JOURNAL OF ALGEBRA 143, 46-56 (1991)

The Lie Dimension Subgroup Conjecture*

THADDEUS C. HURLEY

Department of Mathematics, University College, Galway, Ireland

AND

SUDARSHAN K. SEHGAL

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Communicated by Walter Feit

Received December 11, 1989

For every $n \ge 9$ a group G_n is constructed so that its *n*th Lie dimension subgroup contains properly its *n*th lower central subgroup, settling negatively the Lie dimension subgroup conjecture. The question remains open for n = 7 and 8. © 1991 Academic Press, Inc.

1. INTRODUCTION

Let $\Delta(G)$ be the augmentation ideal of an integral group ring $\mathbb{Z}G$. Define the Lie powers $\Delta^{(i)}(G)$ of $\Delta(G)$ inductively by $\Delta^{(1)}(G) = \Delta(G)$, $\Delta^{(m+1)}(G) = (\Delta^{(m)}(G), \Delta(G))\mathbb{Z}G$, the ideal generated by the Lie products $(x, y) = xy - yx, x \in \Delta^{(m)}(G), y \in \Delta(G)$. Let $\gamma_n(G)$ be the *n*th term of the lower central series of G. Denote by $D_n(G)$ and $D_{(n)}(G)$ the *n*th dimension subgroup and the *n*th Lie dimension subgroup respectively of G, namely,

$$D_n(G) = G \cap (1 + \Delta^n(G)), \qquad D_{(n)}(G) = G \cap (1 + \Delta^{(n)}(G)).$$

Denoting by [x, y] the group commutator $x^{-1}y^{-1}xy$, we have

$$[x, y] - 1 = x^{-1}y^{-1}(xy - yx)$$

= $x^{-1}y^{-1}[(x - 1)(y - 1) - (y - 1)(x - 1)]$
= $x^{-1}y^{-1}(x - 1, y - 1).$

It follows by induction that

$$\gamma_n(G) \subseteq D_{(n)}(G) \subseteq D_n(G).$$

* Research supported by NSERC Canada.

The dimension subgroup conjecture, $D_n(G) = \gamma_n(G)$, was disproved for n = 4 by means of an example by Rips [7]. N. Gupta [2] has recently produced a metabelian 2-group \mathscr{G} (depending on *n*) such that $D_n(\mathscr{G}) \neq \gamma_n(\mathscr{G})$ for all $n \ge 4$. The dimension subgroup conjecture is however known to be true for $n \le 3$ and for n = 4 if G is of odd order (see [1, 5]). The Lie dimension subgroup conjecture refers to the equality $D_{(n)}(G) = \gamma_n(G)$. This is known to be true for $n \le 6$ and for metabelian groups [8]. We disprove the conjecture for all $n \ge 9$ by constructing an example which is a modification of the Gupta group. The question remains open for n = 7 and 8.

In view of our example one might expect that $\gamma_n(G)$ is the group associated with the restricted Lie powers of $\Delta(G)$. These Lie powers are defined inductively,

$$\Delta^{[1]}(G) = \Delta(G), \qquad \Delta^{[m+1]}(G) = (\Delta^{[m]}(G), \Delta(G)),$$

the additive group generated by the Lie products. Then it is a nontrivial result of Gupta and Levin [3] that

$$D_{[n]}(G) = G \cap (1 + \Delta^{[n]}(G)\mathbb{Z}G)$$

contains $\gamma_n(G)$. Thus $\gamma_n(G) \subseteq D_{[n]}(G) \subseteq D_{(n)}(G) \subseteq D_n(G)$ for all *n*. We point out in Section 5 by means of an example G that for $n \ge 14$, $D_{[n]}(G) \neq \gamma_n(G)$.

We construct our group G in the next section. For the definition and properties of basic commutators we refer to [4]. Recall that a simple basic commutator is one of the form $[x_{i_1}, x_{i_2}, ..., x_{i_n}]$ with $i_1 > i_2 \le i_3 \le \cdots \le i_n$.

