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The present investigation concerns with the mechanical properties of a Rabinowitsch fluid model and the
effects of thermal conductivity over it. Flow is considered to be occurring due to metachronal wave pro-
duced as a result of constant beating of cilia at the walls of a horizontal circular tube. The expressions for
flow characteristics have been derived results are analyzed graphically and discussed briefly.
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Introduction

Rabinowitsch fluid lies in the category of pseudoplastic fluids
(shear thinning fluids) such as blood. This model effectively
describes the effects of lubricant additives and fits experimental
data for a vast range of shear rate. During the past decades, tribolo-
gists have been efficiently putting their efforts to increase the effi-
ciency of stabilizing properties of non-Newtonian lubricants by
addition of small amounts of long chain polymer solutions. The
use of additives minimizes the sensitivity of the lubricant to the
change in the shearing strain rate. Further, the viscosity of these
lubricants exhibits a non-linear relationship between the shearing
stress and shearing strain rate. This model behaves as a Dilatant
fluid for j < 0, Newtonian fluid for j ¼ 0, and pseudoplastic fluid
for j > 0. The experimental verification for this Rabinowitsch fluid
model was first given by Wada and Hayashi [1]. They found that the
film pressure and load capacity for pseudoplastic lubricants were
smaller than those for the Newtonian fluids. Afterwards, the theo-
retical study of bearing performance with non-Newtonian lubri-
cants using different fluid models was done by Bourgin and Gay
[2] on journal bearing. Later this model was studied for circular
plates bearing, squeeze film between two plane annuli and on infi-
nitely wide parallel rectangular plates by various authors [3–6].
Recently, Singh et al. [7–9] used the model of Rabinowitsch fluid
and presented the dynamic analysis of hydrostatic thrust and
squeeze film bearings. However, according to the author’s knowl-
edge, the theoretical study of incompressible laminar flow for
Rabinowitsch fluid model in a circular tube of finite length taking
into account that the inner walls of the tube are ciliated, has not
been investigated yet. Cilia are tiny hairlike structures which are
present in the human body and are responsible for the transport
of various fluids by their constant movement which produces a
metachronal wave along the direction of the fluid. Theoretical study
on ciliated structures can be found in the literature [10–19].

In the present paper, the effects of heat transfer on a
Rabinowitsch fluid model in a circular tube with ciliated walls have
been investigated. In the absence of pseudoplasticity, the results
are compared with the pre-established results of Newtonian lubri-
cants and found in good agreement. The application of
Rabinowitsch fluid model in peristalsis is very useful in physiology
and biomedicine as it is involved in pumping of blood in heart/lung
machines. Some applications of the related fluid flow model have
also been discussed by other authors [20–30].

Formulation of the problem

Consider an incompressible Rabinowitsch fluid in a circular
tube of finite length 0L0. Flow occurs due to the metachronal wave
which is produced due to collective beating of the cilia with con-
stant speed 0c0 along the walls of the tube whose inner surface is
ciliated. The geometry of the problem is presented in the cylindri-
cal coordinate system �R; �Z

� �
in which �Z-axis lies along the center

line of the tube and �R is orthogonal to it, defined as shown in Fig. 1.
The governing equations in the fixed frame for an incompress-

ible fluid can be written as:
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Nomenclature

� ratio w.r.t cilia length
P pressure
r variable along the tube
�s extra stress tensor
k wave length
b wave number
j coefficient of pseudoplasticity
a measure of the eccentricity

a radius of the tube
u;w velocities
z variable normal to the tube
l fluid viscosity
c wave speed
b wave amplitude
Br Brickmann number
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where �P is the pressure and �U, �W are the respective velocity compo-
nents in the radial �R and axial �Z directions in the fixed frame respec-
tively. �T is the temperature, k denotes the thermal conductivity, q is
the density and cp is the specific heat at constant pressure. The extra
stress tensor for the Rabinowitsch fluid model [1] is defined as:

�S�R�Z þ �j �S�R�Z

� �3 ¼ l @
�W
@�R

; ð5Þ

where �j is the coefficient of pseudoplasticity. The envelops of the
cilia tips can be expressed mathematically as [10]:

�R ¼ �H ¼ �f �Z;�t
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; ð6Þ
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where a denotes the mean radius of the tube, � is the non-dimen-
sional measure with respect to the cilia length, k and c are the wave-
length and wave speed of the metachronal wave respectively. �Z0 is
Fig. 1. Geometry of the problem.
the reference position of the particle and a is the measure of the
eccentricity of the elliptical motion. If no slip condition is applied,
then the velocities of the transporting fluid are just those caused
by the cilia tips, which can be given as:
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By applying Eqs. (6) and (7) in Eqs. (8) and (9), we obtain:
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In the fixed coordinates �R; �Z
� �

