o)p+(K)( < [E(o) p+(K)x( +s/3. Also there exists t such that $2 t 
implies 

And for a suitably fine partition of [0, s], say { fi}~,o, 

n- 1 

E(o) p + (K”)x - E(o) 1 E(wJ K”P”x < E/3 Co= [Iti t,+ll). 
i=O 

But, 

Thus, (E(w)p+(K)/<c+a,/‘$w). We can verify that [p+(K)]*<1 by 
using essentially the same argument above together with the identity 
CP+W)I*=P-W*). I 

The proposition above states that R is a vector space. The following 
result shows that right (left) multiplication in R is defined for causal 
(anticausal) elements. 

PROPOSITION 2.4. Let X, KE R with X causal. Then KXE R. Also ~j- X is 
anticausal, then XK E R. 

Proof: Assume that X is causal. It is trivial that KX, X*K* < A. Next 
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we show h(KX), h(X*K*)E B(H, H,). To see this note for each t the 
identities, 

P,KXP’= P,KP’X+ P,KP,XP’, 

P I X*K*P’= P I X*P I K*P’. 

From these it follows readily that Ih(KX))J < [Ih( + 2lK( (h(K)1 Ih( 
+ IK121h(X)12]“2 and h(X*K*),< 1x1 Ih(K It remains to verify that KX, 
X*K* E S (cf. (2.8)). This can be proved using a result in [13, Lemma 4.11. 
The extension of this result we use reads as: If A, BE R with A anticausal, 
then p + (AB) = F(A) h(B). Thus we obtain 

p+(KX)= p+(K)X+F(p-WI) h(X), 

and 

p+(X*K*) =F(X*) h(K*). 

Thus the result is proved for X causal. We note that the anticausal case 
also been argued (i.e., X* is anticausal. 1 

The following example describes a class of operators satisfying the 
condition (2.9). This example will be referred to later in Section 4. 

EXAMPLE 2.5. Let Ho denote a separable Hilbert space and let 
H=L,((O, co), H,) with the resolution of the identity E, [E(o)x](t)= 
X(w)(t) x(t). Define KE B(H) by 

KX: t+ 
s 

O” K(t, s) x(s) ds, 
0 

where K(t, s) E B(H,) for each t, s, K(t, s)u is jointly measurable for each 
UEK,, and IK(t,s)l <k(t-s), where k~Lr(-co, Go)nL,(-oo, CO). 
Further assume that I t( 1’2. Ik(r)l EL~( -00, CO). We claim that under these 
assumptions KE. R. First we verify that K, K* E S. Let XE H with 1x1 = 1. 
Then for a Bore1 set CO with finite measure, 

where Ik(, denotes the &-norm. Since IK*(t, s)l < Ik(t-s)l, the same 



134 MARK H. MILMAN 

bound holds for IE(o)K*(. Thus K, K* < j.. Now it is straightforward to 
verify that 

p+(F)x: t -+ 
&Kko)x(a)do t<s * 

t d s, 

and that p+(E) converges strongly to the operator p+(K), 

p+(K)x:t+j’K(t,a)x(o)do. 
0 

The analogous result is readily obtained for K*. Therefore we have shown 
that K E S. It remains to demonstrate that h(K), h(K*) E B(H, H,). To this 
end note that 

I[h(K)x](t)12<j= j j;k(r-r)r(r)d~~~dr 
I 

< k(7-s)ds j’k(r-s)l~(s)/~ds 
0 

And after defining 

y(t,s)= j;k(r-s)ds, 

an interchange in the order of integration yields 

I[h(K)xl(t)12~j’z(t,s)l~(s)lzds, 
0 

(2.11) 

where 

z(t, s) = j= ~(7 -s) k(7 -s) d7. 
I 

(2.12) 

Fubini’s theorem now implies that h(K) E B(H, H,) if the function d(s), 

4(s) = jm t( t, s) dr 
s 

is uniformily bounded on [O, co), since (h(K)~(~<j~ Ix(s)[’ $(s) ds. NOW 
we write 

4(s) = jm 5’ y(t, 7) dt k(7 -3) d7, 
9 s 

(2.13) 
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and define the function 

K(O=jyJ)du. 

After a little manipulation we have 

Hence, combining this with (2.13) we obtain, 

O<#(s)<jE (S-T)K(T)k(r-S)dT+Jrn iC’K(5)dS}k(r-J)d~. 
s s 

Since the first integral above is negative, 

Defining g(t) = (1 + t’12) k(t), t >/ 0, it follows that 

(2.14) 

A similar argument establishes Zr(K*) E B(ZZ, H,). Thus KE R. 

The applications of Section 4 will rely on this example as well as the 
estimate (2.14). 

3. MAIN RESULTS 

In this section we prove our main factorization results concerning 
operators of the form Z + K, KE R. Before doing so, it is necessary to 
establish some preliminary propositions. 
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The first few statements concern some general properties of causal inver- 
tibility. 