2. Construction of G

Let F be a free group generated by a set of generators Y. Let n be an integer ≥ 9 . Define t = (n-3)/2 if n is odd and t = (n-4)/2 if n is even. Let a, b, c be distinct simple basic commutators of weight t and assume a > b > c. Let r be a simple basic commutator of weight 2 when n is odd and of weight 3 when n is even. Assume that there is at least one symbol in each of a, b, c, r which is not in the others. When n = 10 and t = 3 assume r < c in the ordering of the basic commutators of weight 3. A more precise specification of these basic commutators will be given in Section 3. Let p = n - t - 1. Define

$$x_1 = [a, r], y_1 = [b, r], z_1 = [c, r]$$

$$x_2 = [a, r, a], y_2 = [b, r, b], z_2 = [c, r, c].$$

Then x_1 , y_1 , z_1 are basic commutators of weight p and x_2 , y_2 , z_2 are basic commutators of weight (n-1). We construct G = F/R in a number of stages. Write $\gamma_s = \gamma_s(F)$. Set

$$W = \{ [a, b], [b, c], [c, a], x_1, y_1, z_1, x_2, y_2, z_2 \}.$$

Define

$$R_1 = \gamma_n. \tag{1}$$

Then the elements in W generate a free abelian group modulo γ_n . Let $H = \langle [a, b, x], [b, c, x], [a, c, x] : x \in F \rangle^F$. Set

$$R_2 = \gamma_n \cdot H. \tag{2}$$

Each element in H is of weight $\ge (2t+1)$ and contains the symbols from two of $\{a, b, c\}$. Hence each element of H may be written as a product of basic commutators each of weight $\ge (2t+1)$ and containing the symbols of two of $\{a, b, c\}$. Thus in F/R_2 the elements of W generate a free abelian group.

Let $w_1 = [a^{\alpha(6)}, r], w_2 = [b^{\alpha(4)}, r], w_3 = [c^{\alpha(2)}, r],$ where $\alpha(k) = 2^k$. Define

$$\boldsymbol{R}_3 = \langle \boldsymbol{w}_1, \boldsymbol{w}_2, \boldsymbol{w}_3 \rangle^F \cdot \boldsymbol{R}_2. \tag{3}$$

Recalling the notation

$$[x, ny] = [x, \underbrace{y, y, \dots, y}_{n}]$$

we have the

LEMMA 1. If
$$[x, y]$$
, $[x, 2y]$, ..., $[x, sy]$ commute then
 $[x, y^{s}] = [x, y]^{s} [x, 2y]^{(\frac{s}{2})} \cdots [x, sy].$

Proof. Induction on *s.*

A direct consequence is the

LEMMA 2. In F/R_3 , $[a, r, a^s] = [a, r, a]^s = [a^s, r, a]$.

In F/R_3 we have:

LEMMA 3. (i) The order of
$$x_2$$
 is $\alpha(6)$, of y_2 is $\alpha(4)$, and of z_2 is $\alpha(2)$.
(ii) $x_1^{\alpha(6)} = x_2^{\alpha(5)}; y_1^{\alpha(4)} = y_2^{\alpha(3)}; z_1^{\alpha(2)} = z_2^{\alpha(1)}$.

(iii) The order of x_1 is $\alpha(7)$, of y_1 is $\alpha(5)$, and of z_1 is $\alpha(3)$.

Proof. We give the proof for x_2 and x_1 . The other cases are similar. By Lemma 2, $x_2^{\alpha(6)} \equiv [a, r, a^{\alpha(6)}] \equiv [a^{\alpha(6)}, r, a] \equiv 1 \mod R_3$. We now show that $x_2^{\alpha(5)} \neq 1 \mod R_3$. If $x_2^{\alpha(5)} \in R_3$ then $x_2^{\alpha(5)} \equiv w \mod \gamma_n$ with $w \in \langle w_1 \rangle^F$. Also,

$$w \equiv w_1^s \Pi[w_1, y_i]^{\pm 1} \mod \gamma_n \quad \text{with} \quad y_i \in F.$$
 (*)