, the flow between the two tubes is
unsteady. It becomes steady in a wave frame �r;�zð Þ moving with
the same speed as the wave moves in the �Z-direction. The trans-
formations between the two frames are:

�r ¼ �R; �z ¼ �Z � c�t; �u ¼ �U; �w ¼ �W � c; �p �z;�r;�tð Þ
¼ �p �Z; �R;�t

� �
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We introduce the following non-dimensional variables:
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d ¼ a
k
; Pr ¼ lcp

k
; Ec ¼

c2

cpT0
; Br ¼ EcPr;

Sij ¼
a�Sij

cl
; j ¼

�jl2c2

a2 ;

where Re, Pr and Br are the Reynolds, Prandtl and Brikmann number
respectively. With the help of Eqs. (10) and (11) and under the
assumptions of long wavelength and low Reynolds number, Eqs.
(1)–(5) take the following form:
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Fig. 2. Velocity profile w r; zð Þ for different values of F and z.
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The dimensionless form of the physical boundary conditions is:

w¼ �2p�ab cos 2pzð Þ
1�2p�ab cos 2pzð Þ�1; h¼0; at r¼h¼1þ� cos 2pzð Þ; ð17Þ

@w
@r
¼0;

@h
@r
¼0; at r¼0:

Longitudinal momentum Eq. (14) subject to the boundary condition
Srz ¼ 0 at the symmetry line r ¼ 0, yields:
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: ð18Þ
Exact solutions

The exact solution of Eqs. 15 and 16 subject to the boundary
conditions Eq. (17) is obtained as:
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where dp
dz can be found by using the volumetric flow flux:
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An application of Eq. (19) and above Eq. yields:
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The above equation is a 3rd order equation in dp
dz. To obtain the

expression for pressure gradient, we find the real root to the above
equation, which is as follows:
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where,

A ¼ ph2 � BQ
� �

; B ¼ 2p�ab cosð2pzÞ � 1ð Þ:

and the mean volume flow rate is defined as:
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Fig. 3. Temperature profile h r; zð Þ for different values of F and z.
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Fig. 6. Streamlines for velocity profile of Dilatant fluid j < 0ð Þ for � ¼ 0:1;0:2, respectively.

Fig. 7. Streamlines for velocity profile of Newtonian fluid j ¼ 0ð Þ for � ¼ 0:1;0:2, respectively.
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Fig. 8. Streamlines for velocity profile of Pseudoplastic fluid j > 0ð Þ for � ¼ 0:1;0:2, respectively.
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The corresponding stream function can be found using the follow-
ing formula:

w ¼ 1
r
@w
@r
:

The pressure rise DP is found by integrating the pressure gradient
w.r.t z over the interval ½0;1� as below:

DP ¼
Z 1

0

dp
dz

dz:
Results and discussion

In order to present a quality analysis to the mechanical behavior
of the concerned fluid flow and the effects of various parameters
involved in it, exact solutions obtained in the previous section
are presented here graphically. We have generated computer codes
in Mathematica 9.0 to obtain the set of data files for velocity, tem-
perature, pressure gradient and pressure rise, which are later used
in Tecplot 10 to acquire the best pictorial representation.

Fig. 2(a–c) represents the effects of the coefficient of
pseudoplasticity and the mean flow rate on the velocity of the
fluid. It is observed that, in the center of the tube, the magnitude
of dimensionless velocity is maximum for the Newtonian case
and it increases with the Pseudoplasticity and decreases with the
Dilatant nature of the fluid. Opposite behavior is seen at the walls
of the tube where the flow is effected due to the metachronal wave
of cilia. A similar behavior is observed with an increase in flow rate
0F0, and decrease in the length of the tube.

The effect of flow rate over the coefficient of pseudoplasticity
for the temperature profile is shown in Fig. 3(a–c). It is observed
the temperature remains the same at the center of the tube for
all values of 0j0, but it varies rapidly for the flow near the bound-
aries of the tube. Temperature increases at the walls for the
Dilatant nature of the fluid, and it decreases more rapidly for
Newtonian nature of the fluid as compared to the Pseudoplastic
one. It is seen that as the mean flow rate increases, the temperature
increases for Dilatant fluid but it decreases for both Newtonian and
Pseudoplastic fluid. Temperature decreases for all types of fluid if
we increase the length of the tube.