PROPOSITION 3.1. Suppose XE B(H) is causal (anticausal) and 
(I + P’XP’) is invertible for each t E [0, cx, ). Then lf I + X is invertible, 

(i) W= (Z+ X) -’ -I is causal (anticausal), 

(ii) (I+ Z”XP’)-’ -I= P’WZ” for each t, 

(iii) (I+ P,XP,) -’ -I= P, WP, for each t. 

Proof: We shall prove the proposition for the causal case. The 
anticausal case follows by taking adjoints. 

(i) The proof of this is essentially contained in [ 151. 

(ii) Noting that W satisfies the identities 

w+x+xw=o 

and 

w+x+ wx=o, 

(3.1) 

(3.2) 

for each t, we then have 

P’ WP’ + P’XP’ + P’XWP’ = 0, 

P’ WP’ + P’XP’ + P’ WXP’ = 0. 

And since X and W are both causal, 

P’ WP’ + P’ WP’ + P’XP’ WP’ = 0, 

P’ WP’ + P’XP’ + P’ WP’XP’ = 0. 

Adding the identity to the above, 

(I+ P’xP’)(z+ P’WP’) = (I+ P’WP’)(Z+ P’XPI) = I. 

Thus, (ii) holds. 

(iii) This is proved in an analogous manner using P, WP, = WP, and 
P,XP, = XP, for causal X and W. 1 

Remarks. 1. The proof of conclusions (ii) and (iii) of the proposition 
rely only on (i). Thus (ii) and (iii) are valid under the hypotheses that 
Z+ X is causal (anticausal) and causally (anticausally) invertible. Also note 
that these hypotheses imply sup)(Z+ P’XP’)-‘( < co. The converse of this 



FACTORIZATION ON THE HALF-LINE 137 

statement is also true, i.e., if sup)(Z+ P’XP)‘I -’ < CO, then I+ X is causally 
invertible ( [ 3 ] ). 

2. If it is assumed that XE R, the following argument shows that 
WE R: First we note that W, W* < A by using the resolvent identities 
(3.1 b(3.2) and the ideal properties of LA. Now (3.1) implies 

P, WP’= -P,XP’- P,XWP’ 

= -P,XP’ - P,XP’WP’- PJP, WP’. 

Thus, 

(I+ P,XP,) P, WP’= -PIxP’(z+ W), 

so that using (iii) of the proposition, 

P, WP’= -(I+ P, WP,) P,XP’(Z+ W). 

And consequently, 

sup JP, WP’ol’dt< (1 +I WI}’ sup IP,XP’u12 dt 
Iv(=l s IDI = I s 

< co. 

The proof of the main result is based on certain limiting arguments using 
Theorem 2.1. The following two lemmas are the main tools of the 
arguments. The first result concerns a convergence property of the operator 
F( .). This result is essentially an “infinite-time” version of a result in [ 131. 

LEMMA 3.2. Suppose K, K,, E R, n = 1,2 ,... . Zf K, --t K strongly and there 
exists a constant c1 such that (E(o)K,,j < CQ’?(CO) for all n, CO, then 
F( K,,) + F(K) strongly. 

Proof. The proof is essentially the same as the one in [13], and is 
omitted. 

The next lemma concerns analogous convergence properties of the 
operators a( .) and h( -) (cf. (2.5)-(2.6)). 

LEMMA 3.3. Suppose KER and sup,,,((Z+ P,K”P,)-‘( < 00. Then 

(i) a(R) + a(K) strongly, 

(ii) h( K”) --t h(K) strongly. 

Proof: (i) Fix x E H. Then 

[a(K-K”)x](t)= [(Z+P,KP,))‘x(t)-(Z+P,K”P,))‘x(t)], 
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so that 

Ja(K-K’)x12<j I(z+P,K”P,)-‘P,(K’-K)P,(z+P,KP,) -‘x(t)l’dt 

da2 I(K”-K)P,(Z+P,KP,)-‘x(t)(‘dt, 
s 

where tl = SUP,,~ I(Z + P,K”P,) -‘I. Note that the integrand above is 
bounded by [2x 14 Ix(t)l12, which is integrable. Also for a.e. t, 
I(R-K)P,(Z+P,KP,))‘x(t)l +O as s+ UJ, since KS+ K strongly. The 
result follows from the dominated convergence theorem. 

(ii) Since, 

[h(K- K”)x](t) = 
P, KP’x t<s 

P, KP’x t > s, 

it follows that 

J~(K-K”)x(~=~~JP~KP’x~~~~+~= (P,KP’x12dz. 
0 s 

For t <s, I P,KP’xl < (P,KP’xl so the first integrand is bounded by 
I P,KP’I’ for all s. And since for each t, IP,KP’x) + 0 as s + co, by 
dominated convergence the first integral tends to zero. The second integral 
trivially tends to zero as s + co. The lemma is proved. m 

With these preliminary results established we can now prove our major 
result on factorization in R. 

