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Abstract

We study the adaptive dynamics of predator–prey systems modeled by a dynamical system in which
the traits of predators and prey are allowed to evolve by small mutations. When only the prey are allowed
to evolve, and the size of the mutational change tends to 0, the system does not exhibit long term prey
coexistence and the trait of the resident prey type converges to the solution of an ODE. When only the
predators are allowed to evolve, coexistence of predators occurs. In this case, depending on the parameters
being varied, we see that (i) the number of coexisting predators remains tight and the differences in traits
from a reference species converge in distribution to a limit, or (ii) the number of coexisting predators tends
to infinity, and we calculate the asymptotic rate at which the traits of the least and most “fit” predators in
the population increase. This last result is obtained by comparison with a branching random walk killed to
the left of a linear boundary and a finite branching–selection particle system.
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MSC: primary 92D15; 92D25; secondary 60J60; 60K35

Keywords: Predator–prey; Adaptive dynamics; Coexistence; Lotka–Volterra equations; Branching random walk;
Branching–selection particle system

1. Introduction

The rapidly developing field of adaptive dynamics emphasizes the combined effects of
evolution and ecological interactions on population dynamics. To describe the general framework
of this theory, consider a population of individuals, each associated with a trait or strategy x
that characterizes its ability to survive and propagate. The current distribution of traits governs
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the population dynamics by describing interactions between different individuals and their
environment. Underlying this ecological process is a slower mutational process that occasionally
introduces a new trait into the population. Understanding the interplay of these fast ecological
and slow mutational processes is the primary objective of adaptive dynamics. Foundations of
the theory were laid in the early 1990’s by Hofbauer and Sigmund [20], Metz, Nisbet, and
Geritz [24], and Dieckmann, Marrow, and Law [13] and they focused on macroscopic models,
i.e., ODE models describing large population limits. In their 1996 paper [12], Dieckmann and
Law suggest that: “A proper mathematical theory of evolution should be dynamical. . . The
dynamics ought to be underpinned by a microscopic theory”. A rigorous foundation for
microscopic models via multi-type branching processes has now been developed (see for
example Champagnat and Lambert [9] and Champagnat, Ferrière, and Méléard [8]).

In this paper, we study the dynamics of coexistence that arise as a consequence of introducing
rare, small mutations into a model for predator–prey interactions. The novelty of our work lies in
the establishment of the coexistence of a large number of types. This phenomenon is known as
polymorphic evolution. Two other notable examples of polymorphic evolution in the adaptive
dynamics literature are: (i) evolutionary branching (first described in Geritz et al. [19] and
more recently studied in Champagnat and Méléard [10] from a microscopic perspective) which
describes coexistence of types with diverging traits and (ii) the Tube Theorem of Geritz et al. [18,
17] where coexistence of a resident and an invading type with similar survival strategies occurs
inside of a “tube” in which the sum of the invader and resident population sizes stays close to
the former resident attractor. The situation that we encounter more closely resembles the second
scenario: types with very similar traits can coexist. In our model, this is due to the fact that
interspecies competition (competition with individuals of different types) has less of an effect
than intraspecies competition (competition with individuals of the same type).

Since our focus will be on the dynamics of the random process of types that emerges from our
underlying mutational process, we shall take a macroscopic perspective of population dynamics,
using a Lotka–Volterra system of ODE’s to describe predator–prey interactions. In particular, we
will suppose that if we have M prey types and N predator types, then the densities are governed
by the ODE’s

dui

dt
= ui

(
βi (1−

∑
k

uk)− 1−
∑

j

αi, jv j

)

dv j

dt
= v j

(∑
i

αi, j ui − δ j − v j

)
(1.1)

where the ui , 1 ≤ i ≤ M , are the densities of the prey, and the v j , 1 ≤ j ≤ N , are the densities
of the predators. Our main interest is in the effect of small mutations in the resident types on the
equilibrium behavior of (1.1). While the co-evolutionary case in which both predator and prey
are allowed to vary is certainly of interest and can lead to exotic behavior (see, for example,
Dieckmann et al. [13] and Dercole et al. [11]), we will here only consider the two cases of fixed
predator/evolving prey and evolving predator/fixed prey. Such examples are also of interest and
have been studied in laboratory experiments (see, for example, Jones and Ellner [22]).

Following the usual approach in adaptive dynamics, we shall assume that mutations take place
on a much slower time scale than the population dynamics reaching equilibrium. In particular,
suppose that we are considering predator evolution and we currently have k predator types (which
we call the resident types) and one prey type coexisting in equilibrium. We introduce a small
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density of a new type of predator, called the mutant type, with traits chosen according to a
specified mutation distribution, and let the densities evolve according to (1.1) until a possibly
new equilibrium is reached before introducing the next mutant type into the population. By
traits, we mean the parameters in (1.1) (birth, death, and consumption rates) that characterize
each individual’s ability to survive and propagate. We then repeat this process, using only those
predators which could coexist at the previous step. In this way, we obtain a Markov chain of
resident types with transitions determined by the outcomes of the ecological interactions between
the previous residents and the mutant. Once we have introduced some preliminary results for the
ODE, we will formulate this process more precisely.

Our evolutionary algorithm leads to a variety of different scenarios depending on the
underlying parameters being varied.

(a) If we have a single, fixed predator and allow mutations in the prey’s traits (α, β), then
prolonged coexistence of prey does not occur and the traits of the resident prey converge
to the solution of an ODE (see Theorem 1).

(b) If we have a single, fixed prey and allow the consumption rate α of predators to evolve, then
coexistence of predators occurs, but the number of coexisting predators remains tight and the
differences of the parameters from a reference type converge in distribution to a limit (see
Theorem 2).

(c) If we have a single, fixed prey and allow the death rate δ of predators to evolve, the number
of coexisting predators tends to infinity and we can calculate the speed at which the traits of
the least and most fit predators in the population increase (see Theorem 3).

In all three cases, our results are more mathematically interesting than biologically relevant since
in (b), for example, the consumption rate of all predators currently present in the population
increases without bound.

The remainder of this section is dedicated to statements of these results and some conjectures
for future research. Proofs of the three results in (a)–(c) above will be contained in Sections 2–5.

1.1. Prey evolution

We begin with the case in which we have a single predator with fixed death rate δ > 0 and
we allow prey types to evolve. Throughout the remainder of this subsection when we refer to
(1.1), we shall always assume that N = 1 and let v denote the density of our single predator.
Prey types are characterized by their two-dimensional trait vectors y = (α, β) ∈ R2 and we
say that prey types y1, . . . , yM can coexist with the predator if whenever we run (1.1) started
from positive initial densities, v(0), ui (0) > 0, the densities v(t), ui (t) remain bounded away
from zero for all time. Our first step is to discuss criteria for coexistence. We use the notation
u = (u1, u2, . . . , uM ) and

ΓM,1 = {(u, v) ∈ RM+1
: v, ui ≥ 0,

∑
ui ≤ 1}

Γ J,+
M,1 = {(u, v) ∈ ΓM,1 : v, ui > 0, ∀i ∈ J }

for any J ⊂ {1, 2, . . .M}. If J = {1, . . . ,M}, we simply write Γ+M,1 = Γ J,+
M,1 . Note that ΓM,1 is

invariant under (1.1). Here and elsewhere, we shall use | · | to denote the cardinality of a finite set,
the absolute value of a real number, and the Lebesgue measure of a set of real numbers depending
on the context.

Proposition 1.1. For all prey yi ∈ R2, i ≤ M, with different birth rates, (1.1) has an explicitly
calculable equilibrium σ = (σ1, . . . , σM , σM+1) ∈ ΓM,1 which is globally attracting on Γ+M,1.
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Furthermore, if Jσ = {i ≤ M : σi > 0}, then |Jσ | ≤ 2 and σ is globally attracting on Γ Jσ ,+
M,1 as

well.

Proposition 1.1 follows from Lemmas 2.1 and 2.2 in Section 2. Since we need explicit
formulas for the equilibria of (1.1), we will need to re-work some standard results on
Lotka–Volterra equations (see, for example, Chapters 13 and 15 of Hofbauer and Sigmund [21]
and Chapter 3 in Takeuchi [26]) to prove our results.

We are now ready to describe the Prey Evolutionary Process (Prey EP). This process is a
continuous time Markov jump process which keeps track of the current resident prey types in
the population. Proposition 1.1 tells us that we will never have more than two coexisting prey
types so at time t , the state of the Prey EP is Y(t) = (Y1(t), Y2(t)) ∈ R2

× R2. For initial
conditions, we set Y2(0) = (0, 0), i.e., the second prey species is initially absent, and choose any
Y1(0) = (α(0), β(0)) satisfying

Y1(0) ∈ V ≡
{
(α, β) ∈ R2

+ : β >
α

α − δ
> 1

}
.