By Lemma 1,

$$w_1 \equiv [a, r]^{\alpha(6)} [a, r, a]^{\binom{\alpha(6)}{2}} \mod \gamma_n$$

Since $x_2 \in \gamma_{n-1}$ this implies that s = 0 in (*). Further, by Lemma 1,

$$[w_1, y_i] \equiv [[a, r]^{\alpha(6)}, y_i] \equiv [a, r, y_i]^{\alpha(6)} \mod \gamma_n.$$

It follows from (*) that $x_2^{\alpha(5)}$ is congruent mod γ_n to a product of basic commutators each to the power $\alpha(6)$ which is impossible as x_2 is a basic commutator.

(ii) By Lemma 2,

$$x_{1}^{\alpha(6)} = [a, r]^{\alpha(6)} \equiv [a^{\alpha(6)}, r][a, r, a]^{-\binom{\alpha(6)}{2}}$$
$$\equiv [a, r, a]^{-\alpha(5)(\alpha(6)-1)} \mod R_{3}$$
$$\equiv [a, r, a]^{\alpha(5)} \qquad (\text{as } x_{2}^{\alpha(6)} \equiv 1)$$
$$= x_{2}^{\alpha(5)}.$$

(iii) That the order of x_1 is $\alpha(7)$ follows from (i) and (ii).

Let $w_4 = z_2^{-1} y_2^{\alpha(2)}; w_5 = y_2^{-1} x_2^{\alpha(2)}; w_6 = [a, b]^{-\alpha(4)} x_2^{\alpha(2)}; w_7 = [b, c]^{-\alpha(2)} x_2^{\alpha(2)}; w_8 = [c, a]^{\alpha(2)} x_2^{\alpha(1)}$. Define

$$R_4 = \langle w_4, w_5, w_6, w_7, w_8 \rangle^F \cdot R_3.$$
(4)

in.

Note that $[R_4, F] \subseteq R_3$. This is because $[w_i, x] \in R_3$ for $x \in F$, i = 4 to 8.

LEMMA 4. The order of [a, b] in F/R_4 is $\alpha(8)$.

Proof. This follows because W generates a free abelian group in F/R_2 and the order of x_2 in F/R_3 is $\alpha(6)$. Observe that [a, b], [b, c], [c, a] generate a free abelian group in F/R_3 .

Let $w_9 = a^{-\alpha(6)} y_1^{\alpha(2)} z_1^{\alpha(1)}$; $w_{10} = b^{-\alpha(4)} x_1^{-\alpha(2)} z_1$; and $w_{11} = c^{-\alpha(2)} x_1^{-\alpha(1)} y_1^{-1}$. Define

$$R = \langle w_9, w_{10}, w_{11} \rangle^F \cdot R_4.$$
 (5)

Let G = F/R. This completes the construction of G.

HURLEY AND SEHGAL

3. Order of [a, b]

The purpose of this section is to show that the order of [a, b] in G is precisely $\alpha(8)$. Set $W = \{x_1, x_2, y_1, y_2, z_1, z_2, [a, b], [b, c], [c, a]\}$ and $T = \{a, b, c, r\}$. Modulo γ_n , the relators (2), (3), and (4) are all relations between elements of W (e.g.,

$$[a^{\alpha(6)}, r] \equiv [a, r]^{\alpha(6)} [a, r, a]^{\binom{\alpha(6)}{2}}.$$

We are interested in relations modulo γ_n involving elements of W which are deducible from relators (5). We claim that these are already deducible from relators (2), (3), and (4). Then it will follow from Lemma 4 that the order of [a, b] in F/R is $\alpha(8)$. We may factor out any commutator y for which y and [y, x], $x \in F$ when written as a product of basic commutators modulo γ_n does not involve an element of W.

We now specify more precisely the elements a, b, c, and r. Let F be free on a_2 , a_1 , b_2 , c_2 , r_2 with the ordering $a_1 < r_2 < c_2 < b_2 < a_2$. Define

$$a = [a_2, (t-1)a_1], \quad b = [b_2, (t-1)a_1], \quad c = [c_2, (t-1)a_1]$$

and

$$r = [r_2, a_1]$$
 if n is odd and $= [r_2, a_1, a_1]$ if n is even.