THEOREM 3.4. Assume KE R and I+ K > 0 with I+ K invertible. Then 
there exists a unique causal XE R with I+ X causally invertible such that 

(I+ K) = (I+ X*)(Z+ X). (3.3) 

Proof: (a) We first prove the existence of a causal X such that (3.3) 
holds. Since I+ K is invertible and I+ K > 0 it folows that for some E > 0, 
inf a(K) = - 1 + E. Thus for any s > 0, 

-i+~=,i:=f~ (Kx,x)Q inf (Kx,x)=info(Z0. 
XXEH .!2 %I 

Consequently, I+ K” > 0 for all s. Furthermore, since K < II it is evident 
that K” < /2,. Theorem 2.1 now implies the existence of a unique causal 
X, E LASn L*“$ such that 

z+K”=(z+X,*)(z+X,). (3.4) 
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We claim that X, = ZP+ - F(K”) a(F) h(F). To see this we first use (3.4) to 
obtain 

X,=K”, +F(W,*)i?G+, (3.5) 

where W, = (I + X,) -’ - I. Next we compute F( W,*)x for x E H, simple; 
say x(t) = C~(o,)(t)x,. Using Theorem 2.1, 

F( W,F)x = CE(o;) w,“x, 

= -ZE(oJ[F(K”) a(K”)G-lx, 

= -F(K”){Z&) a(F) G-x,}. (3.6) 

Define the mapping x’ E M( H, ), 

[xSx](t) = [I+ PJPP,] -l P,x(t). 

It is evident from (3.6) that F( W,*) and - F(K”)f agree on the simple 
functions in H,. Hence, by continuity F(c) = -F(K”)x“. Therefore we 
can write (3.5) as 

X, = K;- - F(p) f RG +. 

But, 

j@G+x: t --) (I+ P,K”P,)-’ P,K”P’x. 

And indeed, 

X, = ZP, - F(K”) a(ZC) h(p). (3.7) 

Since KE R, Lemmas 3.2 and 3.3 allow us to take a strong limit (as s + 00) 
above. Then taking weak limits in (3.4) we obtain 

Z+K=(Z+X*)(Z+X); X=K+ -F(K)a(K)h(K). (3.8) 

Also note that X is causal since it is the strong limit of the causal operators 
x,. 

(b) Next we establish the invertibility of Z+ X. Using (3.4) we write 

z+ w,* = (I+ X,)(Z+ zc)-L. (3.9) 

Note that 1X,( and ((Z+ KS) -I 1 are bounded independently of s. Thus the 
right side above converges strongly as s + co, and consequently W,* 
converges strongly to an anticausal operator, say W*. Thus we obtain 

(I+ W*)(Z+ K) = (I+ X). (3.10) 
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Then multiplying the above by Z+X* and using the factorization (3.8) we 
have the identities 

and 

(I$ x*)(z+ w*) = I (3.11) 

(I+ w)(z+ X) = I. (3.12) 

Now let o be a Bore1 subset with finite Lebesgue measure. From the 
definition of X (cf. (3.8)) it follows 

SUP /E(o) xd G SW lE(u) K, 4 + IF(K) a(K)/ sup IE(o) h(K)vj. 
II’) = I JUJ = I (1’) = I 

But, 

sup (E(o) h(K)o12<!” (P,KP’12 dt 
Ic.1 = 1 u) 

<A(w) IK12. 

Thus XC 1. Defining R = (I+ K) ml -I, we obtain from (3.10) 

W*=X+R+XR. 

Now since R < A, it follows that W* < 1. Now suppose there exists v E H 
such that (I+ W)v =O. Then for all SE (0, co), P(Z+ W)u = 0. Hence, 
(I+ P”WP”) P”v = 0. But by Theorem 2.2, P”WP” is quasinilpotent. Thus 
v = 0 and (I+ W) is l-l. From (3.12) it then follows that I+ X is invertible. 

(c) Now we show XE R. We have already established that XC A and 
W* < 1. But then it follows X* < 1. Finally, from (3.8) we have 

P,KP’= P,XP,+ P,X*XP’ 

= P,XP’ + P,x*P,XP’ 

= (I+ P,x*P,) P,XP’. 

Then, 

and 

P,XP’= (I+ P,X*P,)-’ P,KP’ 

sup s (P,XP’vl” d c sup (P,KP’u(‘, 
Ju( = 1 (u/ = I 
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where c = sup)(Z+ P,X*P,)-I(* < cc by the first remark following 
Proposition 3.1. 

(d) To prove uniqueness first recall that R = (I+ K)-’ - I< 1. Now 
let X,, i = 1,2, be two solutions of the factorization problem. Then by what 
we have aheady proved 

I+ R= (I+ WJ(Z+ WF), i= 1, 2, 

where Wi = (I+ Xi) -’ - ZE R. Thus for each s, 

I+ P”RP”= (Z+P”W,P’)(Z+ P”W:p”). 

Since P”RP’<i,, it follows from the uniqueness of the (left) factorization 
in L&n L*& (see [15]) that P”W1P”=P”W2P” for all s. Hence, 
x,=x,. m 

The result above requires the operator to be self-adjoint. Although we 
have not topologized the space R, in the nonself-adjoint case we may 
expect some type of “small-norm” result to hold. We have the following. 