The reason for this choice of Y1(0) is that if M = 1, the globally attracting equilibrium described
in Proposition 1.1 satisfies σ1, σ2 > 0 if and only if the prey type has traits in V (see (2.3) in
Section 2). As long as Y1(t) 6= (0, 0), mutational events occur at rate 1 and after a mutation,
the transitions for Y(t) are determined by the following procedure. We pick one of the non-
zero Yi (t−), i = 1, 2, at random and choose Ynew = (αnew, βnew) uniformly from Bε(Yi (t−)),
the ball of radius ε around Yi (t−). If Y2(t−) 6= (0, 0), let σ be the equilibrium obtained in
Proposition 1.1 when M = 3 and the prey have traits y1, y2, y3 = Y1(t−), Y2(t−), Ynew. If
Y2(t−) = (0, 0), then let σ be the equilibrium obtained in Proposition 1.1 when M = 2 and the
prey have traits y1, y2 = Y1(t−), Ynew. Note that since the probability of inserting a mutant with
the same birth rate as one of the residents is 0, we do not have to worry about the exceptional
case where Proposition 1.1 does not apply. If |Jσ | = 2, then we set Y1(t) and Y2(t) equal to the
parameter values of the two prey with positive equilibrium densities. If |Jσ | = 1, then we set
Y1(t) equal to the parameter values of the single prey with positive equilibrium density and take
Y2(t) = (0, 0). If |Jσ | = 0, we set Y1(t), Y2(t) = (0, 0) and the process enters an absorbing
state. We say that the population is monomorphic when Y2(t) = (0, 0) and refer to the events
where Y2(t) jumps from (0, 0) as coexistence events.

Our first main result says that in the small mutation limit, the population is essentially
monomorphic.

Theorem 1. Let T > 0. As ε→ 0, Y ε1 (t) ≡ Y1(t/ε)→ y1(t) in probability uniformly on [0, T ].
y1(t) is the unique solution to the ODE

dy1

dt
=

2
3π

N (y1(t)) (1.2)

with initial conditions y1(0) = Y1(0) where N (·) is explicitly calculable; see (2.4). Furthermore,
if we let Y ε2 (t) = Y2(t/ε) and for t ≤ T , define

N ε
t ≡ |{s ≤ t : Y ε2 (s−) = 0, Y ε2 (s) 6= 0}|

as the number of times Y2 jumps from 0 before time t/ε, then as ε→ 0,

N ε
⇒ N
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where N is a non-homogeneous Poisson process on [0, T ] and “⇒” denotes convergence in
distribution.

We will prove Theorem 1 in Section 2. The proof reveals that |{t ≤ T : Y ε2 (t ∧ τ) > 0}| → 0
(see (2.8)) which justifies our earlier claim that prolonged coexistence of prey does not occur.
The constant on the right hand side of (1.2) is EY+ when (X, Y ) is chosen at random from
the ball of radius 1 and appears due to our choice of mutation distribution. (1.2) is essentially
a special case of the “Canonical Equation of Adaptive Dynamics”; see (6.2) in Dieckmann and
Law [12] or (1) in Champagnat and Lambert [9]. In words, evolution proceeds in the direction of
fastest increase in fitness. We do not have an explicitly defined fitness, but the infinitesimal drift
in the traits is perpendicular to the region of values that cannot invade the resident.

The limiting ODE in Theorem 1 is not biologically sensible because the prey birth rate
increases without bound. This could be remedied by restricting the permitted values of (α, β) to
a curve, or making them functions of other underlying parameters (see for example Dieckmann
et al. [13], where traits depend on the “body size” of the predator and prey). However, since our
main interest in including Theorem 1 is as a contrast to the results on predator evolution below,
we do not here endeavor to carry through the details of this more realistic scenario.

1.2. Predator evolution

We now consider the case where we have a single prey with fixed birth rate β > 1 and density
u (M = 1 in (1.1)), but we allow our predators to evolve. Predators are characterized by their
two-dimensional trait vector x = (α, δ) ∈ R2

+. As in the previous section, the first step is to
develop a criterion for determining coexistence of multiple predators. The next result, which is
proved in Section 3, tells us that this can be done by checking a simple algebraic condition. In
order to state the result, we define the characteristic ratio of the predator x = (α, δ) as ` = α/δ
and use the notation

Γ1,N = {(u, v1, . . . , vN ) ∈ RN+1
: 0 ≤ u ≤ 1, vi ≥ 0}

Γ+1,N = {(u, v1, . . . , vN ) ∈ RN+1
: 0 < u ≤ 1, vi > 0}.

Note that Γ1,N is invariant for (1.1).

Proposition 1.2. For any N ≥ 1, (1.1) has a unique, globally attracting equilibrium σ

for initial densities in Γ+1,N . This equilibrium has the following characterization. Suppose
that predators x1, . . . , xN are ordered by increasing characteristic ratios. Then the globally
attracting equilibrium has a positive i th component if and only if i = 1, . . . ,m where m ≤ N is
the largest value of k satisfying the condition

k∑
j=1

α2
j (`k − ` j ) < r − β`k (1.3)

and r = β − 1 > 0 is the intrinsic growth rate of the prey.

We prove Proposition 1.2 in Section 3. The definition for the Predator Evolution Process
(Predator EP) is similar to the definition of the Prey EP except that the state space is now (R2)N

as there is no limit on the number of predators that can coexist. The state of the process at time t
is

X(t) = ((α1(t), δ1(t)), (α2(t), δ2(t)), . . .).
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Fig. 1. The five clusters, from upper left to lower right, are the characteristics of the coexisting predators in a sample run
of the Predator EP after 104, 1.25× 104, 1.5× 104, 1.75× 104 and 2× 104 mutations have occurred. The consumption
rates, α, of all coexisting predators are plotted on the x-axis and the corresponding values of log ` = log(δ/α) are plotted
on the y-axis. Parameters: r = 1, α(0) = 3, δ(0) = 0.45, ε = 0.01.

For initial conditions, we choose (α1(0), δ1(0)) so that α1(0)r/β > δ1(0) and set αk(0), βk(0) =
0 for all k ≥ 2. Our choice of α1(0), δ1(0) guarantees that the initial predator can coexist
with the prey (see Section 3). As long as (a1(t), β1(t)) 6= (0, 0), mutations occur at rate 1
and if a mutation occurs at time t , transitions are described by the following rules. Define
Nt = max{i : (αi (t−), βi (t−)) 6= (0, 0)}, choose one of (αi (t−), δi (t−)), i ≤ Nt , at
random, and introduce a new mutant predator with traits αnew = αi + εU1 and δnew = δi eεU2

where U1,U2 ∼ Uniform[−1, 1]. We then order the predators (α1(t−), β2(t−)), . . . (αNt (t−),
βNt (t−)), (αnew, βnew) by increasing characteristic ratios and call the ordered traits x1, . . .,
xNt+1. Applying Proposition 1.2 with predators x1, . . . , xNt+1, we obtain a globally attracting
equilibrium σ with σi > 0 if and only if i ≤ m for some m ≤ Nt + 1. We then set
(αi (t), βi (t)) = xi for all i ≤ m and set (αi (t), βi (t)) = (0, 0) for all i > m.

Simulations suggest that we see a growing cloud of coexisting predators with some limiting
shape and all predators have consumption rates α going off to infinity and log(`) going to −∞
(see Figs. 1 and 2). We were not able to analyze the two-dimensional system so we will specialize
to the two cases where only α or δ varies and the other remains fixed.

1.3. The alpha predator evolution process

In this section, we assume that δ = 1 remains fixed and allow for mutations in α. Note that the
characteristic ratio of a predator is now 1/α, so ordering predators by increasing characteristic
ratio is equivalent to ordering predators by decreasing consumption rate. We shall prove our
results for a discrete time version of the Predator EP in which the nth mutation occurs at time n.
Once this is done, it is straightforward to generalize the result to continuous time.

To more precisely describe the version that we study, suppose that at time 0, we have a
single predator α(0) which can coexist with the prey. If at time n, we have Nn predators
α1(n), . . . , αNn (n) in decreasing order that satisfy (1.3) with k = Nn , then at time n + 1 we
choose one of the α j (n), j ≤ Nn , at random, introduce a mutant with trait αnew = α j (n)+ εU ,
U ∼ Uniform[−1, 1], and then use (1.3) to decide on the state of the process at time n + 1
in the same manner as we did for the Predator EP. We shall refer to this process as the Alpha
Predator Evolution Process (APEP) and use the following notation throughout the remainder of
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Fig. 2. Plot of Nn= number of coexisting species in the population after the nth mutation has occurred in the Predator
EP from Fig. 1.

the section:

• Nn = number of coexisting predators at time n.
• α j (n) = j th-largest α amongst all coexisting predators at time n for j ≤ Nn .
• αmin(n) = αNn (n).
• α j (n) = αmin(n) if j > Nn .
• d j (n) = α j (n)− αmin(n) = differences between predator consumption rates.
• ∆n = (d1(n), d2(n), . . .).

Setting α j (n) = αmin(n) for j > Nn is done for convenience so that d j = 0 for all j ≥ Nn .
Substituting δ = 1, the condition (1.3) for coexistence of α1, . . . , αN simplifies to

N∑
j=1

α j

αN
(α j − αN ) < r −

β

αN
. (1.4)

Since α j/αN > 1, this implies that all the differences α j − αN must be < r , so we define
S := [0, r ]N and let ‖ · ‖T V denote the total variation norm on M1(S), the space of probability
measures on S . We denote by Pα the law of the APEP started from an initial predator with trait
α.