Assume also that r is the smallest basic commutator of its weight. The consequences of any commutator involving more than one occurrence of r_2 will also involve r_2 more than once. The elements of W involve r_2 once only and hence we can assume that any commutator involving r_2 more than once is one.

LEMMA 5.
$$[y, y_1 y_2 \cdots y_n] = \Pi[y, y_{i_1}, y_{i_2}, ..., y_{i_n}]$$
 with $i_1 < i_2 < \cdots < i_s$.

Proof. By a standard commutator identity

$$[y, y_1 y_2 \cdots y_n] = [y, y_2 \cdots y_n] [y, y_1] [y, y_1, y_2 \cdots y_n].$$

Applying induction to $[y, y_2 \cdots y_n]$ and $[[y, y_1], y_2 \cdots y_n]$ we obtain the result.

Going mod γ_{t+1} it is easily seen that we have only to concentrate on consequences of the form [w, x], $w = w_9$, w_{10} , w_{11} , $x \in F$. Consider consequences of the word $w = w_9 = a^{-\alpha(6)} y_1^{\alpha(2)} z_1^{\alpha(1)}$ involving elements from W modulo γ_n . Then for $y \in F$,

$$[w, y] = [a^{-\alpha(6)} y_1^{\alpha(2)} z_1^{\alpha(1)}, y]$$

$$\equiv [a^{-\alpha(6)}, y] [y_1^{\alpha(2)}, y] [z_1^{\alpha(1)}, y] \mod \gamma_n.$$

For any $y \in F$, $y \equiv \beta_1^{\alpha_1} \beta_2^{\alpha_2} \cdots \beta_l^{\alpha_l}$ modulo γ_{n-l} , where β_i are basic commutators with $\beta_1 < \beta_2 < \cdots < \beta_l$. Hence by Lemma 5, all commutators [w, y] are a product modulo γ_n of elements of the form

$$[a^{-\alpha(6)},\beta_1,\beta_2,...,\beta_s][y_1^{\alpha(2)},\beta_1,\beta_2,...,\beta_s][z_1^{\alpha(1)},\beta_1,\beta_2,...,\beta_s] \quad (**)$$

with β_i basic commutators satisfying $\beta_1 \leq \beta_2 \leq \cdots \leq \beta_s$ and their inverses. (Note that the negative α_i can be eliminated using $[y, x^{-1}]^{-1} = [y, x][y, x, x^{-1}]$).

Define *constituents* of a basic commutator as follows. The constituents of a generator of F is the null set. Suppose c is a basic commutator with c = [l, q] and the constituents of l and q have been defined inductively. Then the constituents of c are l, q and the constituents of l and q.

Also if c is a basic commutator and c = [l, q] we term l the first component of c and q the second component of c.

LEMMA 6. Suppose [l, q] is a basic commutator. Suppose the second components of l and q are $\leq y$. Then [l, q, y] is a product modulo γ_m of basic commutators in which l and q are constituents where m = 2 weight l + weight q + weight y.

Proof. If $q \le y$ then [l, q, y] is a basic commutator. Otherwise, suppose q > y. Then

$$[l, q, y] = [l; q, y]^{[l, y][l, q]} [l, q; l, y][l, q; q, y]^{[l, y]} [l, y; q, y][l, y, q]^{[q, y]}$$
$$\equiv [l; q, y][l, q; q, y][l, y; q, y][l, y, q][l, y, q; q, y] \mod \gamma_m.$$

All commutators, on the right are basic and each involves l and q as constituents. This proves the lemma.

