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Abstract 

The present paper deals simultaneously with the nondegenerate and degenerate trun- 
cated Hamburger matrix moment problems in a unified way based on the use of the 
Schur algorithm involving matrix continued fractions. A full analysis of them together 
with a relative matrix moment problem on the real axis is given. With the help of the 
correspondence between the moment problem on the real axis and the Nevanlinna Pick 
(NP) interpolation, the solutions of the nontangential NP interpolation in the Nevanl- 
inna class are derived as an application. © 1998 Elsevier Science Inc, All rights 
reserved. 
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I. Introduction and preliminaries 

The na tura l  matr ix  version of the classical Hamburge r  m o m e n t  problem 
(see, e.g., [2]) consists in finding a bounded  Hermi t ian  measure 
~r(u) (-oc, < u < +oc)  such that  
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& k - O , l  . . . . .  (1.1) 

Of particular importance are the questions of  solvability, of  the number of 
solutions, and of the construction of all solutions if they exist. 

In the present paper we give a careful treatment of the truncated Hamburger 
matrix moment problem (TH problem), where one asks to describe the solu- 
tions or(u) ( - o c  < u < +~c) having precribed matrix moments So, St,...,S2,+ 
only. A variation on the problem with a more natural mathematical solution 
is where one asks only for an inequality "~< " in the moment condition for 
k = 2n. Also very different is the theory for the case where one prescribes the 
moments up to an odd index k = 2n + 1. The present paper deals with the case 
of maximum k equal to 2n only and primarily with equality on the last moment 
condition. 

The subject now has a long history and has given rise to important applica- 
tions in many branches of analysis and others. In the scalar case: p = 1, the 
reader may consult to the fundamental books [2,19,21] for details of numerous 
moment problems. In the matrix case, the TH problem for operators was first 
studied systematically by Ando [4], who gave the conditions for the problem to 
be solvable. In the nondegenerate case, Kovalishina [17] has presented a meth- 
od for the solution of  the Hamburger moment problem (1.1) based on the use 
of  the fundamental matrix inequality and the analytic J-theory. Bolotnikov [6] 
treated the solution of the TH problem for the degenerate case by means of the 
Schur's stepwise algorithm. (Unfortunately, one of his basic results, Theorem 
1.1 of [6], is untrue for the TH problem even for the scalar case.) Further 
on, the TH problem can be solved using a number of other approaches, e.g. 
reproducing kernels method [12,13], methods based on operator theory 
[2,18], or on realization theory of  matrix-valued functions [5]. There has also 
been recent work of Kheifets [16], where the equality versus inequality issue 
is analyzed via a different approach (embedding the problem in the so-called 
abstract interpolation problem which identifies solutions of the TH problem 
with unitary colligation extensions of a given isometric colligation directly con- 
structible from the data of the problem). 

|n the present paper we present a common method of  solving simultaneously 
the nondegenerate and degenerate truncated Hamburger matrix moment prob- 
lems based on the use of a matrix version of the Schur algorithm involving ma- 
trix continued fractions, suitably adapted to the present framework. Some new 
results and more explicit version of known results for the TH problem and for 
its variation mentioned above are given. The notion of the nonnegatively ex- 
tendable Hermitian-block Hankel matrix plays a key role in our investigations. 
It turns out that the TH problem has a solution if and only if the corresponding 
block-Hankel matrix is nonnegatively extendable, i.e., if and only if the block- 
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Hankel matrix can be enlarged to a block-Hankel matrix of larger size (one 
more block-row and -column) which is still nonnegative definite. As the main 
result, the general solution ~r(u) to the TH problem is formulated in both an 
algorithm form and a more closed form (Theorems 3.4 and 4.12). With the help 
of the one-to-one correspondence between the moment problem and the Nev- 
anlinna-Pick (NP) interpolation problem [10] the solution of the NP problem 
in the class of the Nevanlinna matrix-valued functions is acheived as an appli- 
cation. 

Although the concern of this paper is mainly the "truncated" moment prob- 
lems, our descriptions of the solutions in terms of matrix continued fractions 
are complete to the degree that transition to the infinite moment problems be- 
comes quite transparent. 

This work could reveal certain interesting connections with other problems 
in analysis in addition to the interpolation problem of NP type, for example to 
the work of Adamjan Arov-Krein [l] on the reduction of the Nehari problem 
to the contractive completion problem for infinite, contractive block-Hankel 
matrices, where the issue is to extend an infinite block-Hankel matrix by one 
more block-row while maintaining the property of being a contraction. In 
the Nehari problem case, contractivity of  the original matrix guarantees the ex- 
tendability property. This presents an interesting theory parallel to the theory 
of the TH problem. As was mentioned above, the corresponding phenomenon 
for the TH problem situation fails nonnegativity of the original block- 
Hankel matrix in general does not guarantee that it admits an extension of a 
larger block-Hankel matrix which is still nonnegative. This illustrates the sub- 
tlely of the TH problem compared to a seemingly analogous Nehari problem. 

To introduce the discussion, we devote Section 2 to establish the various 
auxiliary propositions useful for our investigations later on. The criteria of ex- 
istence and uniqueness of the solutions to the TH problem, and a unified de- 
scription of the solutions to the TH problems in the nondegenerate and 
degenerate cases are settled in Section 3. As a consequence, the solution of 
the matrix moment problem on the real axis is also derived with little 
additional effort. In Section 4 it is shown how the descriptions of the solutions 
to the moment problems in terms of matrix continued fractions are interlaced 
with other existing ones in terms of linear fractional transformations. Some 
properties of nonnegatively extendable Hermitian block-Hankel matrices are 
given as well. Section 5 traces out an application of our results on moment 
problems to the solution of the NP problem in the class of the Nevanlinna ma- 
trix-valued functions with the help of the correspondence between the moment 
problem on the real axis and that NP interpolation. 

The following notation and conventions will be used throughout the paper. 
All matrices and vectors are assumed to be complex. The positive semidefinite- 
ness (definiteness) of a Hermitian matrix A is denoted by A ~> 0 (A > 0). By 
denote the open upper-half plane, its subset {z I e ~< arg - ~< 7r - e. e ~ (0, ~r/2) } 
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by n~. F o r  a square matr ix  B, the symbol  B D denotes  its Drazin  inverse, i.e., the 
unique solution o f  the equations:  X B X = X ,  B X = X B ,  and B k = X B  k+~, 
k index(B). Fo r  a po lynomia l  matr ix  A(Z) v-,m A 2~ = ~ = Z-.,k=0 ,'l/," ,~J,- E Mp(C), the 

" ~ ' 2  k The  nota t ion  ~ symbol  A(2) designates the polynomia l  matr ix  ~'~k=0"k • 
stands for  BA -l if A, B a r e p  x p matr ices  and A is nonsingular ,  and  the follow- 
ing no ta t ion  for  the matr ix  cont inued fraction: 

Bi B2 B3 Bk 

A1 4- A2 4- A3 4- 4- Ak 4- 

in which all f ract ions are assumed to be meaningful .  A CP×P-valued funct ion 
a(u) defined on the real axis is called a Hermitian measure if it is nondecreasing,  
i.e., a(2) - a (# )  ~> 0 for  all ,i > #. Wi thou t  being pointed out  explicitly, all Her-  
mit ian measures  in integral formulas  of  this paper  are assumed to be bounded:  
f + ~  tr dot(u) < +oc .  A CP×P-valued funct ion F(2)  is o f  the Nevanlinna class 
if it is analytic in n -  and such that  

F(2)  - F(2)* 
>10, ) ,E n ~ . 

2i 

Each F(2)  c ~ p  can be cont inued onto  the open lower-hal f  p lane Im ), < 0 
by reflection: F(2)  = F(2)*, Im 2 < 0, and it admits  an integral representat ion 

f l+u)~  . . . F ( 2 ) = ~ ) , + f l +  u - ) ,  Or[u), I m 2 ¢ 0 ,  (1.2) 

where c~/> 0, fl = fl*, r(u) is suitable Hermi t i an  measure.  The collection of  func- 
tions F(2)  E ,~'~, represented in the fo rm 

forms a subclass o f  the class , / ) ,  where a(u) is as before. This subclass , t  ~° P 
can be character ized intrinsically: in order  that  F(2)  E ,.l'p belongs to it is 
necessary and sufficient that  

sup IlyF(iy)]l < +oc., (1.4) 
y>0 

where II " II is a certain matr ix  n o r m  on C ~'×p (see [2] for  the scalar case. The  ex- 
tension to the matr ix-va lued  funct ions causes no difficulty). 

2. S o m e  important  l emmata  

We shall establish some auxil iary proposi t ions  which are useful later on. 
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To  begin with, we formula te  the T H  prob lem on the real axis. Given a se- 
quence of  p × p Hermi t i an  matrices,  S0, & , . . . ,  S_,,,, we seek a Hermi t ian  mea-  
sure or(u) ( - o c  < u < +oc )  such that  

+ ) c  

& = f u k da(u) ,  k = 0, 1 . . . .  ,2n. (2.1) 

It is required to find condi t ions for  a solution and for a unique solution a(u) to 
exist, and to describe the solutions when these condit ions are met.  