THEOREM 3.5. Let K E R. Then there exists 6 > 0 such that for any p E C 
with Ip[ < 6, I+ pK has the unique ,factorization in R, 

z+M= (I+ x-b))(Z+x+(~)) 

with (I+ X,(p)) causally (anticasually) invertible. Furthermore, the map- 
pings p + X + (p) are analytic with respect to the B(H) topology. 

Proof: First note that if /CL]< l/lKl, there exists a constant c such that 
sup((Z+ pP,KsP,)-‘1 CC. Theorem 2.1 then yields the factorization 

z+puK” = (I+ x-L% s))(Z+ X+(/i, s)). (3.13) 

From the same theorem, W- (k, s) = (I+ X- (p, s)))’ - Z has the represen- 
tation 

W-(p, s) = -F(pK”) a(pK”)G-. 

Arguing as before, X+(p, s) --) X+(p) strongly where 

X+(p)=gCK+ -F(K)44hW)~ 

and 

(3.14) 

X+(p, s) = p(K”, - FW) a(pW hW9). (3.15) 
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Next note that 
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Thus sup]h(~)j < co. Using this and (3.14)-(3.15), it follows that for 1~1 
sufficiently small we obtain IX+(p)\ < I and supJX+(p, s)/ < 1. Hence, 

(~+X+(PL, s))-’ -+ v+~+(P))-’ 

strongly as s + co. Consequently by (3.13), I+ X- (p, s) converges strongly 
to the (necessarily anticausal) operator (I+ /.X)(Z+ X+(p))-‘. The one- 
sided ideal properties of the LA-spaces (see [ 15]), yield X&(p) < g. Now for 
any bounded Bore1 subset w  c [0, co), 

Wo) = X-kc) E(w) + X(P) X+(p) E(o) + X+(p) E(w). (3.16) 

Thus, 

J-+(P) E(w) = (I+ X-(P))- CK- X-(P)1 E(o). 

Let WP (p) = (I+ K (cl))-’ - I. Then applying p + to the above and using 
Proposition 2.3 we obtain 

Therefore X*,(p) <A. And now it routinely follows from (3.16) that 
XY (p) < ,I. The remainder of the argument to show that X,(p) E R and are 
unique follows in the same manner as in the proof of Theorem 3.4. Now 
since p -+ a(pK) is analytic, noting from (3.14) that 

we also have that p -+ X+(p) is analytic. Finally, p -+ X-(p) is analytic 
since X-(n) = (I+ pK)(Z+ X+(p))-‘. 1 

This small norm result, together with Proposition 2.4, yields the 
following corollary. 

COROLLARY 3.6. Suppose A E R and I+ A has the factorization 

Z+A=(Z+X_)(Z+X+) 



FACTORIZATION ON THE HALF-LINE 143 

with X, E R respectively causal and anticausal. Then given any KE R, for 
p E C with sufficiently small modulus, I + A + pK has the factorization 

I+ A + pK= (I+ X-(p))(Z+ X+(p)) 

with (I+ X, (,u)) causally (anticausally) invertible. Furthermore, the map- 
pings p + X+(p) are analytic. - 

Proof. Write 

I+A+pK=(Z+K-)(I+p(Z+ W-)K(I+ W+)}(Z+X+), 

where W, = (I+ X,)-l -I. Proposition 2.4 implies (I+ W-) K(Z+ W,) 
E R. The theorem then implies that we can factor Z+ p(I+ W- ) K(Z+ W, ) 
for sufficiently small 1~1. And the result follows upon multiplication and 
Proposition 2.4. 1 

This result will be useful in the next section when we apply the theory to 
the classical Wiener-Hopf factorization problem. 

4. APPLICATIONS 

In this section we will apply the preceding theory to two well-known 
examples in which the operator K is an integral operator with difference 
kernel (possibly operator-valued). In the first example, we derive the 
classical Wiener-Hopf factorization using the “projection-integra1” 
methods of the preceding section. And in the second example, we derive the 
factorization for what is essentially the infinite-time version of a control 
problem considered in [ 151. 

In the following, C” xn will denote the n x n complex valued matrices and 
x will denote the class of functions 

~={k~L,((-oo,~),C”““):(l+Jt~“~)k(t)~:L,((-oo,co),C”~“)}. 

The norm on x is defined 

(kJ =Im Ilk(t) (l+ lt(1’2) k(t)} dt. 
-02 

The Wiener-Hopf factorization problem can be placed into the 
framework we have developed by identifying: 

(i) the underlying Hilbert space H with L,((O, co), Cm), 

(ii) the resolution of the identity E with multiplication by the 
characteristic function, i.e., [E(o)x](t) = x(o) x(t), and 

409/131/l-10 
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(iii) the operator K with the integral operator on H, 

Kx:-r 
s 

*k(t-s) X(S)dS,k(.)EL,((-oo, cc)C”““). (4.1) 
0 

The classical result [S] states that if I+ K>O then there exists a unique 
function x( .) E L,(( cc, co), C” x “) vanishing on ( - co, 0) such that 

Z+K=(Z+X*)(Z+X), (4.2) 

where X is the integral operator with kernel x(t -s). Now if the matrix 
function k of (4.1) is an element of X, then Example 2.5 and Theorem 3.4 
immediately imply the existence of a factorization of the type (4.2). 
However, the particular form of the factor (i.e., integral operator with 
difference kernel) is clearly not evident. Since the factor X has an explicit 
representation (cf. 3.8)), the first order of business is to give the expressions 
comprising this representation a more concrete meaning in the present 
context. This is the concern of the next two lemmas. 