Now, we return to (**). We note that $[a, \beta_1, ..., \beta_s]$ is always a basic commutator or the inverse of one when s = 1 and $\beta_1 > a$. Consider then $[y_1, \beta_1] = [b, r, \beta_1]$ and $[z_1, \beta_1] = [c, r, \beta_1]$. When $r \leq \beta_1$ these are basic. Otherwise suppose $r > \beta_1$ and consider

$$[b, r, \beta_1] = [b; r, \beta_1]^{[b, \beta_1][b, r]} [b, r; b, \beta_1][b, r; r, \beta_1]^{[b, \beta_1]} \times [b, \beta_1; r, \beta_1][b, \beta_1, r]^{[r, \beta_1]} \equiv [b; r, \beta_1][b, \beta_1; r, \beta_1][b, \beta_1, r].$$

Now by Lemma 6, $[b, r, \beta_1, ..., \beta_s]$ is congruent to a product with either $[r, \beta_1]$ or $[b, \beta_1]$ as a constituent. Note that weight of $\beta_1 \leq$ weight of r.

Similarly $r \leq \beta_1$ or else $[z_1, \beta_1, ..., \beta_s]$ is congruent to a product with either $[z, \beta_1]$ or $[c, \beta_1]$ as a constituent. Also note that when $\beta_1 < r$ then $[a^{-\alpha(6)}, \beta_1, ..., \beta_s]$ is congruent to a product of basic commutators none

contained in W. Thus the consequences of w involving elements of W are deducible from

$$[a^{-\alpha(6)}, \beta_1, ..., \beta_s][y_1^{\alpha(2)}, \beta_1, ..., \beta_s][z_1^{\alpha(1)}, \beta_1, ..., \beta_s],$$

where $r \leq \beta_1$. If $s \geq 2$, the basic commutators produced are not in W. So we need only consider the case $\beta_1 \in T$. We work modulo basic commutators not in W.

- (i) Suppose $\beta_1 = a$ then $[a^{-\alpha(6)}, a][y_1^{\alpha(2)}, a][z_1^{\alpha(1)}, a] \equiv 1$.
- (ii) Suppose $\beta_1 = b$ then

$$[a^{-\alpha(6)}, b][y_1^{\alpha(2)}, b][z_1^{\alpha(1)}, b]$$

$$\equiv [a, b]^{-\alpha(6)} [b, r, b]^{\alpha(2)} \equiv [a, b]^{-\alpha(6)} y_2^{\alpha(2)}$$

$$\equiv ([a, b]^{-\alpha(4)} y_2)^{\alpha(2)} = ([a, b]^{-\alpha(4)} x_2^{\alpha(2)} w_5^{-1})^{\alpha(2)}$$

$$= (w_6 w_5^{-1})^{\alpha(2)}.$$

(iii) Suppose $\beta_1 = c$ then

$$[a^{-\alpha(6)}, c][y_1^{\alpha(2)}, c][z_1^{\alpha(1)}, c] \equiv [a, c]^{-\alpha(6)} z_2^{\alpha(1)}$$

$$\equiv ([a, c]^{-\alpha(5)} z_2)^{\alpha(1)} = ([a, c]^{-\alpha(5)} y_2^{\alpha(2)} w_4^{-1})^{\alpha(1)}$$

$$= ([a, c]^{-\alpha(5)} x_2^{\alpha(4)} w_5 w_4^{-1})^{\alpha(1)} = (w_8^{-\alpha(3)} w_5 w_4^{-1})^{\alpha(1)}.$$

(iv) Finally, let $\beta_1 = r$ then $[a^{-\alpha(6)}, r][y_1^{\alpha(2)}, r][z_1^{\alpha(1)}, r] \equiv (w_1)^{-a^{-\alpha(6)}}$.

It follows similarly that the consequences of w_{10} and w_{11} modulo γ_n involving elements of W are all deducible from relators (2), (3), and (4). This concludes the proof that the order of [a, b] in F/R is $\alpha(8)$.

We need one more lemma. Recall that p = (n - t - 1).