The  wel l -known H a m b u r g e r - N e v a n l i n n a  theorem shows the close relation 
of  the T H  prob lem (2.1) to the following problem: Given a sequence of  
p × p  Hermi t ian  matrices,  So ,S t , . . . ,& , , ,  it is required to describe all 
F(2) E .  with a given asymptot ica l  expansion of  the form 

So & $2,, 
F(2)  = - =-z - 7v,<_ - . .  22,_ ~ Re,,+, (2), (2.2) 

where R2,+1(2) = o(). -2" t) as 2 ---+ vc uniformly in each sector ~z~. 
In what  follows, all o ther  asympto t ic  expansions  will be assumed to be ap- 

plicable in the same range of  sectors ~, as also will the symbol  o(2- '") .  

Lemma 2.1 ( H a m b u r g e r - N e v a n l i n n a )  [2,17]. 17./' or(u) ( - v c  < u < +oc)  is a 
solution to the T H  problem (2.1), then there exists F().) E . I), 

,tar which 

& S, S2,,-l] 
. . . . .  + 7~ + ' "  + ~ ]  = -S~,, (2.4) !im 5. 2''+' F(2) + 7  /: 

unilbrmly in each =~. Conversely, i f  (2.4) hol&, at least Jbr  5. = iy (y -+ +ec ) .  
for  some F(2)  E .  t',,, then F(;.) has the representation (2.3) where c~(u) has 
2n + 1 moments  S o , . . . ,  $2 • 

L e m m a  2.2. Suppose that F(  2 ) c ..t ~, admits the representation (1.2). IJ'either 
> 0 or f + ~  dr(u) > 0, then - F  -I (z) exists in 7r + and belongs to the class, t /,. 

Proof.  Observe  that  for  each 2 = a + bi E ~+ (a, b c ~, b > 0), 

b2(1 + u 2) 
Im F().) = :tb + (u ~ a) 2 + b ~' 

% 

dr(,,).  
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I f  ,~ > 0, Im F(2) > 0, V2 E ~z +. I f  f ~ d~r(u) > 0, f2,~ dot(u) > 0 for a certain 
6 > 0, and therefore 

6 

bZ / ' d r ( u )  > 0. 
Im F(2) >~ (6 + lal)  -~ + b- ' .  ] 

fi 

On the other  hand,  we have that  [det F ( , ~ ) [ - ] d e t ( i F ( 2 ) )  I >~ det hn  
F(2) > 0 if ~ > 0 or ,['+~ dr(u) > 0, and therefore - F  -l (2) exists and is analytic 
in 7r + under  the hypothesis.  Finally, the fact that  I m ( - F  t(2)) ~> 0,V2 ¢ ~+ 
follows f rom the relation 

Im ( - F  ' (2))  = F l (2 ) ImF()OY- l (2 )*  >~ O, 2 ¢ ~r +. 

Hence,  - F - ' ( 2 )  E , t z , .  [] 

Lemma 2.3. Suppose that the Hermitian block-Hankel matrix Fk -- (Si+j)~ij~ 0, is 
Hermitian nonnegative: Fk >1 O, where each Sk o f  order p is Hermitian. I f  So - O, 
then $1 . . . . .  S2k 1 = 0; ~" So ~ 0 is singular, then there exists a certain 
nonsingular T such that 

T*S,T = 0 , i = O, l , .  . . , 2 k  - 1 .  T*S2x.T = ~ , (2.5) 
0 

where So > 0, D >~ O, and all S, are o f  the same order. 

We remark  that  there exists a miss ta tement  in [6] (p. 1255) in construct ing 
Schur 's  stepwise a lgori thm. He  asserted that  if det S~ = 0 then f rom Fk >~ 0 
there follows the existence of  a uni tary  matr ix  U such that  

This, however ,  is not  correct,  as an example,  

[0 01 
F~ = 0 12 >~ O. 

The proof of L e m m a  2.3. I f  So = 0 then St . . . .  S2k t = 0 evidently. I f  So ¢ 0 
is singular, then there exists a certain uni tary matr ix  V such that  

F r o m  the fact (Ip ® V)*F~-(I~, ¢~, V) >~ O, where A ® B stands for the tensor  prod-  
uct o f  a pair  o f  matr ices  A and B, we obtain  that  
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k 0] 
~ 

where all S, have the same order  as that  of  S0. Let us write V*S2k V in the block 
form 

F'S2/,- V = A22 , 

where order  All = order  So. We distinguish three cases. In the c a s e  A22 > 0, we 
have 

[ ,  0] 
P = _A221A~2 

such that  

P* V* S2k VP = ~ 0 
A22 

in which S2k = All - A L z A j l A { z  . In the case A22 = 0, then Al: = 0, and thus 

In the case when A22 ¢ 0 is singular, there exists a unitary matrix I) such that 

V'A22 I ) = ' , A',,  > 0, 

and thus 

So, like the first case, there exists a nonsingular  matrix P such that 

] P* _~ A,, 0 P =  A~ 0 

0 0 0 0 

where order  422 = order A,~. Thus, we complete the p roo f  by setting T = VP in 
the first two cases and 

I'0 0] r=v  p P  

in the last case. []  
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The key role of the TH Problem is played by the following notion. 

S k D e f i n i t i o n  2 . 4 .  A Hermitian block-Hankel matrix Fk ~ ( i+j)i,j o, is called 
nonnegatively extendable (n.e., for short) if there exist Hermitian matrices 

(~ , .  ~ k + l  S2h-+l, $2k+2 of order p such that Fk+l = vo,+ij~./= 0 ~> 0. 

It is clear that Fk > 0 implies the nonnegative extendability of Fk, and that 
the latter in turn implies Fk ~> 0, but each of  the converse propositions is not 
true, for instance, 

I: 0] and ° ° 1 F, = 0 - I_~ 

In the scalar case: p = 1, Fk is n.e., if and only if either F~. > 0 or Fk ~> 0 is sin- 
gular and proper, i.e., the leading principal submatrix of Fk of order 
m = rank Fk is Hermitian positive (see [8] for details). 

In the Sections 4 and 5 we shall characterize the nonnegative extendability 
of a Hermitian block-Hankel matrix (see Theorem 3.9 and Corollary 4.10). 

In the case when Fk is n.e., from Lemma 2.3 we obtain 

C o r o l l a r y  2.5. Suppose F,  is n.e. I f  So = 0, then Fk = O. I f  So ¢ O, there exists a 
unitary matr ix  U such that 

00/ ,  0 . . . . .  ~ , 

k. -1 

in which So > 0 and all Sk have the same order as that o f  So. 

Lemma 2.6. Suppose that F(2) C . / p  has the asymptotical  expansion (2.2), 
n >~ 1. Then either So 0 a n d F ( 2 )  _= 0 or So ¢ 0 and 

S,, 
F().) = - 21e - S~S, + S,?FI (.~)' (2.7) 

where Fj (2) E . lf,,  and 

q,(~) q41) ~(l) 
FI().) =--~t~L-) --~.-~ - - "  ~2,, 2 O(~ 2,,-~1) 

)~ A -  ) 2 n  l - i -  ~ (2.8) 

in which S~(~11,..., S~I,)2 are defined by the Jormula: 

(1) = S ( I ) l ,  1 . . . 
]~n I L i~ / J i  j =O  : " , " . 

So LS,,, " "  So 
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{ } x [s ,+j] ,%,-  s, Pls,,. ,s,,] 

(2.9) 

Proof.  In the case of  So = 0, F().) ~ 0 follows from Lemma 2.1. In the case of  
So :~ 0, we may make  the assumption that  So > 0 th roughout  our  p roo f  (for if 
So ~> 0 is nonzero  and singular, by Lemma 2.1, then there exist a(u) such that 
Si = .1"+~ u i da(u)( i  = 0 , . . . ,  2n) and a uni tary matrix U such that 

Thus 

EaT ) °o] U*da(u)U = 

so that  

°ol, ,__o,, ..... 
where Si = J ] ~  uid#(u) of  order  equal to rank S0). Then by Lemma 2.1 again, 
there exists a Hermit ian  measure ~(u)(-oc,  < u < ~c) such that  

F().) = --/ 1 .dot(u) 
• ] b / - - A  

9c 

and 

So = . f d a ( u )  > 0. 

whence - F  1(2) E .  ! "p by Lemma 2.2. Suppose now that - F  i (2) permits the 
representat ion (1.2). It is readily seen that (2.7) holds with 

F, (2) = - & F  -I ().)So - So). + S1 

= (So~So - Sol)- + (So~So + s,) + .f 1+ ~i d(S0~(.)So). (2.10i 
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In view of  the fact that 

-F-' (iv) -4, 
,-+-~ i) . . . . . .  iyF(iy) " 

FI (2) has the form 

f l + u 2  El ().) = (SoflSo + SI) + . d(Soz(tt)So), 
, II - -  A 

and therefore Fi (2) E .  I '¢,, since SofiSo + & is Hermitian.  
On the other  hand, from (2.10), Fl(z) E. I"~, can be rewritten in the form 

el (,;~) = -S0[~- IF 1 (~0)] [S0). -r- F(z;.).Jo 2 - F(;L)S,; ISI .~] 