Theorem 2. Nn is tight and αmin(n) → ∞ a.s. as n → ∞. In addition, there exists a measure
πε on S and a constant aε > 0 such that

‖Pα(0)(∆n ∈ ·)− πε(·)‖T V → 0

and αmin(n)/n→ aε > 0 as n→∞.

This result is proved in Section 4. The reason for the difference from Theorem 1 is that mutant
types with traits similar to those of the resident type can always invade because predators only
suffer density dependent killings from their own type. In the case of prey evolution, this is not
the case since interspecies and intraspecies competition affect the prey equally.

The key to the proof of Theorem 2 is the observation that as αN → ∞, the condition (1.4)
becomes

N∑
j=1

(α j − αN ) < r
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Fig. 3. Top: Plot of the number of coexisting predators at time n in the APEP with ε = 0.01, r = 1, α(0) = 3. Bottom:
Plot of the change in αmin(n) for the same simulation.
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Fig. 4. The top panel shows the inverse of the average number of species and the bottom panel shows the average
maximum distance between α’s as a function of ε for the APEP. Here, we have run one simulation for each value of
ε = 0.001, 0.002, . . . , 0.01 with r = 1, α(0) = 3 and then averaged out the results of each simulation over the last
25,000 time steps to obtain the values for the plotted points. The solid lines are the corresponding least square lines. It
appears that the number of coexisting species is O(1/ε) and the maximum distance between coexisting types is O(ε) as
ε→ 0.

and we can show that the differences ∆n are asymptotically a positive recurrent Harris chain
with stationary distribution πε. A coupling argument shows that the non-homogeneous chain also
converges to πε. The linear growth of αmin then follows from a standard result on functionals of
positive recurrent Markov chains.

Fig. 3 illustrates the tightness of Nn and linear growth of αmin. Fig. 4 suggests that as the
size of the perturbation ε→ 0, the spacing between traits is O(ε), and the number of coexisting
types is O(1/ε). We believe that if one converts the rescaled spacings ∆n/ε into a measure by
assigning each one mass ε then as ε→ 0, the distribution of this measure under πε converges to
a deterministic limit in which the density of particles is roughly, but not exactly, exponential; see
Fig. 5.
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Fig. 5. Plot of the distribution of predator types for a single run of the APEP at time n = 50,000 with ε = 0.001 and
r = 1. The solid line connects the points (d j /ε, ε(Nn − j)), j = 1, 2, . . . Nn = 17626. The dashed line gives an
exponential approximation.

1.4. The delta predator evolution process

The final evolution process we consider is the Delta Predator Evolution Process (DPEP). The
DPEP is defined in continuous time and follows the same rules as the Predator EP except that all
predators have fixed α = 1 and we only allow for mutations in δ. For convenience, we assume
that ε = 1 and define X j (t) = − log δ j (t). We also set Nt = the number of coexisting predators
at time t . Note that since δ1(t) < δ2(t) < · · · < δNt (t) by definition of the DPEP, we always
have X1(t) > X2(t) > · · · > X Nt (t) and so Xmax(t) = X1(t) and Xmin(t) = X Nt (t) give the
traits of the most and least fit predators, respectively. Furthermore, (1.3) implies that

e−X Nt (t)

(
β +

Nt∑
j=1

1− exp(−[X j (t)− X Nt (t)])

)
< r (1.5)

for all t ≥ 0.
To get started in the analysis of the DPEP, our first step in Section 5 is to prove a simple result

which already shows that the behavior is very different from the APEP.

Lemma 1.1. As t →∞, Nt →∞ a.s.

Our next result describes the asymptotic rates at which the smallest and largest predator traits
increase. In what follows, we let St be a random walk starting at 0 that takes jumps at rate 1
uniform on [−1, 1]. The theory of large deviations tells us that

Λ(x) = lim
t→∞

1
t

log P(St > xt)

exists and can be calculated in terms of the moment generating function of St .

Theorem 3. Xmax(t)/t → a and Xmin(t)/t → b a.s. as t → ∞ where a ≈ 0.9053 and
b ≈ 0.5667 satisfy the equations

Λ(a) = −1, Λ(b) = −1+ b. (1.6)

Furthermore, we have lim inf(1/t) log Nt ≥ b a.s.
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Fig. 6. Graph of the speed aM versus log M showing slow convergence to the limit a ≈ 0.9053 for the finite
branching–selection particle system Y M defined in Section 1.4.

We will prove Theorem 3 in Section 5. To explain why it is true, it is convenient to adopt the
perspective that the different predator types correspond to particles and their traits correspond to
positions on the real line. Let Z t be the branching random walk in which particles give birth at
rate 1 and their offspring are displaced by an amount uniform on [−1, 1]. A result of Biggins [3]
implies that rt , the position of the rightmost particle at time t in the branching random walk, has
rt/t → a and

1
t

log Z t ([xt,∞))→ 1+ Λ(x)

for 0 ≤ x < a so (1/t) log Z t ([bt,∞)) → b. Since we can construct Z t in such a way that all
particles in X (t) are in Z t , we must have lim sup Xmax(t)/t ≤ a a.s. The definition of b and an
argument by contradiction using (1.5) give the upper bound lim supt→∞ Xmin(t)/t ≤ b for the
speed of the leftmost particle.

To bound lim inft→∞ Xmax(t)/t , we consider the following branching–selection particle
system: at any time t , we have M particles with positions Y M

1 (t) > · · · > Y M
M (t), all giving

birth at rate 1. Whenever a new particle is born, we reorder and delete the leftmost particle.
Using techniques from the study of the APEP in Section 4, we could show that Y M

1 (t)/t → aM ,
but instead we complete the proof of the first result by showing

lim
M→∞

lim inf
t→∞

Y M
1 (t)/t = a. (1.7)

Nina Gantert has pointed out to us that Berard and Gouere [5] have recently proved

a − aM ∼ C(log(M))−2

for a related discrete time model in which all M particles split into two and only the rightmost M
are kept. This confirms a slow rate of convergence, which was predicted much earlier by Brunet
and Derrida [7], and which we observed in our numerical attempts to verify the limit in (1.7); see
Fig. 6.

To bound lim inft→∞ Xmin(t)/t , we study the branching random walk with killing at−K+γ t .
Our result given in Lemma 5.4 is a cousin of a result of Kesten [23] for branching Brownian
motion on [0,∞) where during its lifetime, each particle moves according to Brownian motion
with drift µ < 0 and variance σ 2, all particles die at rate c and give birth to a mean m number
of offspring upon death with particles killed when they hit 0. Kesten’s result states that the
system has positive probability of survival when µ < µ0 = (2σ 2c(m − 1))1/2 (Theorem 1.1,
(1.6)), and in this supercritical case, if we start with one particle at x , then for every interval I ,
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Fig. 7. Plot of the distribution of predator types for a single run of the DPEP with r = 1 at time t ≈ 20.25 (after
n = 50,000 insertions). The solid line shows the point (X j (t)− Xmin(t), (Nt − j)e−Xmin(t)), j = 1, . . . , Nt = 25467.
The dashed line gives an exponential approximation.

Z t (I )/Ex Z t (I ) → W a.s for some finite random variables W (Theorem 1.1 (1.5)). However,
Kesten’s efforts are concentrated on the exotic behavior in the critical case µ = µ0, and he says
“so far we have only an ugly and complicated proof of the growth results in the supercritical
case, and we shall therefore not prove Theorem 1.1”. In Section 5, we show that using ideas of
Biggins [3] it is easy to prove results for (1/t) log Z t ([ct,∞)).

The result lim supt→∞ Xmin(t)/t ≤ b implies that if T is large and we start the branching
random walk with one particle at Xmax (T ) at time T then all of the particles in the branching
random walk with killing at (b + ε)t are present in the X i (t). If Xmin(t) is too far to the left
then we would contradict (1.5). The last part of the proof suggests that most particles are near
Xmin(t). Simulations (see Fig. 7) further suggest that:

Conjecture. If we put mass exp(−Xmin(t)) at X i (t)− Xmin(t) then this measure converges to a
deterministic limit, which again is roughly but not exactly exponential.

However, proving this seems to be a difficult problem. Recently, Durrett and Remenik [15] have
proved convergence of the toy model to the solution of a free boundary problem as M →∞.

The final conclusion lim inft→∞(log Nt )/t ≥ b follows from the result for Xmin(t) and the
proof of Lemma 1.1. Since the result comes from replacing (1.5) by e−X N (t)(β + N ) < r , it
seems unlikely that b is the right constant, but finding the right constant would require proving
the conjecture.

The proof of lim inft→∞ Xmax(t)/t ≥ a also leads to the following result regarding the
limiting behavior of the most fit predator in the APEP as the mutation radius ε→ 0.

Corollary 1. If we run the APEP in continuous time and let

a∗ε = lim
t→∞

αεmax(t)/t,

then limε→0 a∗ε = a.