LEMMA 7. (i) $b^{\alpha(7)}c^{\alpha(6)} \in \gamma_p^{\alpha(6)} \cdot \gamma_{n-1} \cdot R.$ (ii) $a^{\alpha(7)}c^{-\alpha(5)} \in \gamma_p^{\alpha(4)} \cdot \gamma_{n-1} \cdot R.$ (iii) $a^{\alpha(6)}b^{\alpha(5)} \in \gamma_p^{\alpha(2)} \cdot \gamma_{n-1} \cdot R.$ *Proof.* (i) Let

 $b^{\alpha(7)}c^{\alpha(6)} = b^{\alpha(4)\alpha(3)}c^{\alpha(2)\alpha(4)}$

$$\equiv (x_1^{-\alpha(2)}z_1)^{\alpha(3)} (x_1^{-\alpha(1)}y_1^{-1})^{\alpha(4)} \pmod{R} \quad (by \text{ relators } (5))$$

$$\equiv x_1^{-\alpha(5)}z_1^{\alpha(3)}x_1^{-\alpha(5)}y_1^{-\alpha(4)} \qquad (mod R)$$

$$\equiv x_1^{-\alpha(6)}y_1^{-\alpha(4)}z_1^{\alpha(3)} \qquad (mod R)$$

$$\equiv 1 \qquad mod(\gamma_{n-1} \cdot R) \quad (by \text{ Lemma } 3)$$

53

(ii) Let $a^{\alpha(7)}c^{-\alpha(5)} = a^{\alpha(6)\alpha(1)}c^{-\alpha(2)\alpha(3)}$ $\equiv (y_1^{\alpha(2)} z_1^{\alpha(1)})^{\alpha(1)} (x_1^{\alpha(1)} y_1)^{\alpha(3)}$ (mod R) (by relators (5)) $\equiv x_1^{\alpha(4)} y_1^{\alpha(4)} z_1^{\alpha(2)}$ $(\mod R)$ $\equiv x_1^{\alpha(4)}$ $(\text{mod } \gamma_{n-1} \cdot R)$ (by Lemma 3) (mod $\gamma_p^{\alpha(4)} \cdot \gamma_{n-1} \cdot R$). ≡1 (ii) Let $a^{\alpha(6)}h^{\alpha(5)} = a^{\alpha(6)}h^{\alpha(4)\alpha(1)}$ $\equiv y_1^{\alpha(2)} z_1^{\alpha(1)} (x_1^{-\alpha(2)} z_1)^{\alpha(1)}$ (mod R) (by relators (5)) $\equiv x_1^{-\alpha(3)} y_1^{\alpha(2)} z_1^{\alpha(2)}$ $(\mod R)$ $\equiv (x_1^{-\alpha(1)} y_1)^{\alpha(2)}$ $(\text{mod } \gamma_{n-1} \cdot R)$ (by Lemma 3) $(\operatorname{mod}(\gamma_n)^{\alpha(2)} \cdot \gamma_{n-1} \cdot R).$ ≡1

4. CALCULATIONS IN THE GROUP RING

Recall that $\Delta(F)$ is the augmentation ideal of $\mathbb{Z}F$ and $\Delta(F, R)$ is the ideal $\mathbb{Z}F(R-1)$. We show that there exists a word $g \in F$ such that $g \equiv [a, b]^{\alpha(7)}$ mod R and $g-1 \equiv 0 \mod (\Delta F)^{(n)} + \Delta(F, R)$. Since we already know that $[a, b]^{\alpha(7)} \neq 1 \mod R$ it follows that for \overline{g} , the image of g in F/R = G, we have $1 \neq \overline{g} \in \gamma_n(G)$. Therefore, $D_{(n)}(G) \neq \gamma_n(G)$. We shall use throughout the well known identity (see [6])

$$\Delta^{(m)}(G) \cdot \Delta^{(k)}(G) \subseteq \Delta^{(m+k-1)}(G).$$

LEMMA 8. (a) $\alpha(3)(c-1)$ and $\alpha(5)(b-1)$ belong to $(\Delta F)^{(p)} + \Delta(F, R)$. (b) Modulo $(\Delta F)^{(n)} + \Delta(F, R)$ we have