[ (  s~+~. _ ~se"' Sl .. ~ ] '  
= - s o  . .  

x s,,;. + . V ( ~ )  + --;~ + . . .  + ~ j  - s, ,~ - s~ 

&,, ( So $2,, "~ 
. . . .  / _ , ,_ ,  + 7 + " + 

& So ~ & S2,,S,; t & ] 
x So  I S i ) ,  + S] -~ ). ~- " " -} /. J 217 

Thus Fl(2) has an asymptot ic  expansion of  the form (2.8) in which 
s i', . .  s~ '1 . . ,  .,,_~ are determined by So . . . . .  S>,. To complete the proof,  it remains 
only to verify the formula  (2.9). Let 

& & &,, 
. . . . . . . . . .  (2.1 l) 

We will find the first 2 n - 1  coefficients of  the Laurent  expansion of  
~bl().) = - S 0 ¢ b  1(2) S 0 -  S02 + & at infinity. In the remainding part  of  the 
proof,  we always assume F,, > 0 (since in the case when F,, > 0 is singular. 
one may choose a certain Hermit ian block-Hankel  matrix /~,, > 0 and let 
F , ( e ) = F  +e[~,.Ve>O, and prove that (2.9) holds for F,(e) and 

(I) n-1 [S~7,(e)],.,= o. Then go to the limit as e ---+ 0). Then, it follows from [15] that there 
exists a pmr of  polynomial  matrices A ( 2 ) = / p 2 " + I + ~ ' / 0 A S  and 
B()O = ~ ' /o  &2' such that  

A ' (2)B() 0 - B(2)A '().), (2.12) 

where for a polynomial  matrix D(2) = Y'~.'/0 D).', D(2) denotes the correspond-  
ing polynomial  matrix ~ ' / o  DTY, and the Laurent  expansion o fA  1(2)B(2) at 
infinity has the form 

A '(~.)B(~0= So S, S_~,, - ~- - 7v . . . . .  ~2,,+~ + o()o-2,, 1). (2.13) 
A A- A 
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Moreover,the generalized Bezoutian of the quadruple (A (2), B().); B().),A(2)) 
Bez (A,B;B,A) can be written in the form [3] 

Bez(A,B;/}, A = S(A)*F,,S(A), (2.14) 

in which 
'AI . . .  A,, [p] 

S ( A ) =  • . • . ( 2 . 1 5 )  

A,, . 

Let C(2), R(2) be the polynomial matrices such that 

A(2) = B().)C(2) + R()o), degR(2) < degB(2), (2.16) 

where deg R(2) stands for the formal degree of the polynomial matrix R(2). 
Then [A 1(2)B(2)] l = B  l(2)A()o)= C ( 2 ) + B  t(2)R(2), so that, by the argu- 
ment given above, 

B -1 ().)R(2) = R(2)B -L (2) 

So Is(l) K ' - ' o  ~0 So IS( ' )So l '  So ' S(2],~2S0 ` 
~ A2n I 

Thanks to the relation 
A A 

Bez(A B: B, A) = Bez(BC + R, B; B. CB + R) 

[ Bez(R, B; B,~AR) = Bez(BC, B; B, CB) + 
0 

we obtain from (2.14) that 

iio  I • . " S ( A ) * F , , S ( A )  . 

• . -B,, iSo 1 

1t, J L -S,:;t B~ 

~- off. e. ,). 

(2.17) 

o 1 0 

"'. 0 1 

. . . .  S 1R* 0 ~n I lp 

= S ( B ) *  " ' "  So FI:'1)1 ' "  

I 

s(8) 

So 
0 

0 So ] " 
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Multiplying by 

T = d i a g  " 

LLS,, 1 
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0] ]io 1 ". ,I,, s ( ) *  o ' 

" 6 ,  
• . , S 0 

on the left, by T* on the right, and then computing the existing result, we have 

- -SlSol  I~, 

- S , , So  1 

I~, 0 . . .  

0 

0 

- S i S o  I 

I,, 

ISO 0 ]  

LS,,-I SO 

(/,, ~SO) ~r ~i (L, ~ s o )  n -  I 

whence 

[s,~j]ili~, - 

So • ""  3~1 ] 

SO 

[ 11 So ' [So , . . . , s , , ]  = " ' . .  ".. 

,, S,,_1 --" So 

0 

SO 

& 

- I  

F (  l ) 
n I 

Hence, the formula (2.9) follows from the last equation• [] 

L e m m a  2.7. Suppose that n >~ 1 and F,, is n.e. and that Fl (2) E has the 
asymptotic  expansion (2.13), where S~ '1 . . . . .  S~l) 2 are defined by Eq. (2.9). Let  
F()o) be o f  the f o r m  (2.7). Then FI')I = [S}+Z)]7i!) l o is also n.e., and F(2) C , Vp, 
which has the asymptotic  expansion (2.2). 

Proof. Suppose that Fn is n.e. (n/> 1). By Corollary 2.5, we may assume that 
(S ~ n + l  So > 0. Then by definition, ~ i+jJi,/=o >1 0 for a suitable pair of Hermitian 

matrices S2n+l and $2~+2. Define ~(l) and S Ill via the formula 
~ 2 n -  I 2n  
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So 

fS (1Iv' : (1,+1 ® So) 
[ i+.jli.j=O Sn- 1 

S~ 

× [s,+j],.j=, - 

"S0 ' "  S,, 1 

X 

So 

"'. 01-1  

• . ,  S 0 

• . . S l So 

IS~7~ I]S(7I[sI~~StI+I]I 

Sn - ] 

(I,,+t G S0). 
$1 
& 

[~ , ( l ) ]n - I  F(I) Then obviously tui+#i.j=o >, 0, so that ,, is n.e. On the other hand, it is easy to 
prove in much the same way as that used in Lemma 2.6 that F(2) E "p and it 
has an asymptotic expansion of the form 

Fifo = S0 S~ S', S',, o(~ 2,, 1 ,~ ; ? - ; ~  . . . .  ; ~ ,  ~ ~ ) 

Then Eq. (2.9) holds with S~ (i ~> 2) in place of S, (i >~ 2) therein, and therefore 
Si = S~(i >~ 2), noting that if So and $1 are fixed, then $2 . . . . .  $2,, are uniquely 
determined by S~ I / , . . . ,  S~ 1/.,, ,_ via the formula (2.9). [] 

3. The solution of the TH problem 

In this section, the nondegenerate and degenerate TH problems are treated 
in a unified way of constructing matrix continued fractions. Some results on 
the matrix moment problem on the real axis are given as well with little addi- 
tional effort. 

The following theorem gives a criterion of existence of the solutions to the 
TH problem in terms of the notion of n.e., which is a natural generalization 
of the corresponding theorem in the scalar case (see, e.g., [21], Theorem 2.3, 
pp. 31 32; [8], Theorem 3.6). See [4], Theorem 1, for the same result in the op- 
erator case. 

Theorem 3.1. The TH problem (2.1) is solvable ![" and only (f F,, = (Si+i)'i'i=o is 
gl.e. 

Proof. Assume that the problem (2.1) has a solution a(u). Then the problem 
(2.2) also has a solution F(2) by Lemma 2.1. It is obvious that 
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S ii ~ t.J--~C, rl I ' .  = ( i+j)i,j=o [(+~ u i+j d~(u)]i , /= o >10. Applying Lemma 2.6 successively, 
one can derive that 

K, DK,(I) ~(n 3)DK,(n 2) 
So ~0 ~0 ~0 ~0 

F ( 2 )  = - ) j p  _ S (DS 1 .4Ip - ~o~'(1 }D ~,(1 ) ~ 1  "~P --  ~0~(n-2)D K'(n-2)~l 

K,(n 2)DK,(n-I) 
_ ~ o  ~ o  ( 3 . 1 )  

~I, - s,~,"-'~°sl '' " +  s ; " - ' > ° + ( ~ )  

for a certain q~(2) = -SII") / ) .  + 0(2 ') E . t p ,  where S~ '>,SI I ) , . . .  ,S}:' '),SI) '') are 
uniquely determined by F, .  Let F(2) denote the matrix-valued function F(2) 
given in Eq. (3.1) but with ~b(£) replaced by ~().) = - S ~ " ) / 2  E Obviously, 
by Lemma 2.7, P()~) is also a solution to the problem (2.2), which is rational. 
Suppose now that the Laurent expansion of F(2) at infinity has the form 

I F ( . ) ) =  So SI  $2 . S2n S2n+l $2n+2 O(.~_:n_3) 
~. }2 )3 --  ' ,~2n+l 22n+2 22n+3 -}- ° ' 

Then Lemma 2.1 implies that there exists a Hermitian measure z (u)  such that 

+3¢ 

& = / u  k dz(u), 

so that 

k = O , l , . . . , 2 n + 2 ,  

r l+ I+/ ,j+l 
F,+I = t i+:Ji,/=o = u i+/ d'c(u >~ 0. 