LEMMA 4.1. Assume k E X and let K represent the associated integral 
operator on H (cf: (4.1)). Then given XE H, = L2((0, co), H), 

F(K)x: t + s”’ k(t - a) x(t)(a) do a.e. 
0 

Proof: This proof follows along identical lines as one given in [13] for 
a similar proposition. n 

We note that each g( .) E X induces a mapping 2 E B(H,) by 

CDl(t) = Wth (4.3) 

where G E B(H) is the integral operator 

Gv:t+jm g(t-s)v(s)ds. 
0 

LEMMA 4.2. Let k and K be as in the lemma above and let g( .)E%. 
Define 

v(t) = joa k(t - s) g(s) ds, -ccl<tt<, (4.4) 
f 

and let V denote the integral operator with kernel v( t - s). Then v( .) E X and 
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F(V) = F(K)P-g, where g is the mapping induced by g( .) as in (4.3) and 
P- E B(H,) is defined as [P-x](t) = P,x(t). 

Proof Let x E H,. From Lemma 4.1 we have the representation 

[F(K)P- gx](t)=sm k(t-s)[P-@](t)(s) ds. (4.5) 
0 

From the definitions of g and P ~, 

[P-2x](t): s * 1 IBI( 0 
9 

s> t, 
s < t, 

= 12 g(s--)x(t)(u)du, sat, 
0, s < t. 

This, together with Fubini’s theorem in (4.4) gives 

CFW) P-i3l(t) = jam { jy k(t - s) g(s - u) ds x(t)(u) du. (4.6) 

Now since 

v(t-u)=Jm k(t-s) g(s-u)ds, 
f 

Lemma 4.1 implies that the right side of (4.6) is F(V). It is straightforward 
to verify that u( .) E X. m 

THEOREM 4.3 (Wiener-Hopf). Let the operator K be defined as in (4.1) 
and assume I + K > 0. Then there exists a unique x( .) E L,( (0, co), c” x “) 
such that 

z+ K= (I+ x*)(1+ X), 

where the operator X is defined, 

i 

f 
Xz4:t-t x(t - s) u(s) ds. 

0 

Furthermore, I-t X is causally invertible and (I + X)-l -Z is an integral 
operator with L, difference kernel w( t - s). 

Proof First we assume k( . ) E X. From Theorem 3.4 we have for each 
P E [O, 1] a factorization of the operator I + pK. Thus Corollary 3.6 implies 
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the existence of an open set 0 c C such that [0, I] c 0 and for each E. E 0, 
I+ IK has the factorization, say 

I+ %K= (I+ x*(n))(z+ X(i)), % E 0. (4.7) 

Furthermore, for ]A( sufficiently small (say /;1( <S’) from Theorem 3.5 

A-(%) = AK, + A2F(K) a(lK) h(K). 

Now for YE H, (cf. Lemma 4.1), a(iK)y: t -+ (Z+AP,KP,)--‘y(t). Thus 
for (A( < 6, where 6 = min{S’, lklX}, the following expansion is valid, 

u(lK)h(K)=[~ori”(^K)jh(K), 

where fi(lK) E B(H,), ii I’: t + P,AKy(t). Hence we may write 

X(A) = AK, + A2 

Define the sequence of functions (ui( .)}Pu,, c X by the recursion 

u,_,(t-s) k(s)ds, (4.8) 

with oo(t) =/z(t). Also, let V,, denote the integral operator with kernel 
o,(t - s). Noting that F(K) cS”(ilK) = U’(K) Z-‘(M) P-z (cf. Lemma 4.2), 
it follows that F(K) ii” = F( I’,,). Since (AI < 6, from (4.8) we have 

where the convergence is understood in the sense of the Z-metric. If we 
define the operator V with kernel u(t - s), the L,-convergence implies 

in the operator norm, and the &convergence implies the existence of a 
constant a such that 

E(w) f V, <am 
II=0 

for all m. Thus Lemma 3.2 applies and we obtain the representation 

X(I) = AK+ + A’f’( V) h(K). 
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Defining g E X by 

f;” u(t-s)k(s)ds, t>O, 
t < 0, 

it follows from Lemma 4.2 that X(n) is an integral operator with kernel 
x,(t -s), where x1( .) E X, 

xi.(t) = 
i 

Mt) + J’gW, tao, 
o 

> t < 0. 