- (i) $\alpha(6)(c-1)(a-1) \equiv (c-1)(a^{\alpha(6)}-1)$
- (ii) $\alpha(6)(a-1)(c-1) \equiv (a-1)(c^{\alpha(6)}-1)$
- (iii) $\alpha(7)(b-1)(a-1) \equiv (b-1)(a^{\alpha(7)}-1)$
- (iv) $\alpha(7)(a-1)(b-1) \equiv (a-1)(b^{\alpha(7)}-1)$
- (v) $\alpha(5)(b-1)(c-1) \equiv (b-1)(c^{\alpha(5)}-1)$
- (vi) $\alpha(5)(c-1)(b-1) \equiv (c-1)(b^{\alpha(5)}-1).$

Proof. (a) Let

$$c^{\alpha(3)} - 1 \equiv \alpha(3)(c-1) + {\binom{\alpha(3)}{2}}(c-1)^2 \mod (\Delta F)^{(p)} + \Delta(F, R)$$
$$\equiv \alpha(3)(c-1) + 7(c^{\alpha(2)} - 1)(c-1).$$

Since $c^{\alpha(2)} \in \gamma_p(F)$ it follows that the second term on the right side and the left hand side term both belong to $(\Delta F)^{(p)}$. It follows that $\alpha(3)(c-1) \in (\Delta F)^{(p)} + \Delta(F, R)$. The second part is similar.

(b) we prove (i) the remaining congruences follow similarly.

$$\alpha(6)(c-1)(a-1) \equiv (c-1)[(a^{\alpha(6)}-1)+k_1\alpha(5)(a-1)^2 + k_2\alpha(4)(a-1)^3], \quad k_i \in \mathbb{Z}$$
$$\equiv (c-1)(a^{\alpha(6)}-1)+k_1\alpha(5)(c-1)(a-1)^2 + k_2\alpha(4)(c-1)(a-1)^3$$
$$\equiv (c-1)(a^{\alpha(6)}-1) \quad \text{by (a).} \quad \blacksquare$$

Consider the element $g = [a, b]^{\alpha(7)} [a, c]^{\alpha(6)} [b, c]^{\alpha(5)}$ in F.

LEMMA 9. $g \equiv [a, b]^{\alpha(7)} \mod R$.

Proof. By relators (4), $[a, c]^{\alpha(2)} \equiv x_2^{\alpha(1)}$ and thus $[a, c]^{\alpha(6)} \equiv x_2^{\alpha(5)}$. Also, $[b, c]^{\alpha(5)} \equiv x_2^{\alpha(5)}$. Therefore, $[a, c]^{\alpha(6)} [b, c]^{\alpha(5)} \equiv x_2^{\alpha(6)} \equiv 1$ by Lemma 3(i). Hence $g \equiv [a, b]^{\alpha(7)}$ as claimed.

LEMMA 10. $g-1 \in (\Delta F)^{(n)} + \Delta(F, R)$.

Proof. We work modulo $(\Delta F)^{(n)} + \Delta(F, R)$. Using the identity

$$xy - 1 = (x - 1) + (y - 1) + (x - 1)(y - 1)$$

and the fact that $[a, b]^{\alpha(7)}$, $[a, c]^{\alpha(6)}$, $[b, c]^{\alpha(5)}$ belong to $\gamma_{n-4}(F)$ we see that

$$(g-1) \equiv ([a, b]^{\alpha(7)} - 1) + ([a, c]^{\alpha(6)} - 1) + ([b, c]^{\alpha(5)} - 1).$$

We now show that

$$[a, b]^{\alpha(7)} - 1 \equiv \alpha(7)((a-1)(b-1) - (b-1)(a-1))$$

$$[a, c]^{\alpha(6)} - 1 \equiv \alpha(6)((a-1)(c-1) - (c-1)(a-1))$$

$$[b, c]^{\alpha(5)} - 1 \equiv \alpha(5)((b-1)(c-1) - (c-1)(b-1)).$$

We have $[a, b]^{\alpha(7)} - 1 \equiv \alpha(7)([a, b] - 1)$ and $[a, b] - 1 = (a^{-1}b^{-1} - 1)\{(a - 1)(b - 1) - (b - 1)(a - 1)\}$ $+ \{(a - 1)(b - 1) - (b - 1)(a - 1)\}.$