L - ) c  i.j=O 

Hence, F, is n.e. 
Conversely, if F, is n.e., we may assume So > 0 by Corollary 2.5. Let 

F ( ) . ) =  So S1 S, S2n 
- 7 - ; 7  - ;.~ - ;2,,+, + 0 (  ;.-2'' ' ) .  

Then we have 

& 
F(2) = - £/p _ S0,S ' + S0 lFl(/~ ) (3.2) 

in which 

q(l )  if{l) Fl() .)  = S<I'II =I_L_ .. ~'2,, 2 
- ~ - ~  - 22 _ .  _ ) 2 , ~ _ + o ( 2  2,+1) (3.3) 

r (t) is n.e. with coefficients Sgl), • • •, ~'2,-2c(1) defined by (2.9). By Lemma 2.7, _,,_~ 
Also, F ( Z )  E , C  v is equivalent to the fact Fl (2) E ./l:p by the proof  of Lemma 
2.6. For  FI (2), we may assume S~ l) > 0, and put 
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F,(  :,) = 
S0 1) 

)jp q(i) iq{l) +sl,  l) 1F:(2) 

in which 

q(2) £,(2] q{2) 
F2(2) = ~0 ~ l  . . . .  ~2n__._~4 -t- 0 ( 2  2n+3) 

Z 2 2 ~ -~ 12n _ 

with coefficient S, Ci2),..., $22n)4 defined by F},l)~ via a formula similar to (2.9). The 
further  cont inuat ion  of  this procedure  is evident. Hence, in order  to find a so- 
lution F(2)  to the problem (2.2), it is only required to find a matrix-valued 
function E,(£), which belongs to ,.t'p and has the asymptot ic  expansion 
E,(Z) = -S~/')/). + 0(2 1),S~") >10. It is clear that such a function E,(2) exists, 
and can be taken as F,(2) = -SI}")//t. Thus the problem (2.2) (and therefore 
the T H  problem) is solvable. [] 

It is no tewor thy  that  in [6] the au thor  concluded that F,, /> 0 was a sufficient 
and necessary condit ion for a solution of  the T H  problem to exist. This, how- 
ever, is not  true even for the scalar case [8]. But it can be verified that F,, >>. 0 is 
actually a criterion of  solvability for  the matr ix moment  problem on the real 
axis of  finding a Hermit ian  measure a (u ) ( -oc  < u < +vc)  such that  

i = 0 , 1 , . . . . 2 n - 1 ; $ 2 , ~ >  . fu2"dc~(u) '  (3.4) 

where S0 , . . . ,  $2,, are given p × p Hermit ian  matrices. (See [2] for scalar case.) 

Theorem 3.2. The moment problem (3.4) is solvable (/ and only ([" 
tl 

F,, = [Si+i i.j=0 >t 0. 

Proof.  Suppose that  the problem (3.4) has a solution o-(u). Let 

= / t f l "  do-(u), 

2~ 

then 0 ~< $2,, ~< $2,,. Therefore  

,l F, = if+~ do'(u + d iag [0 , . . . ,  0, $2,, - $2,,] ~> 0. 

i,j=O 

Suppose conversely that  F,, ~> 0. Now put 

(3.5) 
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F( ). ) = 
so So~ S~ ' ) ~o~1"- 3)%1°- 

.~I l, -- S(?SI Xlp - ~OV(I)D q'(1)~l }.Ip --  ~0 if(" 2)D K'(n~l 2) 

S~n- 2)Ds(0n- 1 ) 

2I,,SI),, ,iDsI,, I )+ S~,, ,,D@().)' 

in which @(2) = -~/)o C (0~<~<S~ ")) and S,t, lI ,S' l ' l , . . .  ,S,I,"-II,sI,"-II,sI, "1 
are defined by the formula (2.9) successively. By using Lemma 2.7 repeatedly, 
we have that F(2) C .~ "t,, which is rational, and has Laurent expansion at infinity 

F(2) = So SI $2 $2,, i S~,, 
2 )2 - 27 . . . .  ).2,, ).27~+~ + 0(2 2,-~). 

Since 0 ~< :~ ~ S~ "i, we conclude from Eq. (2.9) that 0 ~<$2,, ~< $2,. Hence, by 
Lemma 2.1, there exists a certain Hermitian measure a(u) with moments 
So . . . .  , Sen 1,$2,,, that is, a(u) is a solution to the problem (3.4). [] 

As a consequence of Theorem 3.2 we have a useful conclusion which is ac- 
tually implied by Ando in [4], Corollary 3. 

S II Corollary 3.3 (Ando [4]). If" F,, = [ i+j]i,i=o >~ O, then there exists a C >~ 0 o f  
order p such that F,  can be written as a certain sum o f  two nonnegative Hermitian 
block-Hankel matrices: 

F,, = (3.6) 

$2,, C 

where the first matrix  on the right side o f  the last equaliO, is n.e. 

Note that in the scalar case: p = 1, if F,, ~> 0 is singular, the form (3.6), alias 
its quasidirect decomposition, is uniquely defined by F,, itself (see [8], Lemma 
2.7), and the singularity of F,, always leads to a unique solution to the problem 
(3.4), which has a finite number of points of increase. 

Although, the singularity of F, in the matrix case will not always lead to 
uniqueness, but to reduction of the dimension of the solutions (see Theorem 
4.5). We will consider these questions in the following results. To begin with 
we present the explicit forms of the solutions to the TH problem and to the mo- 
ment problem (3.4), which follow from Lemma 2.1 and Theorems 3.2 and 3.3 
at once. 

Theorem 3.4. The general solution or(u) to the T H  problem is representable as a 
matrix continued J?action 
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+r do(u) 

.I 

so 
sDs( 1) S(~~-i)DS(n4) 

0 -=- 

u - i, 
pr 

up _ s&y, - up _“$Ds/‘l - ’ - ;-*,, _ &DsI”4 

S(4DS;- I) 

II 

Jo 

1’ 
_ s’“~“Ds’“~‘) 

(3.7) 
0 I + S:;“-““@(n) * 

\\here Q(2) = Jzz I/(u - l.)dz(u) andS/,‘) = J+x dt(u),for N Hrrmitiun mrusurr 

T(u). 

(To determine the Hermitian measure r~(u) from the function @(A) one can 
use the Stieltjes-Perron inversion formula in the matrix case.) 

It is easy to see that in the case when r,? is n.e., the TH problem has infinitely 
many solutions provided SF’ # 0 (see the proof of Theorem 4.1 for details). 

Corollary 3.5. The THprohlem has a unique solution n(u) fund only fr,, is n.e., 

und S,i”’ = 0. In this cuse, the unique solution o(u) has ufinite number qf’points of’ 

increase such that Eq. (3.7) holds. 

Proof. Follows from Theorems 3.1 and 3.4 and the Stieltjes-Perron inversion 

formula. 0 

Theorems 3.1 and 3.4, and Corollary 3.5 support that a great amount of all 
information about the TH problem is contained in the matrix r,, and the ma- 

trix continued fraction (3.7). 

Theorem 3.6. The generul solution to the moment problem (3.4) is representuhle 
ix 

us u mutri.v continued fkction given us in (3.71, nhere @(IL) = f__, 

l/(u - A)dz(u) hut only S,i”’ 3 J+x dz(u) for u Hermitiun meusure T(U). 

In the next section, we will generalize a theorem of Kovalishina [ 171 and use 
it to rewrite the aforementioned general solution to the problem (3.4) as a lin- 
ear fractional transformation of an arbitrary Nevanlinna pair. 

Corollary 3.7. The moment problem (3.4) bus a unique solution o(u) fund on!, 

if’r,, 3 0 and Sr’ = 0. In this cuse, the unique solution r~(u) has o,finite number of 

points of increuse. 

Proof. Follows from Theorems 3.2 and 3.5, and the Stieltjes-Perron inversion 
formula. 0 

Corollary 3.8. !fr,, 3 0 and St’ = 0, then r,? bus only u triviul decomposition oj 

the,fbrm (3.6). 
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Proof. Follows from Corollaries 3.3, 3.5 and 3.7. [] 

Note that under the assumption of Corollary 3.8, F,, is always singular (see 
Theorem 3.9). 

Theorem 3.9. I f  Fn is' n.e., then there exists a nonsingular matrix P o f  order 
(n + 1)p such that 

[ PF,,P* = 

~'0 
R(S~ "1) C_ R(S~," ,i) C_ . C R(S~°I), (3.8) 

where R(A) stands Jor the column space oJ'a matrix A. 