2. Prey evolution

In this section we will prove Theorem 1. We first establish Proposition 1.1 as a consequence of
Lemmas 2.1 and 2.2 below. Note that these results only cover M ≤ 3, but the proof of Lemma 2.2
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Fig. 8. Plot of the invadability curves for (α1, β1) = (2, 4). For the predator, we set δ = 1. The dashed line shows the
boundary of the viable region.

can easily be extended to show that coexistence for M ≥ 4 is not possible. Our results rely
heavily on the notion of invadability (see Durrett [14]) and results on Lotka–Volterra systems
(see Chapter 13 and 15 of Hofbauer and Sigmund [21]) which we shall quote as needed. We
shall also make use of the notation introduced in Section 1.1 and assume throughout this section
that N = 1 in (1.1). Therefore, we have a single predator, whose density we shall denote by v,
with fixed death rate δ > 0.

2.1. Prey ODE results

Let y1 = (α1, β1) ∈ R2
+. To determine when the predator and a prey with trait y1 can coexist,

we note that if β1 > 1 then in the absence of predators the prey reach an equilibrium density

σ 0
1 (y1) = (β1 − 1)/β1. (2.1)

If the prey are in equilibrium then the predators can increase when v is small if

α1σ
0
1 (y1)− δ > 0. (2.2)

Using the formula for σ 0
1 (y1), we see that this holds if and only if α1 > δ and

β1 >
α1

α1 − δ
> 1. (2.3)

We call this set of (α1, β1) the viable region for prey and label it V . See Fig. 8 for an example.
Algebra shows that when (2.3) occurs, there is a predator–prey equilibrium σ 1(y1) with

coordinates

σ 1
1 (y1) =

(β1 − 1)+ α1δ

β1 + α
2
1

, σ 1
2 (y1) =

(β1 − 1)α1 − β1δ

β1 + α
2
1

.

A second prey type with trait y2 = (α2, β2) can invade the first prey and the predator in
equilibrium when

β2(1− σ 1
1 (y1))− 1− α2σ

1
2 (y1) > 0.
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By interchanging the roles of y1 and y2 we get the condition for the first prey to invade the second
prey and predator in equilibrium. If both prey traits are viable and the two invadability conditions
hold, then it is shown in Section 7.1 of [14] that there is coexistence in the ODE, i.e., the three
densities stay bounded away from 0. That the densities actually converge to a positive equilibrium
in this case is the result of Lemma 2.1 below.

Following [14], we use � for “invades” (prey j can invade prey 1, . . . , j − 1 in equilibrium if
its density will increase whenever 1, . . . , j − 1 are in equilibrium with the predator and a small
initial density of j’s is introduced). Using the new notation and defining

F(y1, y2) = β2(1− σ 1
1 (y1))− 1− α2σ

1
2 (y1),

we have 2 � 1 if and only if

y2 ∈ {y : F(y1, y) > 0} =: L y1

and 1 � 2 if and only if

y2 ∈ {y : F(y, y1) > 0} =: U y1 .

We call the boundary curves L y1 ≡ {y : F(y1, y) = 0} and Uy1 ≡ {y : F(y, y1) = 0} the
invadability curves and note that we have the formulas

(α, β) ∈ Uy1 ⇔ β = g(y1, α)

(α, β) ∈ L y1 ⇔ β = h(y1, α)

where

g(y1, α) =
(β1 − 1)α2

+ (α1 − β1δ)α + β1

1+ α1(α − δ)

and

h(y1, α) =
ασ 1

2 (y1)+ 1

1− σ 1
1 (y1)

are well defined provided y1, (α, β) ∈ V . Calculus shows that the curve Uy1 is tangent to the
curve L y1 at y1 and we let N (y1) denote the corresponding unit normal vector:

N (y1) = c(−σ 1
2 (y1), 1− σ 1

1 (y1)) (2.4)

where c is chosen to make the length 1. The situation is depicted in Fig. 8. Lemma 2.1 describes
the set of all possible ecological outcomes based on this splitting of type space.

Lemma 2.1. Let y1, y2 ∈ V with β1 6= β2 and suppose that (u1(0), u2(0), v(0)) ∈ Γ+2,1. Then
one of the following must be true:
(a) y2 ∈ L y1 ∩U y1 in which case the solution to (1.1) converges to a unique positive equilibrium

σ 2(y1, y2) = (σ
2
1 (y1, y2), σ

2
2 (y1, y2), σ

2
3 (y1, y2)) ∈ Γ+2,1.

(b) y2 ∈ L y1 , but y2 6∈ U y1 in which case the solution to (1.1) converges to the equilibrium
(0, σ 1

1 (y2), σ
1
2 (y2)).

(c) y2 ∈ U y1 , but y2 6∈ L y1 in which case the solution to (1.1) converges to the equilibrium
(σ 1

1 (y1), 0, σ 1
2 (y1)).

Since the probability of inserting a mutant with the same birth rate as the resident is zero,
the condition β1 6= β2 does not impose any additional restrictions and saves us the headache of
dealing with a scenario in which we have an infinite number of equilibria.
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Before beginning the proof, we note that setting u3 = v, we can rewrite (1.1) in Lotka–
Volterra form as

dui

dt
= ui (ri + (Au)i )

where ri = βi − 1, i = 1, 2, r3 = −δ, and

A =

−β1 −β1 −α1
−β2 −β2 −α2
α1 α2 −1

 .
If fi (u) = dui/dt , then the components of the Jacobian are given by

d fi (u)

du j
= δi j (ri + (Au)i )+ ui Ai j . (2.5)

Let Jp denote the value of the Jacobian matrix J = (d fi/du j ) evaluated at p. Following [21]
(see pages 155, 159 therein), we shall say that an equilibrium point p for (1.1) is regular if
det(Jp) 6= 0 and saturated if ri + (Ap)i ≤ 0 for all i . Note that if we have an equilibrium
p ∈ Γ+2,1, then p is trivially saturated since in this case, ri + (Ap)i = 0 for all i . More generally,
an equilibrium point σ with σi = 0 for all i ∈ I is saturated if it cannot be invaded by types i ∈ I .
In particular, (σ 1

1 (y1), 0, σ 1
2 (y1)) and (0, σ 1

1 (y2), σ
1
2 (y2)) are saturated exactly when y2 6∈ L y1

and y2 6∈ U y1 , respectively. The assumptions y1, y2 ∈ V and β1, β2 > 1 imply that σ 0(y1),
σ 0(y2), and the origin are never saturated. It is easy to see that since β1 6= β2, there can be no
other possible equilibria σ 6∈ Γ+2,1.

Let

ind(p) = sign(det(Jp))

denote the index of a regular equilibrium p. The index theorem for Lotka–Volterra equations
(13.4.4 in [21]) tells us that if all saturated equilibria p are regular, we must always have∑

p:p saturated

ind(p) = (−1)3 = −1. (2.6)

The key to the proof will be showing that (1.1) has a unique saturated fixed point in all three
cases (a)–(c). However, since it is not always true that a unique saturated fixed point is globally
attracting (see page 195 in [21]), we need to work a little bit harder to get the result. To ease
notation, we shall let Fi denote the face in Γ2,1 on which ui = 0 and Ei, j denote the edge where
ui = u j = 0.

Proof. Suppose first that we are in case (a) so that (σ 1
1 (y1), 0, σ 1

2 (y1)) and (0, σ 1
1 (y2), σ

1
2 (y2))

are not saturated. Then Theorem 7.1 in [14] implies that we have coexistence and hence by
Theorem 13.3.1 and 13.5.2 in [21], (1.1) has a unique regular equilibrium σ 2

∈ Γ+2,1. To show
that it is globally attracting, we will show that all eigenvalues of Jσ 2 have negative real parts.
The conclusion that σ 2 is globally attracting on Γ+2,1 then follows by Theorem 15.3.1 in [21] (A

is Volterra–Lyapunov stable with di = σ 2
i ). The Routh–Hurwitz (R–H) conditions (see pages

702–703 of Murray [25] for the version used here or Anagnost and Desoer [1] for an elementary
proof) tell us that all eigenvalues of Jσ 2 will have negative real parts if (1) trace(Jσ 2) < 0, (2)
det(Jσ 2) < 0, and (3)

det(Jσ 2) > trace(Jσ 2)Σ2
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where Σ2 is the sum of the 2 × 2 principal minors of Jσ 2 . But since r + Aσ 2
= 0, substituting

σ 2 into (2.5) yields

Jσ 2 =

−σ 2
1 β1 −σ 2

1 β1 −σ 2
1 α1

−σ 2
2 β2 −σ 2

2 β2 −σ 2
2 α2

σ 2
3 α1 σ 2

3 α2 −σ 2
3

 .
so the first R–H condition is obvious and the third follows from a simple algebraic calculation.
The second condition follows from (2.6) since σ 2 is the unique saturated equilibrium point for
(1.1) and is regular.