We need to show that $\alpha(7)(a^{-1}b^{-1}-1)\{(a-1)(b-1)-(b-1)(a-1)\} \equiv 0$. This follows from part (a) of Lemma 8. We have proved the first of the three congruences. The other two follow similarly. Hence

$$(g-1) \equiv \alpha(7) \{ (a-1)(b-1) - (b-1)(a-1) \} + \alpha(6) \{ (a-1)(c-1) - (c-1)(a-1) \} + \alpha(5) \{ (b-1)(c-1) - (c-1)(b-1) \} \equiv (a-1)(b^{\alpha(7)} - 1) - (b-1)(a^{\alpha(7)} - 1) + (a-1)(c^{\alpha(6)} - 1) - (c-1)(b^{\alpha(5)} - 1) + (b-1)(c^{\alpha(6)} - 1) - (c-1)(b^{\alpha(5)} - 1) = (a-1)(b^{\alpha(7)}c^{\alpha(6)} - 1) - (b-1)(a^{\alpha(7)}c^{-\alpha(5)} - 1) - (c-1)(a^{\alpha(6)}b^{\alpha(5)} - 1)$$
 (by relators (5))
$$\equiv (a-1)(d_a^{\alpha(6)} - 1) - (b-1)(d_b^{\alpha(4)} - 1) - (c-1)(d_c^{\alpha(2)} - 1)$$

from Lemma 7 with d_a , d_b , $d_c \in \gamma_p(F)$,

$$\equiv \alpha(6)(a-1)(d_a-1) - \alpha(4)(b-1)(d_b-1) - \alpha(2)(c-1)(d_c-1) \equiv (a^{\alpha(6)}-1)(d_a-1) - (b^{\alpha(4)}-1)(d_b-1) - (c^{\alpha(2)}-1)(d_c-1) \equiv 0$$
 (by relators (5)).

5. RESTRICTED LIE DIMENSION SUBGROUPS

To show that for $n \ge 14$ there exists a group G such that $\gamma_n(G) \ne (D_{\lfloor n \rfloor}(G))$, we proceed as follows.

Let $n \ge 14$ and t = (n-5)/2 if *n* is odd and t = (n-4)/2 if *n* is even. Let *a*, *b*, *c* be distinct simple basic commutators of weight *t* with a > b > c. Let *r* be a simple basic commutator of weight 3 when *n* is even and of weight 4 when *n* is odd. Assume there is one symbol in each of *a*, *b*, *c*, *r* which is not in the others. We define $x_1, y_1, z_1, x_2, y_2, z_2$ as before and construct *G* in a similar manner. The element *g* is given before and an analysis of

HURLEY AND SEHGAL

Lemma 10 shows that $g-1 \in (\Delta F)^{[n]} + \Delta(FR)$. This uses the result (see [3])

$$(\varDelta F)^{[k]} \cdot (\varDelta F)^{[l]} \subseteq (\varDelta F)^{[k+l-2]}.$$

References

- 1. N. D. GUPTA, Free group rings, in "Contemporary Math.," Vol. 66, Amer. Math. Soc., Providence, RI, 1987.
- 2. N. D. GUPTA, The dimension subgroup conjecture, Bull. London Math. Soc. 22 (1990), 453-456.
- 3. N. D. GUPTA AND F. LEVIN, On the Lie ideals of a ring, J. Algebra 81 (1983), 225-231.
- 4. M. HALL, The theory of groups, Macmillan, New York, 1959.
- 5. I. B. S. PASSI, Group rings and their augmentation ideals, in "Lecture Notes in Math.," Springer-Verlag, New York, 1979.
- 6. I. B. S. PASSI AND S. K. SEHGAL, Lie dimension subgroups, Comm. Algebra 3, No. 1 (1975), 59-73.
- 7. E. RIPS, On the fourth integer dimension subgroups, Israel J. Math. 12 (1972), 342-346.
- 8. R. SANDING, The dimension subgroup problem, J. Algebra 21 (1972), 216-231.