Proof. Set FI ° / =  F,,. From (2.9) we obtain that 

° 

F~1/n 

0 

-SjSro ~ 

_ - s , , s , ?  

i 
t,, s~, °' 

(o) 
S(!) ° l S ,,_ , 

0 . . .  lp 

D 

• .  ~(ol 
" u 0 

-sDs1 

i,, 
. . . .  s(D)o Sn 1 

So ~°) 

S()Oi S~00) 

By using the operation similar to that given in the last equation on F J/, we 
~/0/ FI ' 11 replaced by S~ /F!2)) r e s -  obtain a formula similar to the last one with ~0 ,  

pectively, so that 
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I SI)O) S (1) 
o 

6 ,  

X 

t , ,  

6, 
× 

F (2) 1 

n-2 A 

/P 
S~ I) 

t/ 

/P 
Sli t~ 

• . .  SII 1 

0 D 

67 
_ ~,(1) ~,{1 )D 

~1 ~0 [P 

~,(I) ~,[ 1 )D 
-o, ,  ,~0 0 . . .  4, 

/P 
_ ~,(I) ~,(I )D 

• . 

~,( 1)D ~,(I )D 
- - " n  I ~ 0  0 " ' "  

D I p  

&,,) . . .  sl, '/, 

F {I} ] n I 

, 

/17 
SIL~ 0 

S~ l~ 

217 

The further  cont inuat ion of  the procedure  is evident. After n such steps we 
get to a block diagonal matr ix diag[S~°),Sl~ 1) . . . .  ,S~ ")] which coincides with 
PF,, P*, where P is a certain nonsingular  matr ix of  order  (n + 1)p. The second 
assertion follows directly f rom the nonnegat ive extendabili ty of  F,, k(k = 0. 
1 . . . . .  n -  1 ) .  [ ]  

We point  out  that  Theorem 3.9 is not  true for the case of  F,, i> 0. As an 
example, 
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: i :  ' R(S  = C ,  R(Sa  = { 0 } .  

Also, by the proof  of  Theorem 3.9 we can take 

-g 

,i I ] p  

P" = H _~,( i )~( i )D 
i=0  ~1 ~ 0  

~(i  ~,(1) D 
- - ~ t  - i ~ 0  

i,, 

/; 

• ~,(i) ~,(i)D 
"" --~1 ~o [p 

Ip (3.9) 
X __ q,(i) ~,(i)D 

~1 ~0 Ip 

q,(i) ~ , ( i )D 
- -3n  i~O 0 " ' '  lp  

as the matrix P given in Theorem 3.9, which can be considered as the product 
of a number of  elementary operations on block rows without exchange of 
block rows• 

Therefore, we have the following 

Corollary 3.10. I f  F,  is n.e., there exists a certain principal submatrix, o f  order 
equal to rank o f  F , ,  which is Hermitian positive, and is located at the left upper 
corner as it possibly can, that is, the ith row (column) o f  it is located at the j th  
block row (column) o f  F~,j<~ i. 

Note that in the scalar case: p = 1, if F~ is n.e., then the leading principal 
submatrix of  F,, of  order equal to rank of F,, is always Hermitian positive, 
and vice versa. 

The following result characterizes the class of Hermitian block-Hankel ma- 
trices which are n.e. 

Theorem 3.11. f n is n.e., i f  and only i f  F.  >~ 0 and R(S~ ~)) c_ R(S~-I) ,  where S~") 
is defined via P.F~P, = diag[S~ °) . . . . .  S~,-I), ~n)] in which Pn is as in (3.9)• 

Proof. The "only if" part follows immediately from Theorem 3.9 the "if" part 
can be derived in much the same way as that used in Theorem 3.1. [] 
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It is worth to point out that we deal only with the TH problem of the form 
(2.1) in the present paper. As for another type of the TH problem of  finding a 
Hermitian measure a(u) subject to 

~9C 

Si = f uida(u), i = 0 , 1 , . . . , 2 n - 1 ,  (3.10) 

one may also give its criteria of solvability and uniqueness in a similar way to 
that used in the TH problem (2.1), and will be omitted here. (The change, how- 
ever, from the TH problem (2.1) to (3.10) seems to be not a simple matter, and 
some details need to be discussed rather carefully.) 

4. The relation between the solution forms of matrix continued fractions and of 
linear fractional transformations 

In this section we will consider an intrinsic relation between the descriptions 
of the solutions to the moment problems (2.1) and (3.4) in terms of matrix 
continued fractions and in terms of the general and popular way of linear frac- 
tional transformations. 

A well-known theorem of  Kovalishina ([17], Theorem 3) are modified and 
extended to some extent. 

Starting from Theorem 3.4, we can readily show the close relation of the so- 
lution form (3.7) of  matrix continued fractions of  the TH problem to the solu- 
tion form of  linear fractional transformations [17]. Note that here a uniform 
description of  the solutions is given in nondegenerate case (F,, > 0) or not 
(F,, >~ 0 is singular and n.e.). 

Theorem 4.1. The general solution to the TH problem (2.1) is representable as a 
linear fractional transformation of  an arbitrary G(2) E .l 'p such that 
l im;_~G(2) /2  = 0 uniformly in each rcc: 

I do-(u) _ 011(~)G(ffL ) -~- 012(~ ) (4.1) 
• ~ - ~  02,(;~)6(;~) + 022(;~)' 

whose coefficient matrix is o f  the decomposable .form 

[011(,~) 
0(;~) = 02~(~) lYI i)D __ ~,(t)D ~,(i) ' 022(2) J , 0 ~/p ~0 ~l 

(4.2) 
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In the degenerate case, if 

01 0 0,. ' ~0 > 0, 0 < r<~p, 

for a certain unitary matrix U, then 

U*G()')U= [ ~(2)0 0,.0]" 

Further, the problem has only a solution a(u) ![and only if F,, is n.e. and S[~ "1 = O. 
In this case, the unique solution a(u) is such that (4.1) holds with G(2) = 0. 

Proof.  Observe that in order to prove the theorem, it is sufficient to show the 
following assertion: if ~b().) = f ~  (u - )L) i dr(u),  where f ~  dr(u) = ~0~/"), it 
can be rewritten as the form 

SI~ n ) 
z 

q~(2) 21. + S~"IDG(2) (4.3) 

where G(2) is the parameter  function described in the theorem, and vice versa. 
As before, we may assume that S~ "/ > 0. Suppose that q~()0 admits a integral 

representation ~/,(2) = f + ~ ( u  - 2) ~ dr(u),  f ~  dr(u) = S~ "/. Then, by Lemma 
2.2, ~b 1(2) exists and -q~ 1(2) E .  I.'p. On the other hand, 

- q ' - - t ( i Y ) -  l im  _ _ - I ,  _ ~,/,,) l 
lim iv ,.-:~ iv~b(iv) ~0 , 

so that -q~ 1(2) permits an integral representation of  the form 

o/,,/ 1. / '  (1 + u2) 

~ c  

We have in turn 
~,(nl 

= 

- - 3 C  

;!,,I-lv/~/(/~ + f (1 + u2)/(u - 2)d~(u))S~ "1 21p + ~0 ~0 

which coincides with Eq. ( 4 . 3 ) w i t h  G(2) S{~'i(/3+ /'+~(1 + u 2 ) / ( u - 2 )  
d~(u))S~ "). 

Conversely, if ~(~) is of  the form (4.3), then q~(2) E ~"e and 
l i m v _ ~ -  iyq~(iy)= S~ "), so that ~ ( 2 ) E  ~.t"~°p and q~()), = ~-~f+~(u- -).)-L~, dr(u) 

+~c (n) f o r a  certain r(u) satisfying f ~ f  dr(u) = S~ , as desired. The rest is plain. [] 
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Note that in the case of  F,, > 0, let 

E ° J = -iIp ' 

then, by direct verification, each factor on the right side of Eq. (4.2) (and there- 
fore the matrix ®(£)) is a matrix-valued function which is J-expanding in zr +, J- 
unitary on the real axis, of full rank, and has a pole of order one at Z = oc. 

The correspondence defined by Eq. (4.1) between Hermitian measures or(u) 
and functions G(2) with the properties given in Theorem 4.1 is one-to-one. 

Before parametrizing the general solution to the moment problem (3.4) in 
terms of a linear fractional transformation, we need a result which is an exten- 
sion, to some extent, of a well-known theorem of [17] (Theorem 3). 

Theorem 4.2. Ira  matrix-valued function W(2) holomorphic in ~+ satisfying the 
fundamental matrix inequality." 

So & .. .  S,, 

St $2 "" S,,_I 

& S,,~l . . .  $2,, 

2 ¢ ~. (FMI(o~)) 

: w(2l-w(~i* 

w(;.)  

,qw).) + so/;d 

' "  ~>0, 

Z'[W(2) + S o / ; , + . . .  + S,, ,/;/'l 

/ .  • 

then W()o) belongs to ,,1~, and has the asymptotic representation 

;!im). 2"+' W(2) + 2 ""  + -S~"" 

where 0 <~ $2, <~ $2,,. Conversely, i f  W(2) E .  l "p has the as'ymptotic representation 

)im¢? '~' w(;.)+ ~ + ' " +  ~2, ,  J =-Sz,,, 

then it satisfies FMI(o;4~). 