Suppose now we are in case (b) so that (0, σ 1
1 (y2), σ

1
2 (y2)) is saturated, but (σ 1

1 (y1), 0,
σ 1

2 (y1)) is not saturated. If we let σ = (0, σ1, σ2) = (0, σ 1
1 (y2), σ

1
2 (y2)), then

Jσ =

r1 + (Aσ)1 0 0
−σ1β2 −σ1β2 −σ1α2
σ2α1 σ2α2 −σ2γ

 .
The assumptions in (b) imply that 2 � 1, 3 and 1 6� 2, 3 so we must have r1 + (Aσ)1 < 0.
Therefore,

det(Jσ ) = (r1 + (Aσ)1)(β2γ + α
2
2)σ1σ2 < 0

implying that σ is regular. If coexistence was possible, then as in the proof of (a), we would have
a regular equilibrium ρ ∈ Γ+2,1 and (1.1) would have exactly two regular, saturated equilibria,
violating (2.6). Therefore we know that ui (t) → 0 as t → ∞ for some i = 1, 2, 3. But since
we have the invadability conditions, 1 � 0, 3 � 1, 3 � 2, 2 � 1, 3, and 1 6� 2, 3, the proof of
Theorem 7.1 in [14] tells us that there exists a repelling function for the set

F ≡ F3 ∪ E1,2 ∪ F2

and therefore we know that (1.1) must leave Γ+2,1 through F1\F on which σ is globally attracting
(Lemma 5.0 in [14]). The proof of (c) is identical after interchanging the roles of y1 and y2. �

Our next result describes the possible outcomes of adding a new species when two are already
coexisting.

Lemma 2.2. Let y1, y2, y3 ∈ V , y2 ∈ L y1 ∩ U y1 , β1 6= β2, and

(u1(0), u2(0), u3(0), v(0)) ∈ Γ+3,1.

Then one of the following must be true:

(a) y3 ∈ L y1 ∩ L y2 and y3 6∈ U y1 ∪ U y2 in which case the solution to (1.1) converges to
(0, 0, σ 1

1 (y3), σ
1
2 (y3)).

(b) y3 ∈ U y1 ∩ U y2 and y3 6∈ L y1 ∪ L y2 in which case the solution to (1.1) converges to
(σ 2

1 (y1, y2), σ
2
2 (y1, y2), 0, σ 2

3 (y1, y2)).
(c) Neither (a) nor (b) is satisfied in which case either u1(t)→ 0 or u2(t)→ 0.

Proof. It is easy to check that if we have M = 3 in (1.1), relabel the predator’s density as u4 and
write (1.1) in Lotka–Volterra form, then det(A) = 0 so there can be no coexistence of the three
prey types by Theorem 13.5.2 in [21]. Therefore, at least one of the types dies out. Which one(s)
can be sorted out using the same idea as in the proof of Lemma 2.1. �
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To see why we do not need to be concerned with case (c), we note that because of the tangency
of Uy1 and L y1 , the chance of inserting a mutant which can coexist with a current resident prey
is always of order

ε−2
∫ ε

0
x2dx = O(ε).

But then the probability of inserting a third prey which can coexist with two resident prey is
also O(ε) and therefore, we must wait O(1/ε2) time steps until the first time we encounter the
situation in Lemma 2.2, (c). Of course, we will still get convergence to an equilibrium that can
be determined as in Lemma 2.1 provided β3 6= β1, β2.

2.2. Proof of Theorem 1

Throughout thus section, we shall use C = CT to denote a positive constant which depends
on T and may change from line to line. Write

Fε(y1) =
1

2πε2

∫ ε

−ε

f (y1, x)dx

where f (y1, α) = g(y1, α)− h(y1, α) ≥ 0. We also define

pε(t) =

{
Fε(Y ε1 (t)) if Y ε2 (t) = 0
max(Fε(Y ε1 (t)), Fε(Y ε2 (t))) if Y ε2 (t) 6= 0.

For Y ε1 (t), Y ε2 (t) ∈ V , pε gives the probability of inserting a new type that can coexist when only
one resident type is present and an upper bound on the probability that a new type can coexist
with one of the resident types when two resident types are present. Note that the tangency of
g(y1, ·), h(y1, ·) and Taylor’s theorem imply that

ε−1 Fε(y1)→ cφ(y1) (2.7)

for any y1 ∈ V and some constant c > 0 where

φ(y1) =
∂2(g − h)

∂α2 (y1, α1)

is a continuous function of y1. Therefore, if Y ε1 (t), Y ε2 (t) ∈ K , K bounded, then there exists
CK > 0 such that pε(t) ≤ CK ε.

Choose an open, bounded set K1 ⊂ V and a compact set K2 ⊂ K1 such that y1(t) ∈ K2
for all t ≤ T . The existence of K1 is guaranteed since on the boundary of the viable region,
β = α/(α − δ) and so the slope of Uy1 at y1 is 0 implying that N (y1) points straight up, and it
is impossible for y1(t) to leave the viable region. Let ρ > 0 be small enough that K2 + ρ ⊂ K1
and define

τ = inf{t : Yε(t) 6∈ (K2 + ρ)× (K2 + ρ)}

as the first time Y ε1 (t) or Y ε2 (t) leaves K2 + ρ. Then pε(t ∧ τ) ≤ Cε, ∀t ≤ T . Since mutations
occur at rate 1/ε, it follows that the expected number of times before T ∧ τ that there is one prey
type and an inserted type coexists is ≤ C . If two prey types coexist, Lemma 2.2 implies that with
probability ≥ 1 − Cε, the next time a new type is inserted in L y1 ∩ L y2 , it will replace the two
coexisting types. Therefore, if ε is small, the amount of time during which two types coexist is
approximately exponential with mean 2ε and so

|{t ≤ T : Y ε2 (t ∧ τ) > 0}| → 0 (2.8)
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a.s. as ε → 0 and hence, we can ignore these isolated episodes when studying the evolution of
Y ε1 (t ∧ τ).

When there is no coexistence, mutations in the direction of L y1 leave the resident type
unchanged and mutations in the direction of N (y1) replace the resident, so the infinitesimal
mean of Y ε1 (t ∧ τ) is given by

b(y1) =
2

3π
N (y1) (2.9)

where the 2/3π comes from the fact that if we choose a point at random from the upper half of
the ball of radius 1 in the (α, β) plane, then the β component has density (4/π)

√
1− β2 and

hence mean

4
π

∫ 1

0
β

√
1− β2 dy =

4
3π
.

(2.9) then follows on noting that choices from the half of the ball above L y1 occur with probability
1/2. It is clear from the scaling that the entries in the infinitesimal covariance are of order ε and
therefore, the infinitesimal mean and covariance of Y ε1 (· ∧ τ) converge to b(y1) and a(y1) = 0
respectively. Since b is Lipschitz continuous, the martingale problem for (a, b) is well posed, so
convergence of Y ε1 (· ∧ τ) to y1 follows from Theorem 7.4.1 in Ethier and Kurtz [16]. But then
we can choose ρ small enough that P(τ ≤ T )→ 0 and we obtain (1.2).

It remains to prove that

N ε
t = |{s ≤ t : Y ε2 (s−) = 0, Y ε2 (s) 6= 0}|

converges to a non-homogeneous Poisson process. Since Fε(Y ε1 (t)) gives the jump probabilities
for N ε

t when Y ε2 (t) = 0, the compensator for N ε
t is given by

Aεt =
∫ t

0
1{Y ε2 (s)=0}ε

−1 Fε(Y ε1 (s))ds.

(1.2), (2.7) and (2.8) then imply that

Aεt → m(t) ≡
∫ t

0
cφ(y1(s))ds. (2.10)

m(t) is continuous and deterministic so we conclude from Theorem 1 in Brown [6] that N ε
⇒ N

where N is a non-homogeneous Poisson process with mean function m(t). �

3. Multiple-predator ODE facts

The goal of this section is the derivation of Lemmas 3.1 and 3.2 which together imply
Proposition 1.2. The first result gives the algebraic condition for existence of positive equilibrium
densities and the second proves convergence to equilibrium. See Section 1.2 for relevant notation.

In the absence of predators, the prey have equilibrium density σ 0
= r/β where r = β−1 > 0

by assumption. Suppose we wish to find a positive equilibrium σ k
= (σ k

0 , σ
k
1 , . . . , σ

k
k ) on the

face

Γ1,k = {v ∈ Γ1,N : vk+1 = · · · vN = 0}.

Then, solving the equations α jσ
k
0 − δ j − σ

k
j = 0 for σ k

j , j = 1, . . . , k we obtain

σ k
j = σ

k
j (x1, . . . , xk) = α jσ

k
0 − δ j
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and substituting these expressions into the equation r − βσ k
0 −

∑k
j=1 α jσ

k
j = 0 yields

r − βσ k
0 =

k∑
j=1

α2
jσ

k
0 −

k∑
j=1

α jδ j .

We can conclude that

σ k
0 = σ

k
0 (x1, . . . , xk) =

r +
k∑

i=1
αiδi

β +
k∑

i=1
α2

i

> 0

for all k ≥ 0. To determine when σ k
j > 0, 1 ≤ j ≤ k, write Sk =

∑k
i=1 α

2
i and

α jσ
k
0 =

α jr + α2
j δ j + α j

∑
i 6= j

αiδi

β + Sk
.