Fig. 4(a and b) shows the behavior of pressure gradient for non-
dimensional measure with respect to the cilia length 0�0. It is
noticed that the pressure gradient has an oscillating behavior.
For Dilatant fluid, the maximum values are attained at
z ¼ 0:5;1:5;2:5 . . . for which we have the minimum values of both
Newtonian and Pseudoplastic fluids. Similarly the relative minima
of Dilatant fluid are attained at z ¼ 0;1;2; . . . for which the relative
maxima occur for Newtonian and Pseudoplastic fluids. Rapid
change for values of Dilatant and Pseudoplastic fluid is seen as
compared to the Newtonian nature of the fluid.

Pictorial representation of the pressure rise against the flow
rate is given in Fig. 5(a–c). These graphs depict that an increase
in the non-dimensional parameter 0�0 causes an increase in the
pressure rise. Trapping phenomenon is presented through
Figs. 6–8 for Dilatant, Newtonian and Pseudoplastic nature of the
present fluid model. It is seen that size of trapping bolus for
Newtonian fluid is greater as compared to the Pseudoplastic and
Dilatant fluid. It is also analyzed that when we extend the non-di-
mensional parameter 0�0, the number of the trapped bolus
increases but the size of trapped bolus decreases.
Conclusion

The effect of heat transfer on the flow of a Rabinowitsch fluid
model through a circular tube with ciliated walls has been dis-
cussed. The magnitude of dimensionless velocity is maximum, at
the center of the tube, for the Newtonian case and it increases with
the Pseudoplasticity and decreases with the Dilatant nature of the
fluid. Opposite behavior is seen at the walls of the tube. Increase in
the mean flow rate 0F0 causes an increase in the velocity. It is
observed that the temperature remains the same at the center of
the tube for all values of 0j0, but it varies rapidly for the flow near
the boundaries of the tube. As the mean flow rate increases, the
temperature increases for Dilatant fluid but it decreases for both
Newtonian and Pseudoplastic fluid. It is observed that the pressure
gradient has an oscillating behavior. For Dilatant fluid, the maxi-
mum values are attained at z ¼ 0:5;1:5;2:5 . . . for which we have
the minimum values of both Newtonian and Pseudoplastic fluids.
Similarly, the relative minima of Dilatant fluid are attained at
z ¼ 0;1;2; . . . for which the relative maxima occur for Newtonian
and Pseudoplastic fluid. In the streamlines of the velocity profile,
it is seen that size of trapping bolus for Newtonian fluid is greater
as compared to the Pseudoplastic and Dilatant fluid. It is also ana-
lyzed that when we extend the non-dimensional parameter �, the
number of the trapped bolus increases but the size of trapped bolus
decreases.



98 N.S. Akbar, A.W. Butt / Results in Physics 5 (2015) 92–98
References

[1] Wada S, Hayashi H. Hydrodynamic lubrication of journal bearings by
pseudoplastic lubricants. Bull JSME 1971;69:279–86.

[2] Bourgin P, Gay B. Determination of the load capacity of finite width journal
bearing by finite element method in the case of a non-Newtonian lubricant. J
Tribol 1984;106(2):285–90.

[3] Hsu YC, Saibel E. Slider bearing performance with a non-Newtonian lubricant.
ASLE Trans 1965;8(2):191–4.

[4] Hashimoto H, Wada S. The effects of fluid inertia forces in parallel circular
squeeze film bearing lubricated with pseudoplastic fluids. J Tribol Trans ASME
1986;108(2):282–7.

[5] Usha R, Vimla P. Fluid inertia effects in a non-Newtonian squeeze film between
two plane annuli. J Tribol 1999;122:872–5.

[6] Hung CR. Effects of non-Newtonian cubic-stress flow on the characteristics of
squeeze film between parallel plates. Educ Specialization 2009;97:87–97.

[7] Singh UP, Gupta RS, Kapur VK. On the steady performance of annular
hydrostatic thrust bearing: Rabinowitsch fluid model. ASME J Tribol
2012;134:1341–5.

[8] Singh UP, Gupta RS, Kapur VK. On the performance of pivoted curved slider
bearings: Rabinowitsch fluid model. Tribol Ind 2012;34:128–37.

[9] Singh UP. Application of Rabinowitsch fluid model to pivoted curved slider
bearings. Arch Mech Eng 2013;LX:247–67.

[10] Sleigh MA. The biology of cilia and flagella. New York: MacMillian; 1962.
[11] Miller CE. An investigation of the movement of Newtonian liquids Initiated

and sustained by the oscillation of Mechanical cilia. Aspen Emphysema Conf
1967:309–21.