Proof. The second part of the theorem has been proved by Kovalishina in [17]. 
To verify the first part, let us begin with the problem in the case of n = 0. Then 
FMI(J¢)  is reduced to 
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so w(;O ] 
W(2)* s,(;) w(;./~1 >/0, ). E n +. (4.4) 

Letting 2 = iy (y > 0) and multiplying by T = diag[Ip, - i )4p]  on the right and 
by T* on the left, from the last matrix inequality we obtain 

So - i y W ( i y )  ] 
( - i y W ( i y ) ) *  R e [ - i y W ( i y ) ] J  >~ 0, y > O, (4.5) 

so that 

(So)kkRe[--iyW(iy)]k, - l - - i yW( iy )k , I  2 >~ O, 1 <<. k, l <<.p, 

whence 

I-- iyW(iY)k, l<~(So)kk,  l <~k,l<~p, 

where (A)k / denotes the (k , l )  entry of a matrix A. Thus, supv~l l] iyW(iy) l  I 
< +oc for a certain matrix norm I1' II on M,(C), and therefore, by (1.4), 
W ( 2 ) = f , + ~ ( u - X ) - l d a ( u )  which has the asymptotic representation: 
lim~_~ - 2W(2) = ./_+~~ da(u) by Lemma 2.1. Going to the limit as y --+ +~c, 
from (4.5) we obtain 

f da(u) 
-~  >~0, 
+ 2 C  

[ f d a ( u )  -x f d a ( u )  

which is equivalent to 

j = S o  - o, 
-- ,9C 

since index [£+~ da(u)] = 1 obviously, that is, j.T~ da(u) ~< S0. 
Next, we consider FMI(.J~) in the case of n ~> 1. If we multiply F M I ( ~ ) ,  

step by step, on the left by 

: 0 I ( .+  1 )p 
Ti . . . . . . . . . . . . . . . . . . .  , i=- I . . . . .  n, 

o . . . .  ,zp, o , . . . , o  ? ;dp 

and on the left by T,*, and applying the similar argument to that given in [17], 
we obtain 
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So Sl "'" St, 

$1 $2 • • • S,,+l 

S,, S, ,+l  " "  $2,, 

JoE g+, 

in which 

I ~ + .  E()~) = )2,, W(2) + ~ -  

and therefore, in particular, 

s~. E(~) 
E(2)* E!~I-Et~I* ~> O, 

;'. 2 

x"[w(~) + So/~  + . . .  + s ._, /~: ']  

;.+1 [w(;) + So/~ + . . .  + s . / ;  "+~] 

E(~./-E/~,)* 

>/0, 

S2n-l] + 

2 E ~  +. 

From the result proved for the case of n = 0, it follows that E(2) E ,Up has the 
asymptotic representation: lim;_~ - 2E(2) = $2, ~< $2,,, where $2, ~> 0, that is, 

So s2. ,] 
lim - 22"+' W(2) + --: + . - .  + ~-_,,, ] = $2,, ~< S_,,,. 
).~.vc A 

This completes the proof• [] 

Thanks to Lemma 2.1, it is easy to see that Theorem 4.2 is equivalent to the 
following result, which is at first considered in [20] (Theorem 2.10) in the non- 
degenerate case. 

Theorem 4.3. The moment  problem (3.4) is equivalent to F M I ( ~ ) .  Further, the 
relation between their solutions can be formulated as 

W(,~) = --/da(u)___u_2, (4.6) 

where a(u), W()o) are the solutions to the problem (3.4) and to FMI(,~l(f), respec- 
tively. 

It is known ([17], p. 448) that the general solution to F M I ( ~ )  in the case 
when n = 0 and So > 0 can be described as a linear fractional transformation 
of an arbitrary Nevanlinna pair 
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[p(,~) 
q()~) 1 : 

-q(~) 
W()~) p().)  + 2S,; 'q()o) '  (4.7) 

which can be rewritten as 

-So[So l q(~)s~; '] 
W(.~o) = S,;I [Sop()~)So ll + ~[S~;lq()t)S,;l] . 

Let/~()~) = Sop(2)S~7 ~ and 0(2) = S( lq (2 )So  ' , then 

0(~.)] 
is also an arbitrary Nevanlinna pair, if 

q()~) 

is, and vice versa. Then we have an equivalent form of Eq. (4.7) 

- S o ~ ( £ )  (4.8) 
w(;~) = s ~ ( ; ~ )  + ;~(~)  

Thus, we have proved the following lemma. 

Lemma 4.4. Le t  So > O. Then the general  solution a(u)  to the m o m e n t  prob lem 
(3 .4)  .['or the case o f  n = 0 is representable  as a linear f rac t iona l  t rans format ion  
of  an arbi trary  Nevanl inna  pair  

[ p ( ~ / ] :  

q().) J 

f da(u) _ -Soq()~) (4.9) 
u - 2 S,;lp()~) + 2q()~) 

with coeff icient m a t r i x  

- S o  

Note that let 

J - -  - i / p  ' 

(4.10) 
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then, as before, the matrix valued function (4.10) is J-expanding in nL J-uni- 
tary on the real axis, of full rank, and has a pole of order one at oc. 

Also, if So ~> 0 is singular, it is not difficult to prove that Lemma 4.4 is valid 
as well with So D in place of S0 ~ therein and that if 

then 

U.p(2)U= I~(~ ) O ] and U*q(A)U= [gI(o ") 0]  
0, L ' 

where 

0<r~<p,  

[ ~(;0] 
~(~.)/ 

is also an arbitrary Nevanlinna pair with reduced dimension. 
Combining Theorem 3.6 with Lemma 4.4, we have 

Theorem 4.5. The general solution to the moment problem (3.4) is representable 
as a linear fractional transformation of an arbitrary Nevanlinna pair 

+~,~ 

p().) ]: : da(u) _ 0,,(2)p(2) + 012(2)q().) (4.11) 
q(2)J . u ~ 2  02,(2)p(2)+o22().)q(2). 

whose coefficient matrix is of the decomposable form 

Lo21(~) o2~(~) -- l - I  )dp i=O S0 i)D ~,(i)D ~,(t ) 

In the degenerate case (F, >~ 0 is singular), i f  

then 

U*S("iU = , ?3(o "~ > 0,0 < r<~p, 
Or 

U'P(2)U = [!5(0 0 0,.0] and U*q(2)U = [ gtO0~) 1,0]" 

where 

S(n) 1 ~ O.  

(4.12) 
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0(2) J 
is' also an arbitrary Nevanlinna pair. Further, iJ'and only i f  S~ ") = 0, the problem 
(3.4) has only one solution a(u), which corresponds' to (4.11) with p(2) = 0 and 
q(2) = 4,. 

It is worth to point out that in the nondegenerate case: F,, > 0, the matrix 
decomposition of the form (4.12) is essentially nothing other than a superposi- 
tion of elementary linear fractional transformations which has been presented 
by Kovalishina [17] as a Blaschke-Potopov product in the so-called Schur's 
stepwise process. Thus this leads to the solution of the full moment problem 
consisting of  finding a Hermitian measure a(u) subject to 
Sk = f+~  da(u), k = 0, 1 . . . . .  to an infinite product of the form 

° 

i=O SI) i)-I )jp_~(i)D~(,)'oO ~1 (4.13) 

each factor of  which is J-expanding in ~-, J-unitary on the real axis, of full rank 
and has only a pole of  order one at ). = ~c. 

In the degenerate case (F,, >~ 0 is singular), Theorem 4.5 coincides essentially 
with Theorem 1.1 of  [6] (pp. 25-27) but with "the moment problem 3.4" in 
place o f " t h e  problem H"  therein. Consequently, this also leads to the solution 
of the full moment problem mentioned above under the condition 
F, ~> 0, n = 0, 1 . . . . .  We will omit this investigation here. 

As a rule, the independent parameters in Eq. (4.11) are the equivalence 
classes of Nevanlinna pairs: different pairs lead to the same measure a(u) if 
and only if they are equivalent to each other. 

Our next object is to consider the close relation of Theorems 3.4 and 3.6 to 
the corresponding results given in [11,9] based on the use of  the theory of or- 
thogonal polynomial matrices in the nondegenerate case, which receive further 
development suitable to the degenerate case. 

Defined the recurrence relations under the condition F, /> 0: 

M~+, (~) = M,(:~)[;~  - S ~ S I ~ J  - M~ , (;OS~/-'~°S} '~, 

Ni+l (3.) = N~(2)[)Jp - S~)DsI ')] - N~_, (2)S~-'IDs(, '), (4.14) 

for i = 1 , . . . ,  n, with initial conditions: 

Mo(~)  = zp, M,  (~) = ;.z~ - S~o°~Dsl '~, 

No(2) = O, N, (2) = So(°), 

where S~°),S}°),... ,S;" I),SI"-I),s;n) are defined as in Section 3. Thus 
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S~ °/ 
F,(~) = 

2Ip v(O)D q'(o) 
- -  ~ 0  ~ 1  

S~ °) 
F2(2) = 21e - K'(O)D q'(O) 

~0 ~1 

N,,- 1 (),) 
F,,_I (;.) - 

M,, ~(>.)" 