It is evident that a suitable restriction of the magnitude of (iI results in 
Ixj,( .)IJy 4 1. Thus there exists unique wI E X such that WA(t) = 0 for t < 0 
and 

wi(t)+xl(t)+j’xi(t--S)w,Js)ds=O. 
0 

(4.9) 

It is also clear from (4.9) that the mapping I+ W’(J), where 

W(L)u: t-j; w,(t-s)u(s)ds 

is the inverse of the mapping (1+X(I)). 
Now returning to the factorization (4.7) we have (for ),I( such that (4.9) 

holds), 

X(A) = AK, + AF( w*(n)) h(K). 

Thus from Lemma 4.1, 

xi(t) = Ak(t) + i jtm w:(s - t) k(s) ds, 

Or equivalently, 

x2(.) = w+ w*(n)) k+(.), 

t 20. 

where k+(t) = x[O, co](t) k(t). Applying (I+ W(1)) to the above results in 

(I+ w(A.)) x,(.) = (I+ w(A))(Z+ w*(A)) Ak+( .). 

Thus noting (4.7), 

(I+ w(A))x,( -) = (I+ AK)-‘lk+( .). 
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And noting (4.9), 
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w;.( ) = (I + AK) ’ ik + ( .). (4.10) 

Since Z+M is invertible on L,((O, co), C”) (see [S]), it follows that the 
right side of the above defines an analytic function on 0 with values in 
L,((O, co), CYx”) so we may assume I+‘;( .) is defined for 2~ 0. Now define 
the analytic L,((O, co), C”““)-valued function 

i?,(t) = ik(t) + i j-* w:(s- t) k(s) ds. 
I 

(4.11) 

It is evident that the B(H)-valued operator function on 0, f(‘cn) defined 

is also analytic. From Corollary 3.6 we have that 1 -+X(n) (in the fac- 
torization (4.7)) is analytic. Furthermore for (I1 sufficiently smali we have 
already shown that T(A) = X(J). Thus %(A) = X(J) in 0. In particular, 
T(l)=X(l). 

To remove the restriction that kEX, first note that X is dense in 
L,(( - co, co), C” x “). Therefore, there exists a sequence (k,} c S” such 
that k, -+ k (in the L,-topology) and the associated operators I+ K,, have 
the factorizations 

Z+K,=(Z+X,*)(Z+X*). (4.13) 

Now it is evident that (4.10)-(4.12) depend continuously on k( .) (with 
respect to the L,-topology). Thus it follows that the choice 
x( .)E L,((O, m), Cnx”) for the kernel of the operator X defined by 

n(r)=k(t)+j,m w*(s - t) k(s) ds, 

where 

w(.)=(Z+K)-l k+(.) 

leads to the factorization 

in the general case. 

Z+K=(Z+X*)(Z+X) (4.14) 

Finally we show that Z+ X is invertible. Using (4.13) and the fact that 
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X, + X in Z?(H), the invertibility argument of the proof of Theorem 3.4 
leads to the identity 

(I+ w)(z+ X) = z, (4.15) 

where W is the causal map, W= (I+ K)-‘(I+ X*)-Z (take limits in 
(4.13)). Thus it suffices to show that (I+ W) is one-to-one. Assume there 
exists u E H such that (I+ W)u = 0. Then for any s > 0 it follows from the 
causality of W that (I + P” WF) P”v = 0. But (4.15) implies for any s > 0, 

But P”XP” is a Volterra operator with L,-kernel on the interval [0, s], and 
P” + P”XP” is therefore invertible on P”H for any s. Hence 2) = 0. The 
theorem is completely proved. 1 

Before we move on to the next example, some remarks concerning a 
couple of easy extensions of this proof will be given. 

The first extension is to replace the underlying finite dimensional space 
c” with any separable Hilbert space H, and regard K as an integral 
operator on the space L,((O, co), Ho) with strongly measurable kernel 
k(t) E B( H,) satisfying 

s m Ik(t)l Is(&) dt < 1. -cc (4.16) 

This assumption is sufficient to guarantee that (4.10) holds in some 
neighborhood of [0, 11. The only place in the proof of the theorem the 
finite dimensionality of C” was invoked was to use a result of Gohberg and 
Krein [S] to obtain (4.11) from (4.10). Thus (4.16) is enough to allow the 
proof to be valid in the infinite dimensional setting as well. Similar results 
appear in [4, lo], for example, when k(t) is compact-valued and Ho is 
relaxed to a Banach space. Gohberg’s [4] results are most comprehensive 
here. 

If we assume k(t) to be compact valued and /k(t)1 to satisfy the 
integrability conditions defining the space x as in the beginning of this 
section, the general theory of Section 3 can be used to remove the con- 
dition (4.16) and obtain a variation of Theorem 4.3. So now let P, be a 
sequence of finite-dimensional projections on H, converging strongly to the 
identity, and define for each N, kN(t) = P,k(t) P, and let K, denote the 
operator with difference kernel kN( t - s). Then k, + k a.e. in the uniform 
topology, and by dominated convergence 

lim a, 
N 5 {Ike-k(t)12+(1 + lt11’2) (k,(t)-k(t)(} dt=O. 