[12] Blake JR. A spherical envelope approach to ciliary propulsion. J Fluid Mech
1971;46:199–208.

[13] Lardner TJ, Shack WJ. Cilia transport. Bull Math Biophys 1972;34:25–35.
[14] Blake JR. A model for the micro-structure in ciliated organisms. J Fluid Mech

1972;55:1–23.
[15] Sleigh MA, Aiello E. The movement of water by cilia. Acta Protozool

1972;11:265–77.
[16] Wu TY. Fluid mechanics of ciliary propulsion. In: Proceedings of the tenth

anniversary meeting of the society of engineering science.
[17] Brennen C. An oscillating-boundary-layer theory for ciliary propulsion. J Fluid
Mech 1974;65:799–824.

[18] Akbar NS, Butt AW, Noor NFM. Heat transfer analysis on transport of copper
nanofluids due to metachronal waves of cilia. Curr Nanosci
2014;10(6):807–15.

[19] Akbar NS, Butt AW. CNT suspended nanofluid analysis in a flexible tube with
ciliated walls. Eur Phys J Plus 2014;129:174.

[20] Vajravelu K, Sreenadh S, Ramesh Babu V. Peristaltic transport of a Herschel-
Bulkley fluid in a an inclined tube. Int J Nonlinear Mech 2005;40:83–90.

[21] Hakeem AE, Naby AE, Misiery AEM, Shamy IE. Hydromagnetic flow of
generalized Newtonian fluid through a uniform tube with peristalsis. Appl
Math Comput 2006;173:856–71.

[22] Nadeem S, Akbar NS. Peristaltic flow of Sisko fluid in a uniform inclined tube.
Acta Mech Sin 2010;26:675–83.

[23] Nadeem S, Akbar NS. Influence of heat and mass transfer on a peristaltic
motion of a Jeffrey-six constant fluid in an annulus. Heat Mass Transfer
2010;46:485–93.

[24] Ellahi R, Rahman SU, Nadeem S. Theoretical study of unsteady blood flow of
Jeffery fluid through stenosed arteries with permeable walls. Z Naturforsch A
2013;68a:489–98.

[25] Ellahi R, Riaz A, Nadeem S. Three dimensional peristaltic flow of Williamson in
a rectangular duct. Indian J Phys 2013;87(12):1275–81.

[26] Nadeem S, Riaz A, Ellahi R, Akbar Noreen Sher. Series solution of unsteady
peristaltic flow of a Carreau fluid in small intestines. Int J Biomath
2014;7(5):1450049.

[27] Ellahi R, Rahman SU, Nadeem S, Akbar Noreen Sher. Blood flow of nano fluid
through an artery with composite stenosis and permeable walls. Appl Nanosci
2014;4:919–26.

[28] Nadeem S, Riaz A, Ellahi R, Akbar Noreen Sher. Mathematical model for the
peristaltic flow of nanofluid through eccentric tubes comprising porous
medium. Appl Nanosci 2014;4:733–43.

[29] Nadeem S, Sadaf H. Theoretical analysis of Cu-blood nanofluid for metachronal
wave of cilia motion in a curved channel. Trans Nanobiosci 2015. http://
dx.doi.org/10.1109/TNB.2015.2401972.

[30] Nadeem S, Sadaf H. Metachronal wave of cilia transport in a curved channel. Z
Naturforsch A 2015;70:33–8.

http://refhub.elsevier.com/S2211-3797(15)00020-0/h0005
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0005
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0010
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0010
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0010
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0015
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0015
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0020
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0020
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0020
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0025
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0025
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0030
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0030
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0035
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0035
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0035
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0040
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0040
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0045
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0045
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0050
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0055
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0055
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0055
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0060
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0060
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0065
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0070
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0070
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0075
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0075
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0080
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0080
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0085
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0085
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0090
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0090
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0090
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0095
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0095
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0100
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0100
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0105
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0105
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0105
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0110
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0110
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0115
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0115
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0115
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0120
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0120
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0120
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0125
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0125
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0130
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0130
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0130
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0135
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0135
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0135
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0140
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0140
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0140
http://dx.doi.org/10.1109/TNB.2015.2401972
http://dx.doi.org/10.1109/TNB.2015.2401972
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0150
http://refhub.elsevier.com/S2211-3797(15)00020-0/h0150

	Heat transfer analysis of Rabinowitsch fluid flow due to metachronal wave of cilia
	Introduction
	Formulation of the problem
	Exact solutions
	Results and discussion
	Conclusion
	References


