

Available online at www.sciencedirect.com

science
$$d$$
 direct

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 176 (2005) 461-462

www.elsevier.com/locate/cam

Letter to the Editor

A note on SOR(ω) splitting of an *M*-matrix $\stackrel{\swarrow}{\sim}$

Jae Heon Yun*

Department of Mathematics, College of Natural Sciences, Chungbuk National University, 48 Gaeshin-dong Heungduk-Gu, Cheongju, Chungbuk 361-763, Republic of Korea

Received 29 May 2004; received in revised form 25 July 2004

Abstract

Recently, Wang and Huang (J. Comput. Appl. Math. 135 (2001) 325, Corollary 4.7) assumed that SOR(ω) splitting with $\omega \ge 1$ is a weak regular splitting of an *M*-matrix. In this note, we point out that SOR(ω) splitting with $\omega > 1$ can never be a weak regular splitting of an *M*-matrix. This shows that Chang's counterexample (J. Comput. Appl. Math. 167 (2004) 251, Example 1) is not an appropriate one since the SOR(ω) splitting with $\omega > 1$ given there is not a weak regular splitting.

© 2004 Elsevier B.V. All rights reserved.

MSC: 65F10

Keywords: SOR(ω) method; Spectral radius; M-matrix

1. SOR(ω) splitting

Consider a linear system of the form

$$Ax = b, \quad x, b \in \mathbb{R}^n,$$

(1)

where $A \in \mathbb{R}^{n \times n}$ is a large sparse *M*-matrix. A matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ is called an *M*-matrix if $a_{ij} \leq 0$ for $i \neq j$ and $A^{-1} \geq 0$.

 $^{^{\}diamond}$ This work was supported by Grant No. R05-2003-000-10239-0 from the Basic Research Program of the Korea Science & Engineering Foundation.

^{*} Tel.: 82432612250; fax: 82432749619.

E-mail address: gmjae@chungbuk.ac.kr (J.H. Yun).

^{0377-0427/\$ -} see front matter @ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.cam.2004.07.029

Let

A = D - L - U,

where D = diag(A) which denotes a diagonal matrix whose diagonal part coincides with the diagonal part of A, L and U are strictly lower and strictly upper triangular matrices of A, respectively. For a relaxation parameter $\omega > 0$, SOR(ω) splitting of a matrix A is given by

$$A = \frac{1}{\omega}(D - \omega L) - \frac{1}{\omega}((1 - \omega)D + \omega U).$$
⁽²⁾

The SOR(ω) method associated with SOR(ω) splitting (2) for solving the linear system (1) is described by

$$x_{k+1} = T_{\omega} x_k + \omega (D - \omega L)^{-1} b, \tag{3}$$

where $T_{\omega} = (D - \omega L)^{-1}((1 - \omega)D + \omega U)$ is SOR(ω) iteration matrix.

For a matrix A, $\rho(A)$ denotes the *spectral radius* of A, and $A \ge 0$ (A > 0) denotes that all components of A are nonnegative (positive). A splitting A = M - N is called a *weak regular splitting* if $M^{-1} \ge 0$ and $M^{-1}N \ge 0$. Recently, Wang and Huang [2] showed the following result.

Theorem 1.1 (*Wang and Huang* [2], *Corollary* 4.7). Suppose that A is an M-matrix. If SOR(ω) splitting with $\omega \ge 1$ is a weak regular splitting, then

$$\rho(T_{\omega}) \leqslant 1 - \omega + \omega \rho(B), \tag{4}$$

where $B = D^{-1}(L + U)$.

The following theorem shows that SOR(ω) splitting with $\omega > 1$ can never be a weak regular splitting of an *M*-matrix.

Theorem 1.2. Suppose that A is an M-matrix. If $\omega > 1$, then the SOR(ω) splitting (2) is not a weak regular splitting of A.

Proof. Let $M_{\omega} = (1/\omega)(D - \omega L)$ and $N_{\omega} = (1/\omega)((1 - \omega)D + \omega U)$. Since *A* is an *M*-matrix, $L \ge 0$, $D \ge 0$ is nonsingular, and thus $M_{\omega}^{-1} \ge 0$. However, simple calculation shows that the (1, 1)-entry of $T_{\omega} = M_{\omega}^{-1}N_{\omega}$ is $1 - \omega$. It follows that SOR(ω) splitting $A = M_{\omega} - N_{\omega}$ is not a weak regular splitting of *A* for $\omega > 1$.

Theorem 1.2 shows that the spectral bound (4) for SOR(ω) iteration matrix is not in general valid unless $\omega = 1$, and that Chang's counterexample given in [1] is not an appropriate one since the SOR(ω) splitting is not a weak regular splitting of A for $\omega > 1$.

References

- D.-W. Chang, A note on the upper bound of the spectral radius for SOR iteration matrix, J. Comput. Appl. Math. 167 (2004) 251–253.
- [2] C.-L. Wang, T.-Z. Huang, New convergence results for alternating methods, J. Comput. Appl. Math. 135 (2001) 325–333.

462