--a, 
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Example 2.5 and Theorem 3.4 imply It K and I+ K, have factorizations 

I+K=(I+X*)(I+X), (I+ K/v) = (I+ X;)(Z+ X,v) 

with (I+ A’,) causal and causally invertible. We claim that X,V + X in the 
uniform topology. To see this we return to (3.8) and obtain 

IX, - 4 d IW- K,v) 4K) 4K)I + lW,)l b(K) WO -4KN) WL)I. 

(4.17) 

Let XE&((O, cc), H,) with 1x1 = 1. From Lemma 4.1 we have 

lF(K- K,v) a(K) W)xl 

< (k,(t-s))-k(t-s))[a(K)h(K)x](t)(s)ds 2dt 

d IkN(t-s)-k(t-s)l’dsj* I[a(K)h(K)x](t)(o)J2da 
0 

But for each t, 

lim 
I 

m (k,(t-s)-k(t-s)12ds=0. 
N o 

So by dominated convergence it follows that the first term in (4.17) tends 
to zero, since 

m m 
s s ([a(K) /z(K)x](t)(a)12 da dt = la(K) h(K)x(’ < a. 
0 0 

To show that the second term in (4.17) also tends to zero, we note that 
since K, + K uniformly, a(K,) + a(K) uniformly and h( KN) + h(K) 
uniformly (cf. (2.14)). Thus 

“,” IJTKN)l la(K) h(K) -~KN) h(KN)l =O 

follows from the triangle inequality and the boundedness of (IF( 1. 
Hence, we have X,,, + X uniformly. Now note that since P,Ho is finite 
dimensional, the theorem implies that X, is an integral operator with 
(matrix) kernel xN( t - s). Therefore, 

WNI = SUP IaN(n 
--m<l<‘X 
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where 

iN(L) = 1,2 x,.,(t) e”’ dt 

and the norm is taken as the operator (matrix) norm over P,ZZ,. Note 
also that iN(d) can be continued analytically in the upper half plane n+ . 
Now since X,-+X uniformly, it follows that 1, converges in the Hardy 
space Hm(n+, B(H,)) of bounded analytic B(H,)-valued functions on ZZ, 
to an element f such that for any u E L,((O, co), H,), 

z&(n) = i-(L) C(l), 

where h denotes the Fourier transform. Thus, denoting 

k(A) = Ia k(t) eiAr, 
-m 

we obtain the factorization 

z+ /C(A) = (I+ a*(n))(r+ i(l)) 

with 1~ H”(Z7+, B(H,)). Furthermore, noting that the argument above 
also applies to (I + X) -’ - Z, we also have 

(z+i(i))-l -I= G(A) 

with D E H”(ZZ+ , B( H,)). More complete results along these lines can be 
found in [4, 16, 171. 

Our next example concerns the factorization of an operator that arises in 
connection with the infinite time horizon linear regulator problem. The 
causal factor here has a particularly nice representation as well shall see. 

Let H, and H, denote separable Hilbert spaces and let U= 
&((O, co), H,) and X= L,((O, cc), H,). We shall consider the factorization 
of the operator Z + T* T E B( Cl), where T E B( U, X), 

Tu: t+Qf’S(t-o)Bu(o)do, 
0 

(4.18) 

BE B(H,, H,), Q E B(H,), and S( -) is an exponentially stable C,, 
semigroup on H, (i.e., there exist a, fl> 0 such that IS( t)l < ae-@). It 
follows routinely from (4.18) that T*T satisfies the hypotheses of 
Example 2.5. Hence, Theorem 3.4 applies and we have the factorization 

I+ T*T= (Z+ V*)(Z+ V). (4.19) 
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We will show that there exists KE B(H,, H,) such that V has the represen- 
tation 

Vu:t+ KS(t - a) Bu(o) do. (4.20) 

Introducing the notation W= (Z+ V)-‘-I, we can write from (4.19) 
(see proof of Proposition 2.4), 

V=F((Z+ w*) T*)h(T). (4.21) 

As in [15], the following decomposition holds: 

h(T) = MS, 

where SE B( U, X), 

su: t-, Bu(a)da, 

and ME M(X UK4 co ), Xl), 

(4.22) 

(4.23) 

Thus, V=F((Z+ W*)T*)MS. But F((Z+ W*)T*)MeM(X, U). Hence 
(from the straightforward extension of [13, Proposition 3.11 to the infinite 
interval case), we conclude there exists a strongly measurable essentially 
bounded B(H,, H, )-valued function M( .) on (0, co) such that for any 
x E x, 

[F((Z+ W*)T*)Mx](t)=K(t)x(t) a.e. (4.25) 

It remains to show that K(t) is constant. We note that if Z-Z, is finite 
dimensional, Theorem 4.3, together with Lemma 4.1, implies the result. To 
deduce the result in the infinite dimensional case we let P, denote a 
sequence of finite dimensional orthoprojectors on H, converging strongly 
to Z and define the sequence ( TN > c B( U, X), 

T,+:t+Q ‘S(t-o)BP,u(o)do. 
s 0 

Clearly Tg TN + T*T strongly. And from Theorem 3.4 we have the fac- 
torization 

I+ T;T,= (I+ V$)(Z+ VN), 
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where 

Now. 

h(T*,T,)x: t + P,T$T,P’x= P,T$P,T,P’x. 