N, (),) 

MI ()o)' 

S(0)D ~,(1) 
0 ~0 ~( ; . )  

.),]p __ ~ ( I ) D  ~,(I) M 2 ( ) . )  ' 
~0 ~1 

(4.15) 

which can be considered as the truncated parts of the matrix continued fraction 
given in Eq. (3.7). We now show that if Fn is n.e., the matrix sequence of 
M0(2), . . . ,Mn(2) defined by Eq. (4.14) has a generalized orthogonal property 
with respect to the sequence So,. . .  ,S2n in the sense that 

+3c 

, f  M;(u) da(u)Mj(u) 

0, irk j, 
= $2~- [&,...,S2~ ,]FD,[si . . . .  ,$2~_,]*, i = j  ~> 1 (4.16) 

So. i = j = 0 ,  

where o(u) is a solution to the TH problem (2.1). (In the case of F,, > 0, 
Eq. (4.16) means that {Mi(2)} is a sequence of right orthogonal matrices asso- 
ciated with the Hermitian measure o(u) (or the sequence of So, . . . ,  $2,) [11].) 

Indeed, assume i ) j and i ~> 1 (for if i = j = 0, Eq. (4.16) holds obviously), 
and rewrite M~(2) and Mj(2) in the form 

Mi(2) = mso + Mil)~ + "" + Mi.i ,2i ' + Ip2 ', 

My(2) = Mjo + M/I ) . - F " "  + Mj,j-I  ~J-! -}-g),J. (4.17) 

Then 

. f  Mi*(u ) da(u)Mj(u) 

= [Mio , M* ,/p] Fi [M;0 , M;~/_ 1,/p, 0 , ,0]* (4.18)  • ' ' 1  i . i - 1  " ' ' ~  . " ' "  " 

On the other hand, it is not difficult to verify that the Laurent expansion of 
the rational matrix Ni(2)/Mi(2) at 2 = oc admits the form 

N,(2) So S2i l S 2 i  

M,(:,)- 7. + . . .  + ~ 7 - + ~ + o ( ; ,  ~-* ~), 

so that 
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r & & ""  Si 

[ ~ o ,  . . . ,m[, i  1,lp] ] SI. . . . . . . . . . .  3 2  " ' "  S i + l  = [ 0 , . . . , 0 ] .  

S ~ 1  . . .  S~, 

or equivalently 

[Mb... ,It,_, =-Is , , . . . ,&,  ,], 
S'~i M *  - M* . : -  ioSi . . . .  i.i_lS2i_l . 

Thus,  since F~_lF~l = F~F,_~  is the o r thogona l  project ion onto  R(F~_~) we 

(4.19) 

have 

--[Si,... ,$2. i_1] = -[Sit.. .  ,S2 i - I ] / ' iD  i Fi~, 

and therefore 

S2i - S2i ~- $2, - [St , . . . ,  S2/-i]F~l IS , , . . . ,  S2i-i]*. 

Then 

--7X5 

_ . I . M~(u) da(u)Mj(u)  = [0, . . .  ,O,S,, - S2,][Mjo,* .. ,Mjj* ,, p ,O, . . .  ,0]* 
.')c 

0, i C j ,  

: S 2 i  - S2i i = j >~ 1, 

as needed thanks  to (4.19). 
Hence  we have shown the following result. 

Lemma 4.6. Let  Fn be n.e. and Mi(2) (i = O, l , . . .  ,n) be defined b), (4.14). Then 
m n { i(2)}i:  o has the generalized orthonogalproperty with respect to the sequence 

So . . . .  ,$2~ in the sense given in (4.16). 

Note  that  the matr ix  S2i - S2i given in Eq. (4.19) is as a general rule called 
the generalized Schur complemen t  of  F, ~ in Fi, denoted by 
F,/Fi  t , i  = 1 , . . . , n .  

As a consequence of  L e m m a  4.6, we have 

Corollary 4.7. Let  Fn be n.e. and Mi(~) (i = O, 1 . . . . .  n) be defined by (4.14) or 
(4.17). Then 
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r" l 
MI (}.) = P,, 

LM,,(2) L )/'I,,_I 

in which  P,, is as in (3 .9 ) .  

229 

(4.20) 

Proof. Write the lower block triangular matrix P,, in the form 

P,, = 

6, 
P..  6, 

P t , 0  • • • P n , n -  1 / .  

Then Eq. (4.20) is equivalent to 

m,, = I 
6 ,  

M~I, I t, 

• • " . .  

t_ M,~o . . .  M , , , _  I 

0 

z P t l .  

6, 

(4.21) 

But, by Lemma 4.6, /~+~M* = ~ i ( u ) d a ( u ) M / ( u ) =  Sl~i/6u, where S[0 So and 
SIj il = F i / F ,  t, i ~> 1, and therefore 

M,,F,,M,~ = 
0 

Now put 

l~n I Mn i 
t,, 

CI0 6, 

• • . " ,  

t. Cno . . .  C,~.n 1 

0 

C t t .  

/ .  

To prove Eq. (4.12), we need only to verify C u = 0 (0 <~j < i <~ n). But this fol- 
lows from Theorem 3.9 and the following equality: 
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01 C,, . C,~ = 

o L 

This completes the proof. [] 

As a useful by-product of the proof  of Corollary 4.7, we obtain 

~O/=s{O/ S~/)=Fi/F,_I = S~ '1, i =  l , . . . , n .  

Thus, Lemma 4.6 can be reformulated as follows. 

(4.22) 

Lemma 4.8. Let F, be n.e. and Mi(it) (i = O, 1, . . .  ,n) be defined by (4.14). Then 
{Mi(2) }7-o has the generalized orthogonal property with respect to the sequence 
So,. . .  ,$2,, in the sense that 

f M~7(u) da(u)Mj(u) -- ~(0~. 
-- 3C 

where a(u) is a solution to the TH problem (2.1). 

(4.16') 

As for the moment problem (3.4), we have a result little short of Eq. (4.16'). 

Lemma 4.9. Let F~ >~ 0 and M,(2) (i = O, 1 , . . .  ,n) be as before. Then 

~-:x: I ~ 

M;(u) da(u)Mj(u) <~,1, i = j = n, 
v~il A otherwise, 

where a(u) is a solution to the moment problem (3.4), and C3~") is as in Theo- 
rem 3.11. 

Thanks to Theorems 3.4 and 3.6, and letting F,, ~ / F , - 2 = &  if 
n = 1; F, 1/F,,-2 = Ip, if n ~< 0, Lemma 4.9 together with Theorem 3.11 leads 
to the following. 

Corollary 4.10. Fn is n.e. i f  and only iJ" F, >>, 0 and 

R(rn/r,_,)  c R(r,, ,/r,,_:) (4.23) 

Corollary 4.11. The TH problem (2.1) (or the moment problem (3.4)) has at 
most one solution if and only i f  
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R(F,/F,,_~) ± R(F,_~/F, 2). (4.24) 

Proof. Write 

r,,/r,,_, = [ I p -  s~" lls{,"-'lD]r°/r,, , + s~" ,. 
It is easy to check that S~ ") e(n-I)¢ '(n l)Dr / r  o(n-l)Do(,,-l) . • e o 0 O 0 ~ n / , t  n_l),30 ,3 0 . I n  v i e w  o I  

(n - l )D  D _ K,(n-1) ~ A  c ( n - 1 )  r '  / F  O [ [ !  c , ( n  l)o(n-1)D,~ 
the facts (S O ) - ~ 0  a . . . .  ~ . . . .  L/ ,, 2,,,~k,p--o0 ~0 
F,,/F,, ,)LR(SI~")). If  now (4.24) holds, then (S~"-'I)'SI~"-IDF~/F,,, 
= SI~" 'lF,,/V,, i = 0, so that 

sl," " ° s U " r . / r . ,  ,sl," "'s,l" " =  " 

=SI~ "/ = 0 .  

Applying Corollary 3.5 or 3.7, we obtain that the problem (2.1) or (3.4) has at 
most one solution. Conversely, if 

= s l , "  "r,,/r,,_,sa" I ) D g f f ' - l ) = 0 ,  

then SI~"-IID(F,,/F,, i) 1/2 = 0, and therefore (SI~"-'))2S~/~ " IlDF,,/F, i = 0. Hence 
Eq. (4.24) holds, as claimed. [] 

Note that Ando ([4], Section 3) has settled the extension theorems for a 
bounded positive operator. 

In conclusion, thanks to Theorems 3.4 and 3.6 together with Lemmata 4.8 
and 4.9, we may derive the general solution to the TH problem or to the mo- 
ment problem (3.4) in terms of a linear fractional transformation based on the 
use of the orthogonal polynomial matrices M0(2), . . .  ,M~(2), and the corre- 
sponding polynomial matrices of  the second kind, N0(2) . . . . .  N,,(,: 0 (see [11,9] 
for the nondegenerate case). 

Theorem 4.12. The general solution a(u) to the TH problem (2.1) (The moment 
problem (3.4) resp.) is representable as a lineal fractional transJormation 

dot(u) N,,().) +N,  , ()0S~0"-')Dqb(2) 
u~--2 -- M,(2) + M,_,(2)SI~"-')D~(2) ' (4.25) 

where 4(2) = / ' + ~  do(u)/(u - 2) Jor an arbitrary Hermitian measure a(u) satis- 
• + 3c  ~ 3 C  

j)'ing J ~  dr(u) = So ~") (f+~'V dr(u) ~< S~ "), resp.)x. 