Adding δ j − δ j (β + Sk)/(β + Sk), the above is

= δ j +

α jr − βδ j +
∑
i 6= j
(α jαiδi − α

2
i δ j )

β + Sk

= δ j +

(β +
∑
i 6= j

α2
i )(α jσ

k−1
0 (x1, . . . , x j−1, x j+1, . . . , xk)− δ j )

β + Sk

since (β +
∑

i 6= j α
2
i )σ

k−1
0 = r +

∑
i 6= j αiδi . From this it follows that σ k

j will be positive if and
only if

σ k−1
0 (x1, . . . , x j−1, x j+1, . . . , xk) > ` j . (3.1)

where ` j = δ j/α j is the characteristic ratio for predator x j .

Lemma 3.1. Suppose x1, . . . , xk are ordered by increasing characteristic ratio. Then σ k
k > 0 if

and only if

β`k +

k∑
j=1

α2
j (`k − ` j ) < r (3.2)

and if (3.2) is satisfied, then σ k
j > 0 for all j ≤ k.

Proof. (3.1) implies that σ k
k > 0 if and only if

`k < σ k−1
0 (x1, . . . , xk−1) =

r +
k−1∑
j=1

α2
j` j

β +
k−1∑
j=1

α2
j

(3.3)
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where we have used the definition of ` j = δ j/α j on the right. Multiplying both sides by the
denominator of the right and then rearranging terms, we obtain (3.2) (since `k − `k = 0). Now
suppose that (3.2) holds. Then since `k > ` j , for all j = 1, . . . , k − 1, (3.2) also holds if we
replace `k by ` j , j < k, on the left and reversing the algebra used to derive (3.2) from (3.3)
shows that this is equivalent to σ k

j > 0, proving the result. �

Lemma 3.2. Suppose we have a collection of predators x1, . . . , xN ordered by increasing ` and
let k ≤ N be the largest integer for which (3.2) is satisfied (with the convention that k = 0
if (3.2) fails for all k ≤ N). Then σ = (σ k

0 , σ
k
1 , . . . , σ

k
k , 0, . . . , 0) is a globally attracting fixed

point on Γ+1,N with Lyapunov function

V (u, v1, . . . , vN ) = u − σ k
0 log u +

k∑
i=1

(vi − σ
k
i log vi )+

N∑
i=k+1

vi .

Proof. Differentiating V yields

dV

dt
= (u − σ k

0 )(r − βu −
k∑

i=1

αivi −

N∑
i=k+1

αivi )

+

k∑
i=1

(vi − σ
k
i )(−δi − vi + αi u)+

N∑
i=k+1

vi (−δi − vi + αi u)

= −β(u − σ k
0 )

2
−

k∑
i=1

(vi − σ
k
i )

2
−

N∑
i=k+1

vi (δi − αiσ
k
0 )−

N∑
i=k+1

v2
i .

If (u, v1, . . . , vN ) = σ , this expression is 0 and otherwise it is < 0 since Lemma 3.1 and (3.1)
imply that

`i ≥ `k+1 > σ k
0

for all i ≥ k + 1 so all terms on the left are negative. �

4. Proof of Theorem 2

In this section, we prove Theorem 2 for the APEP as defined in Section 1.3 and use the
notation defined there. We also define the Markov chain Yn = (αmin(n),∆n).

If δ j = 1 for all j , (3.2) with k = N can be rewritten as

N∑
j=1

α j

αN
(α j − αN ) < r −

β

αN
. (4.1)

Our first step is to show:

Lemma 4.1. The sequence Nn is tight.

Proof. Define the sets Am
= [0, r ]m × {0}N, for m ∈ N. Then ∆n ∈ Am if and only if Nn ≤ m.

Let M = M(r, ε) = d 4r
ε
e be the smallest integer > 4r/ε and suppose that Yn = y ∈ R+ × S .

From (4.1), at most M of the α j (n)’s can be ≥ αmin(n) + ε/4. With probability at least 1/4M ,
the next M mutants will be inserted to the right of αmin(n)+ ε/2. But then none of the predators
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to the left αmin(n) + ε/4 can be in the coexisting set at time n + M because otherwise, by the
definition of the APEP, any predator with α > αmin(n)+ ε/2 would also be in the set, and since
there are at least M such predators,

∞∑
j=1

d j (n + M) > M(ε/2− ε/4) > r

contradicting (4.1). Therefore, we have the uniform lower bound

P(∆n+M ∈ A2M
|Yn = y) ≥ 4−M (4.2)

which holds for all y ∈ R+ × S . Since this bound is uniform in y, tightness follows. �

Lemma 4.2. As n→∞, the marginal transition probabilities for ∆n:

pα(∆, ·) := P(∆n+1 ∈ ·|Yn = (α,∆))

converge in total variation to the transition probabilities for a time homogeneous Markov chain
Xn with transition probabilities p(∆, ·).

Proof. Suppose that Yn = (α,∆). Since 0 ≤ α j (n)− αmin(n) ≤ r for all n ≥ 1, we can see that
as α→∞, (4.1) simplifies to

N∑
j=1

d j (n) < r. (4.3)

This implies that, in the limit, the differences evolve according to the following algorithm: pick
a species 1 ≤ k ≤ Nn at random, insert a random mutation in (dk(n) − ε, dk(n) + ε), and then
modify the algorithm in Proposition 1.2 to use (4.3) instead of (4.1) with the rule that we shift
the differences before calculating the sum if the new insertion is left of 0. �

Our next result concerns the limiting behavior of Xn . Writing x instead of ∆ for the vector of
differences, we set

p(x, A) = P(Xn+1 ∈ A|Xn = x).

Lemma 4.3. Xn is a positive recurrent, Harris chain and hence, has a unique stationary
distribution π .

Proof. Following the arguments in Athreya and Ney [2], it suffices to show that there exists a
“regenerative” set A ⊂ S satisfying:

(C1) P x (τA <∞) = 1 for all x ∈ S where τA is hitting time of A.
(C2) There exists a probability measure ρ on A, λ > 0, and κ ∈ N such that pκ(x, B) ≥ λρ(B)

for all x ∈ A, B ⊂ A.

The same calculation that led to (4.2) shows that A2M satisfies the condition in (C1), but (C2)
may not hold for this set. We therefore define a set G (for good) that will be reached from A2M

with probability 1 and satisfies (C2). To this end, let

κ = 1+ sup

{
k :

k∑
j=1

j =
k(k + 1)

2
< 2r/ε

}
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and choose η small enough that

k∑
j=1

j (ε/2+ η) < r. (4.4)

Let G = {di − di+1 ∈ (ε/2, ε/2 + η) for i < κ and di = 0 for i ≥ κ}. In other words, d ∈ G
corresponds to κ types coexisting with α’s that have spacings between ε/2 and ε/2 + η units
apart.

The first step in showing that (C1) and (C2) hold for A = G is to show that if X0 = x ∈ A2M ,
then we can get to A in κ steps by the following path: first, we choose d1 (the predator with the
largest values of α) as our mutating predator at time 1 (which happens with probability at least
(2M)−1) and then choose a mutant type g1 in (d1 + ε/2, d1 + ε/2 + η) (which happens with
probability η/(2ε)). At the next time step, we choose g1 as our mutating type (which happens
with probability at least (2M + 1)−1) and then mutate to g2 ∈ (g1 + ε/2, g1 + ε/2 + η). If we
continue for κ steps, then each g j , 1 ≤ j ≤ κ , will be at least as big as d1+ jε/2, so by (4.3), no
member of the coexisting set at time 0 will remain at time κ . Furthermore, by (4.4), the shifted
set d ′j = gκ− j+1 − g1, 1 ≤ j ≤ κ , will satisfy (4.3) and therefore, Xκ ∈ G. It is clear from the
construction that we have

pκ(x,G) ≥

(
η

2ε(2M + κ)

)κ
. (4.5)

To prove (C2) holds, we first consider cylinder sets of the form B = {di − di+1 ∈ Bi ⊂

(ε/2, ε/2 + η) for i < κ and di = 0 for i ≥ κ}. Then if x ∈ G, taking the same path as led to
(4.5) yields the lower bound

pκ(x, B) ≥
|B1| · · · |Bκ−1|

(2ε)κ−1

(
1

2M + κ

)κ
. (4.6)

If we let ρ = the Lebesgue measure on G normalized to be a probability and recall that the
Radon–Nikodym derivative dpκ(x, ·)/dρ(·) evaluated at a general measurable set B can be
written as the limit of pκ(x, Bk)/ρ(Bk) where Bk is a sequence of cylinder sets, (C2) follows.

To check positive recurrence, we let τA be the first-hitting time of our regenerative set G. (4.2)
and (4.5) tell us that there is a positive constant θ = θ(r, ε) such that

p2M+κ(x,G) ≥ θ > 0

for any x ∈ S . Therefore, we have E x (τA) ≤ (2M + κ)/θ <∞, completing the proof. �

The construction in the previous lemma also yields:

Lemma 4.4. αmin(n)→∞ a.s. as n→∞.