Thus we can write 

htTZT,v) = NT%) NT,), 

where ~(T~)EM(L,((O, co), X), L,((O, m), U)), b(T;)x: t + P,T;x(t). 
Therefore 

v/v= CF(TX)-F(T~T,)a(T*,T,)b(T~)l MT,). (4.26) 

From the definition of T, and Lemma 3.2 it is straightforward to verify 
that the term in brackets in (4.26) converges strongly as N -+ 00. Next we 
show that h( T,) --t h(T) strongly. To see this we first note that 

If’,tT-T,)P’ulZ<~m IQ\‘{{; (S(z-a)B[Z-P,] u(a)\ dcr]‘ck 
f 

So for each t, as N -+ co, IP,( T- T,) P’u12 -+ 0 by the dominated con- 
vergence theorem, since P, -+ Z strongly. We can now argue as in Exam- 
ple 2.5 (note the argument following (2.10) with K= T- TN), to establish 
that the sequence of real-value functions ) P,( T- TN) P’uj’ can be 
uniformly dominated by an integrable function. Thus by what was just 
shown, dominated convergence implies that h( TN) + h(T) strongly. 
Therefore we can assert that V, + I/ strongly. And since 

(I+ W;)= (I+ VN)(Z+ T;T,)-‘, 

we also have Wz + W* strongly (where W, = (I+ V,))’ - I). Further, the 
construction of I/, from Theorem 3.4 yields a constant a independent of N 
such that JE(o) Wzl< afi(O, for all OE C. It then follows from 
Lemma 3.2 that K, + K strongly where 

K,,r= F((Z+ W$) T$)M 

and K is defined via the function K(t) (cf. (4.25)), i.e., [Kx](t) = K(t) x(t). 
Now because P,H, is finite dimensional, Lemma 4.1 and Theorem 4.3 
imply that K, has the representation [K,,,x](t) = KNx(t), where KNe 
B(H,, H,). And since K, + K(t) strongly for a.e. t, K( .) is necessarily 
constant. 
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With the spaces H,, H,, U, and X defined as above, the foregoing 
discussion can be summarized as follows. 

THEOREM 4.4. Let T be defined as in (4.18). Then I + T*T has the 
factorization 

I+ T*T= (I+ V*)(Z+ V), 

where the factor V has the form 

Vu:t-, f I KS(t - a) Bu(a) da 
0 

with KE B(H,, H,) defined via (4.24)-(4.25). 

Remark. The nonstationary analog of the theorem above also holds. 
Specifically, suppose now that TE B( U, X) is defined 

with B( .) and Q( .) strongly measurable and essentially bounded on 
[0, 001, and S( ., .) is a strongly continuous evolution operator such that 
IS(t, o)l 6 ae-P(‘-u’; CI, j? > 0. Then after making the appropriate sub- 
stitutions into (4.21)-(4.25), it follows that I+ T*T has the factorization 

I+ T*T= (I+ V*)(Z+ V), 

where V has the form 

vu: t+ 
i 

’ K(t) S(t, a) B(o) u(a) do 
0 

with K(.) strongly measurable and essentially bounded on [0, co). 

We can apply this result to the infinite time linear regulator quadratic 
cost problem. The argument here is essentially an extrapolation of its finite 
time counterpart in [15]. 

Using the notations above let T E (0, co) and consider the regulator 
problem with dynamics 

x(t) = w(t) + j-‘S(t - a) Bu(o) do 
r 

and cost 

J(u,x,=[~ lQ*Qx(t)l*+ Ju(t)12dt. 
0 
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We will assume that w( .) E L2( (0, co), H,), 

w(t) = i’ S(t - a) &~(a) da 
0 

for some u(.)EL~((O, co), Hi). Using the definition of T in (4.18) we can 
pose this optimization problem as 

min ly{‘+ luj’ 
UGU 
YEX 

subject to the constraint 

y = TP’v + TP,u. 

The “open-loop” solution is easily obtained: 

ri=(I+P,T*TP,)-‘P,T*TP’v. 

Now the factorization in Theorem 4.4 implies 

P,T*TP*=P,[V+ V*+ V*V]P’ 

= P,(I+ V*) VP’ 

= (I + P, V*P,) P, VP’. 

Thus, noting that (using Theorem 3.4 and Proposition 3.1) 

(I+ P,T*TP,)-’ = (I+P, VP,)-‘(I+ P, V*P,)-‘, 

it follows that 

22 = -(I+ P, VP,)-’ P, VPk 

Hence, 

ti = -P, V[P,G + P’u]. 

But from the theorem 

s 

f 
vz: t+ KS( t - a) Bz(a) da. 

0 

In particular, 

fi= -K ‘S(t-a) Vu(a)da+j’S(t-a)Bu(a)da 
T 

= -Kg. 
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