Note that the correspondence defined by Eq. (4.25) between Hermitian mea- 
sures o(u) and function ¢b(2) with the aforementioned properties is one-to-one. 

In the case when Fn is n.e., the general solution a(u) to the TH  problem of 
the form (4.25) can be rewritten, by Eq. (4.3), in the form 
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%oc 

_ ",, J t'~J°0 a0 (4.26) 
[ da(u) N,, (2) [,LIp ~- S~)n)DG(}~)] - ~' (~'~¢,(n-1)Dc,(n) 

, ]  ; 7  7 mn(,))[,~ip @ s{)n)DG())] __JVln . . . . . .  l~Z)a,(n-1)D"j0n)' 
~c 

where G(2) E "p is anarbitrary matrix-valued function such that 
l i m > ~ G ( 2 ) / i t  = 0. In particular, we may set Sl"i = 0, so that M,,+1(2) and 
N,+I().) make sense by Eq. (4.14). Then Eq. (4.26) has the further form 

-/d_a(u_) _ N,,+l (2) + N"(A)S~)'IDG(2). (,,)D . , S~l ") = 0. (4.26') 
. - ; .  + M,,(z)S; 

Also, in the case of F,, >~ O, the general solution a(u) to the moment problem 
(3.4) can be rewritten, by Lemma 4.3 and the remark about it, in the form 

~[da(u)  N,,().)S,I,"!Dp().) + [).N,,(2) . I,-,,D (,I , _ _  _ - N,, , (,t)S;, S~, ]q(,t) (4.27) 
J u - )~ M,,(2)S,I,")Dp().) + [)~M,,(2) - M. - i  (L)S~" ')Ds~,"l]q()~)' 

where 

q(2)] 

is an arbitrary Nevanlinna pair of  the form formulated as in Theorem 4.5. 
The correspondence defined by Eq. (4.27) between a(u) and all equivalence 

classes of Nevanlinna pairs 

Ip(;.) 

q(2) l 

is one-to-one. Analogous to (4.26'), (4.27) has the further form 

- [ d a ( , )  N, ()~)S,l,"!Dp()~) + N,,+I ()o)q().) vl,,! 
u - - ~ - -  M,,(2)SI")Dp(it) +M,,_l()~)q(2)' o~ = 0. (4.27') d 

5. The Nevanl inna-Pick  interpolation with multiple nodes in the Nevanlinna class 
x, 

As an application of the aforementioned results in this paper, in this section, 
we consider the nontangential Nevanlinna Pick interpolation (NP) problem 
with multiple nodes in the class . /p .  (See [5,12,14] and references therein for 
more information.) 

The problem is as follows. Given )q , . . . ,  2o E ~z +, which are distinct, with 
multiplicities Zl , . . . ,  ~0, respectively, n = ~]'j~l rj, and n matrices of order p, 
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Cik (i = 1 . . . .  ,0, k = 0, 1 . . . .  , ri - 1), it is required to find the condit ions for a 
F(2)  ~ .  I 'p (or for  only one F().) E.  (p) to exist subject to 

IFik)()~i) = C/k ,  i = . . . . .  0, . . . .  r , -  1, (5.1a) 1 k 0. 1 

and to describe all the solutions if these condit ions are met. 
It is known [8 10] that  to the N P  prob lem (5.1a) there cor responds  a unique 

Hermi t ian  block vector  (S0 . . . .  , $2,, _,), S / =  $7, order  S j - p  such that  the N P  
p rob lem (5.1a) is equivalent  to a certain matr ix  m o m e n t  p rob lem on the real 
axis associated with that  vector  (So,. . .  ,&,, 2): 

, - x  

/ & t/' dc*(u) ,  I" 0,  1 . . . . .  211 - 3.  ( 5 . 2 )  

\ 

: > "/'u2,,_~ S,, da(u) .  
-v 

Moreover ,  if a(u) is a solution to the m o m e n t  p rob lem (5.2). then 

F(>,) = n(>.) - / dc~(u) 
• _ .  _ ~, A ( > . )  ( 5 . 3 )  

is a solution to that  N P  problem,  and vice versa, where f~().) is the (unique) 
po lynomia l  matr ix  of  degree 2n - l at most ,  subject only to Eq. (5.1a) and 

1 F ~ ( 7 ) = Q . ~  i = 1 . .  ,0, k = 0 , 1 ,  r ~ - l  (5.1b) 

and 

(! 

A(2) = H ( ) .  - ),,)"' (). -/,=7)" (5.4) 
i I 

Tha t  Hermi t ian  block vector  ( & , . . . ,  $2,, 2) is called the Hankel  b lock-vector  of  
the N P  p rob lem (5.1a) and plays a key role in the NP problem.  It is also known 
[8,9] that  the Hanke l  b lock-vec tor  can be found f rom the Laurent  expension of  
f2().)/A().) at ), = ~c: 

f~(2) So + S, S_,,,-2 
A(),~ -- ), )~ + " "  + ~ + " "  (5.5) 

Thanks  to the one- to-one  cor respondence  defined by Eq. (5.3) between a(u) 
and F(2) ,  the m o m e n t  p rob lem enables one not only to find the criteria o f  ex- 
istence and uniqueness for the solutions to that  N P  prob lem but also to des- 
cribe all the solutions in the nondegenera te  case or not, and so on. 
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By now we are in such a more advantageous position that we are able to 
tackle seriously that N P  problem with little additional effort. The following as- 
sertions are all at hand. 

Theorem 5.1 ([20]). The NP  problem (5.1a) has a solution i f  and only i f  
[S .]n-1 F~-i = t i+m,y=o >~ O, where (So , . . . ,  $2,-2) is the Hankel  block-vector o f  that 

N P  problem. 

Theorem 5.2. The general solution F(2) to the N P  problem (5.1a) is 
representable as a linear Jfactional transformation o f  an arbitrary Nevanlinna 
pair 

[P(~) ]: 
q(2) 

F(2)  = a()')P()') + fl()')q()') 
7(2)p(2) + 6().)q()~) 

whose coefficient matrix is o f  the decomposable jorm 

;'(~) ~(~) J ~,, ,=o sl, ')~ ~I~ - ~o~(')~(')~, ' 

where S~°),S~ '1 ~¢"-') defined as before Jfom F,,_, , . . . ,  o o are 
In the degenerate ease (F,,-i >~ 0 is singular), i f  

U*Si"-~)U = : o o > 0,0 < r<~p, 
o 0 0,. J 

then 

Or 0 L. ' 

where 

0(~)1 

(5.6) 

S(,7-1) = 0, 1 

F ( ~ ) -  ~(x) (5.7) 5(~) 

is' also an arbitrary Nevanlinna pair with reduced dimension. Further, the N P  
problem (5.1a) has only one solution, i f  and only i f  Fn 1 >>- 0 and S~ "-1i = O. In 
this case, the unique solution F(2) is rational, o f  the form 
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Corollary 5.3. Let n >~ 3. Then the N P  problem (5. la)  has only one solution 
F()O, i f  and only i f  F,, 1 >>-0 and R(F,, l/F,, 2 ) I  R(F,, 2/F,, 3), where 

k ek : [S~+j]~j:o. 

Starting from Theorem 4.12, we have 

Theorem 5.4. The general solution F(Z) to the N P  problem (5.1a) is 
representable as a linear fractional transformation 

- (n 2 )D  

F(2) = f~(),) - N,_, (2) + N, 2(/o)S o ~(z) 
/14,, , ( 2 ) ~  A (/')' (5.8) 

),'here qg( )t) = f+~ l / (u  - z)dz(u).for an arbitrary Hermitian measure r(u) satis- 
f>,ing 

q(n I ) 
dr(u) ~< N o • 

The N P  problem has only a solution i f  and only i f  e,,-.l >~ 0 and Sl)" i~ = O. In this 
case, the unique solution has the form 

F(£) = f2()o) N, '()') A(Z] M,_,(2) ' ' (5.9) 

In the scalar case, F~ 1 ~> 0 and So( "-I/ = 0, if and only if F,, i ~> 0 is singular. 
Thus, the singularity of  F,,_I will always lead to uniqueness of the solutions to 
the NP problem (5.1a). 

Note that Eq. (5.8) be rewritten in another form by means of Eq. (4.27) (or 
Eq. (4.27'), if we set S(1 "-j) = 0). 

Additional Note. While this article was in the course of the final manuscript the 
authors discovered that there is a paper by Bolotnikov [7] where the degenerate 
Hamburger matrix moment problem (which coincides with the moment 
problem (3.4) here) and extensions of nonnegative block-Hankel matrices are 
considered via a different appraoch following the Potapov's method of the 
fundamental matrix inequality [17]. That  paper appears to have several points 
in common with our paper (see Lemma 2.10 and Theorem 4.6 of [7]), and by 
the way the misstatement in [6] referred to by us here is corrected there. 
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