Proof. We can modify the construction in the previous lemma to show that there exist constants
K , J ≥ 1, ρ > 0 such that

P(α1((n + 1)K )− α1(nK ) ≥ Jε/2|YnK = y) ≥ ρ

for any y ∈ R+ × S and n ≥ 0. Therefore, α1(n)→ ∞ a.s. by the Borel–Cantelli Lemma and
the result follows since α1(n)− αmin(n) < r . �

Theorem 4. As n→∞, ‖Pα(∆n ∈ ·)− π(·)‖T V → 0 for any initial α ∈ R+.
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Proof. It suffices to prove the result for the subsequences n = mκ + j for 0 ≤ j < κ , but
then by using the Markov property at time j , it is enough to prove the result for n = mκ and a
general initial distribution. To prepare for the proof, recall that one can modify the state space of
a Harris recurrent Markov chain to have a point ζ that corresponds to being distributed on the set
A according to ρ with the exact position being independent of the past.

To prove the result, we will construct a process (X̃n, ∆̃n) on S×S such that the marginal law
of ∆̃n is the law of ∆nκ , the marginal distribution of X̃n is π for all n, and P(X̃n 6= ∆̃n) → 0
as n → ∞. Let U1,U2, . . . and V1, V2, . . . be independent and uniform on [0, 1]. To begin, let
qα(x, ·) ≡ P(∆κ ∈ ·|∆0 = (α, x)) and

q(x, ·) ≡ lim
α→∞

qα(x, ·) = pκ(x, ·)

by Lemma 4.2. Define the function Jn : S × [0, 1] → S by

P(Jn(x,Un) ∈ B) = qαmin(nκ)(x, B).

Since qαmin(nκ)(x, ·) ∈ M1(S) and S is a separable metric space, defining Jn is possible by
Theorem 3.2 in Billingsley [4]. Suppose that X̃n has distribution π , define Zn+1 = Jn(X̃n,Un)

and

µn(A) ≡ P(Zn ∈ A|αmin(nκ)) =
∫

qαmin(nκ)(x, A)π(dx),

and let (X̃n+1, Zn+1) be a maximal coupling of (Xn, Zn) such that

P(X̃n+1 6= Zn+1) = ‖µn − π‖T V

(see, for example Thorisson [27]). Then from the definition of µn and (X̃n+1, Zn+1) we have

ηn+1 ≡ P(X̃n+1 6= Zn+1)

=

∥∥∥∥∫ qαmin(nκ)(x, ·)π(dx)−
∫

q(x, ·)π(dx)

∥∥∥∥
T V
→ 0

as n→∞ by Lemmas 4.2 and 4.4.
When {∆̃n = X̃n}, we set ∆̃n+1 = Jn(X̃n,Un) = Zn+1, so

P(X̃n+1 6= ∆̃n+1, X̃n = ∆̃n) ≤ ηn+1.

On {X̃n 6= ∆̃n}, we take ∆̃n+1 = Jn(X̃n, Vn). (4.6) implies that q(x, ζ ) ≥ λ, so it follows from
Lemma 4.2 that if αmin(nκ) ≥ α0 then q(αmin(nκ), x, ζ ) ≥ λ/2, and we have

P(X̃n+1 = ∆̃n+1|X̃n 6= ∆̃n) > λ/2

so if ζn = P(X̃n 6= ∆̃n), then

ζn+1 ≤ (1− λ/2)ζn + ηn+1.

Iterating yields the inequality

ζn+1 ≤

n+1∑
i=1

(1− λ/2)n+1−iηi . (4.7)

Since |1− λ/2| < 1 and ηn → 0, the right hand side of (4.7) must also go to zero which yields

‖P(∆nκ ∈ ·)− π(·)‖T V ≤ P(X̃n 6= ∆̃n) = ηn → 0

completing the proof. �
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It remains to prove the result on the linear growth of αmin(n). Since α j − αmin ≤ r , it suffices
to establish this for αmax . To do this, we look at the chains Zn = (Xn,Un, Vn) with Un uniform
on [0, 1] giving the index k = dNnUne of the value to be mutated, and Vn independently uniform
on [−ε, ε] giving the change in the value due to mutation. It is clear that the distribution of Zn
will converge in distribution to the product measure π̃ = π × uniform[0, 1] × uniform[−ε, ε],
so if we let f (Zn) = αmax(n) − αmax(n − 1) be the amount shifted at the nth step, then f is
non-negative and bounded above by ε so the strong law for functionals of Markov chains implies

αmax(n)− αmax(0)
n

=
1
n

n∑
m=1

f (Zm)→

∫
f (x)π̃(dx) = ᾱ. (4.8)

Since f > 0 with positive probability, ᾱ > 0. To extend this result to the real chain, let (X̃n, ∆̃n)

be the coupled chain from the proof of Theorem 4 and define Dn = 1 if X̃n 6= ∆̃n and Dn = 0
otherwise. From the proof of Theorem 4, we can dominate Dn by a Markov chain Bn that has

P(Bn+1 = 1|Bn = 0) = ηn+1

P(Bn+1 = 0|Bn = 1) =
λ

2

i.e., we can define the two processes on the same space such that Bn ≥ Dn for all n. Coupling
Bn with a homogeneous chain Bρn that has P(Bρn+1 = 1|Bρn = 0) = ρ, P(Bρn+1 = 0|Bρn = 1) =
λ/2, and stationary distribution πρ with πρ(1) = ρ/(ρ + λ/2), and recalling that ηn → 0, it
follows that

lim sup
n→∞

1
n

n∑
m=1

Dm ≤ lim sup
n→∞

1
n

n∑
m=1

Bm ≤
ρ

ρ + λ/2
.

Since this holds for any ρ > 0, we must have

lim
n→∞

1
n

n∑
m=1

Dm = 0

and the desired result now follows from (4.8) and the fact that 0 ≤ αmax(n) − αmax(n − 1) ≤ 1
for all n ≥ 0.

5. Proof of Theorem 3

In this section, we prove Theorem 2 for the DPEP as defined in Section 1.3 and use the
notation defined there. Since one of the keys to deriving our results will be comparison with a
branching random walk, we continue adopting the perspective that X j (t) refers to the position
of particle j on the positive half-line. Note that if we set α j = 1, k = N in (3.2), we obtain the
condition for coexistence:

δN

(
β +

N∑
j=1

(
1−

δ j

δN

))
< r. (5.1)

Proof of Lemma 1.1. Let X i (t) = − log(δi (t)) and X1(t) > · · · > X M (t) be the rightmost M
particles at this time. It should be clear from (5.1) that if

e−X M (T )(β + M) < r (5.2)
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then we will have Nt ≥ M for t ≥ T . Let y = − log(r/(β + M)). The rightmost particle is
increasing in t . Since the number of particles changes by ≤ 1 each time and

∑
∞

m=1 1/m = ∞,
the rightmost particle gives birth to the right of its current position plus 1/2 infinitely many times.
Thus at some time T , we will have a point ≥ y+M . Since |X i (t)− X i+1(t)| ≤ 1 and points are
only erased when (5.1) fails, (5.2) follows. �

5.1. Asymptotics for Xmax

For the remainder of the paper, we let Z t be a branching random walk started from one particle
at 0, in which particles give birth at rate 1 and displacements are uniform on [−1, 1]. It is well
known that the mean measure

E Z t (A) = et P(St ∈ A) (5.3)

where St is a continuous time random walk that jumps at rate 1 and takes step uniform on [−1, 1].
If we let φ(θ) = (eθ − e−θ )/2θ be the moment generating function for the displacements, then

Eeθ St =

∞∑
n=0

e−t tn

n!
φn(θ) = exp(t (φ(θ)− 1)).

Chebyshev’s inequality implies that if θ > 0,

P(St > xt) ≤ exp(−t (θx − φ(θ)+ 1)) (5.4)

and standard large deviations results imply that for x ≥ 0,

1
t

log P(St > xt)→ Λ(x) = −
(

sup
θ>0
{θx − φ(θ)} + 1

)
(5.5)

where Λ(0) = 0 and Λ is strictly decreasing on [0,∞).
Biggins [3], Theorem 2, shows that the rightmost particle in the branching random walk

Zmax(t)/t → a a.s. where a, defined in (1.6), is the smallest x > 0 such that Λ(x) ≤ −1.
Since the particles X i (t) in our evolution model are a subset of those in the branching random
walk, we have

lim sup
t→∞

X1(t)/t ≤ a.

The remainder of this section is dedicated to the proof of the lower bound

lim inf
t→∞

X1(t)/t ≥ a. (5.6)

By Lemma 1.1, we know that there exists some time T such that Nt ≥ M for t ≥ T . By the
proof of Lemma 1.1, we can take T to be the first time e−X M (T )(β+M) < r , which is a stopping
time, so the future behavior of the process is not affected.

Lemma 5.1. If we start the toy model at time T with positions equal to the rightmost M particles
at this time X1(T ) > · · · > X M (T ), then the X i (t) and Y M

i (t) can be defined on the same space
such that X i (t) ≥ Y M

i (t) for all 1 ≤ i ≤ M and t ≥ T .

Proof. Couple the birth times of X i (t) and Y M
i (t) and the displacements of their offspring. Recall

that if a birth from Xk(t) with k > M lands to the right of some X i (t), i ≤ M , we renumber
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the X i and put them in decreasing order. Births of particles from Xk(t) for k > M may cause
the X ’s to get ahead of the Y ’s, but coupled births for i ≤ M cause the vectors of X ’s and Y ’s to
move in parallel and the desired comparison follows. �

For our next comparison consider the branching random walk started with one particle
at Y M

1 (0). Let Tk be the time of the kth birth, with T0 = 0, and for t ∈ [Tk−1, Tk) let
ζ k

1 (t) > ζ k
2 (t) > · · · > ζ k

k (t) be the locations of the particles present.

Lemma 5.2. We can couple the branching random walk and the toy model so that for t ∈
[Tk−1, Tk), Y M

j (t) ≥ ζ
k
j (t) for 1 ≤ j ≤ k and k < M.

Proof. Couple the birth times of ζ k
j (t) and Y M

j (t) for j ≤ k and t ∈ (Tk−1, Tk], i.e., there will
be no births in (Tk−1, Tk) and the same particle will give birth at time Tk . Births of particles from
Y j (t) for j > k may cause the Y ’s to get ahead of the ζ ’s, but coupled births for j ≤ k cause the
vectors of ζ ’s and Y ’s to move in parallel. �

Lemma 5.3. Let BM be the time of the Mth birth in the branching random walk.

lim inf
t→∞

Y M
1 (t)

t
≥

E Zmax (BM )

E BM
→ a as M →∞

Proof. Let Tk,1 = Tk where the Tk are as in Lemma 5.2 and for j > 1, let Tk, j , k ≤ M , denote
the time of the kth birth in a BRW started with a single particle at Y M

1 (TM, j−1) at time TM, j−1
and let ζM, j denote the position of the rightmost particle at time TM, j . Repeatedly applying the
comparison in Lemma 5.2 yields

Y M
1 (t)

t
≥

∑
j : TM, j≤t

(Y M
1 (TM, j+1)− Y M

1 (TM, j ))

t

≥

∑
j : TM, j≤t

(ζM, j+1 − Y M
1 (TM, j ))

t
.

But the time intervals TM, j+1−TM, j are iid with mean E BM so the first part of the result follows
from the renewal theorem. To prove the second part, we note that Biggins’ result implies

Zmax(BM )/BM → a almost surely.

Since BM = ξ1 + · · · + ξM where the ξi are independent exponentials with mean 1/ i , it is easy
to see that BM/E BM → 1, so

Zmax(BM )/E BM → a almost surely.

Therefore, the result will follow from the dominated convergence theorem if we can show that

E

(
sup

Zmax(BM )

E BM

)
<∞.

By the Cauchy–Schwarz inequality, it suffices to show

E

(
sup
t≥1

Zmax(t)

t

)2

<∞ (5.7)
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and

E

(
sup

BM

E BM

)2

<∞. (5.8)

To prove (5.7), we note that (5.3) and (5.4) imply that

P(Zmax(t) > xt) ≤ et (1+Λ(x))

and since Λ is concave with Λ(0) = 0 and Λ(a) = −1 with a < 1, it follows that for x ≥ 1,

P(Zmax(t) > xt) ≤ et (1−x).

Now if Zmax(t)/t > 2x for some t , then since Zmax(t) is non-decreasing, we must have
Zmax(s)/s > x for some s ∈ [t, t + 1] and therefore, summing over all integers t from 1 to
∞, we see that if x > 2,

P

(
sup
t≥1

Zmax(t)/t > 2x

)
≤ e1−x

which proves (5.7). To prove (5.8), we note that E BM =
∑M

i=1 1/ i and

E exp(θBM ) =

M∏
i=1

1
1− θ/ i

for 0 < θ < 1, so by Chebyshev’s inequality,

P(BM > yE BM ) ≤ exp

(
−θy

M∑
i=1

1
i
−

M∑
i=1

log(1− θ/ i)

)
.

Taking θ = 1/2 and choosing c so that log(1− x) ≥ −x − cx2 when 0 < x < 1/2, we have

P(BM > yE BM ) ≤ exp

(
M∑

i=1

1
2i
(1− y)+

c

4i2

)

≤ C exp
(

1− y

2
log(M + 1)

)
= C.(M + 1)(1−y)/2.

Therefore if y > 3,
∞∑

M=2

(M + 1)(1−y)/2
≤

∫
∞

2
x (1−y)/2 dy =

2(3−y)/2

(y − 3)/2

which yields (5.8), completing the proof. �

(5.6) follows from Lemmas 5.1 and 5.3 which completes the proof that the speed of the
rightmost particle is a. We shall complete the proof of Theorem 3 in the next section by showing
the speed of the leftmost particle is b, but first we pause to prove Corollary 1.

Proof of Corollary 1. Suppose we choose ε small enough that εM(M − 1)/2 < r . Using the
coupling in Lemma 5.2 we can use the particles ζ k

j , j ≤ k ≤ M , from the branching random
walk started at Xmax to get a lower bound on the rightmost k ≤ M particles in the predator
evolution with fixed δ. An induction argument shows that the spacings between the corresponding
particles in the predator evolution are≤ ε at all times. Since we have assumed ε

∑M−1
j=1 j < r , the

rightmost k ≤ M particles are never killed. The remainder of the proof is the same as before. �
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5.2. Asymptotics for Xmin

In order to get the speed of the leftmost particle, we will need the following result on a
branching random walk with killing which is an adaptation of Biggins [3], Theorems 1 and
2, which proves this result without killing.

Lemma 5.4. Let Z t (γ, A) denote the number of particles in A under a branching random walk
with birth rate 1, displacements uniform on [−1, 1], killing to the left of −K + γ t , and started
with one particle at 0. Then for any c > γ on the set of non-extinction

lim
1
t

log Z t (γ, [ct,∞)) = I (c) (5.9)

where I (c) = 1+ Λ(c), and the probability of extinction tends to 0 as K →∞.

Proof. Theorem 2 in Biggins along with (5.3) and (5.5) yields (5.9) in the case of no killing and
since Z t (γ, [ct,∞)) ⊂ Z t ([ct,∞)), we get the upper bound in (5.9). To get the lower bound, we
recall that to prove the corresponding lower bound for the process without killing, Biggins lets
Z k

m+1 be the points at time (m+1)k that are at least kc units to the right of their ancestor in Z k
m at

time mk. |Z k
m | is a branching process with offspring distribution |Z k

1 | so (|Z k
m |)

1/m
→ E |Z k

1 | on
the non-extinction set. Combining (5.3) and (5.5) implies (1/k) log E |Z k

1 | → I (c) which yields
the desired lower bound.

To extend this construction to the process with killing, let Z̄ k
m+1 be the points at time (m+1)k

that are at least kc units to the right of their ancestor in Z̄ k
m at time mk and are not killed by going

to the left of −K + γ t of mk ≤ t ≤ (m + 1)k. By construction, all points in Z̃ k
m are ≥ cmk and

we have chosen γ < c, so for large m, the killing has little effect and on the set of non-extinction
we have

1
m

log |Z̄ k
m | → log E |Z k

1 |.

Using (5.3) and (5.5) again gives the desired lower bound. �

With this result in hand, we can complete the:
Proof of Xmin(t)/t → b. When Xmin(t) increases we must have

Nt e−Xmin(t) ≥ r.

Since the particles in X are a subset of the particles in the branching random walk, it follows that
if Xmin(t) ≥ (b + ε)t ,

Nt e−Xmin(t) ≤ Z t ([(b + ε)t,∞))e−(b+ε)t → 0

as t →∞ since I (c) < c for all c > b. Therefore, lim sup Xmin(t)/t ≤ b a.s.
To prove that lim inf Xmin(t)/t ≥ b a.s., let c ∈ (b, a) and ε > 0. Choose K large enough that

the probability of extinction in the branching random walk with killing at −k + bt is less than
ε for all k ≥ K and then take T large enough that X1(t) ≥ ct for all t ≥ T (which is possible
since lim X1(t)/t = a) and that bT > K . Suppose that Xmin(t) ≤ (b − ρ)t for some ρ > 0.
Then by comparing with a branching random walk with killing at −X1(T )+ bt , we have

F(t) := e−Xmin(t)
Nt∑

j=1

(1− e−X j (t)/Xmin(t))

≥ e−(b−ε)t (1− e−(c−b+ε)t )Z t (b, [ct,∞)). (5.10)
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But on the non-extinction set (which has probability at least 1− ε), we have

lim
1
t

log[e−(b−ε)t (1− e−(c−b+ε)t)Z t (γ, [ct,∞))] = I (c)− b + ε→ ε > 0

as c ↓ b and therefore, we must have Xmin(t) > (b − ε)t eventually or there would
exist a sequence of points ti → ∞ for which F(ti ) → ∞, contradicting (1.5). Therefore,
P(lim inf Xmin(t)/t < b) < ε and since ε is arbitrary, this proves the result.

To conclude that lim inft→∞(log Nt )/t ≥ b a.s., note that if ε > 0 then for large times there
are at least exp((I (c) − ε)t) points of X to the left of ct . Picking c close to b and ε small gives
the desired result. �
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