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a b s t r a c t

This paper addresses the problem of coordinated scheduling of production and delivery
subject to the production window constraint and the delivery capacity constraint. We
have a planning horizon consisting of one or more delivery times each with a unique
delivery capacity. There is a set of jobs each with a committed delivery time, processing
time, production window, and profit. The company can earn the profit only if the job is
processed in its productionwindowanddelivered before its committed delivery time. From
the company point of view, we are interested in selecting a subset of jobs to process and
deliver so as to maximize the total profit subject to the delivery capacity constraint.

We consider both the single delivery time case and the multiple delivery time case. In
both cases, the problem is strongly NP-hard since the subproblems at the production stage
and at the delivery stage are both strongly NP-hard. Our goal is to design approximation
algorithms. Suppose the jobs are k-disjoint, that is, the jobs can be partitioned into k lists of
jobs such that the jobs in each list have disjoint production windows.When k is a constant,
we developed the first PTAS for the single delivery case. For multiple delivery time case,
we also develop a PTAS when the number of delivery times is a constant as well.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Under the current competitive manufacturing environment, companies tend to put more emphasis on the coordination
of different stages of a supply chain, i.e. suppliers, manufacturers, distributors and customers. Among these four stages, the
issue of coordinating production and distribution (delivery) has been widely discussed.

This paper addresses the problemof coordinated scheduling of production anddelivery subject to the productionwindow
constraint and the delivery capacity constraint. In the stage of production, each order has a production window which may
or may not be customer defined. For example, a company may rely on another company to complete a sub-process, or may
rely on a manufacturer to make the products or semi-products. With some pre-scheduled jobs, the manufacturer can only
provide partial production line or in some cases, a production window for each order. The windows of different orders may
overlap. Another example of productionwindow iswhen the rawmaterials are perishable. After the arrival of rawmaterials,
the company has to start the manufacturing process before certain time. Given the arrival schedule of raw materials, the
company creates a production window for each order. Similarly, these production windows may overlap.

In the stage of distribution (delivery), a company may have its own transportation vehicles which deliver products at
periodic or aperiodic times, or the company may rely on a third party to deliver, which picks up products at regular or
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irregular times. The products incurred by different orders may be delivered together if the destinations are close to each
other, e.g. delivery to same countries by ships, delivery to same states or cities by flights, or delivery to same areas by trucks.
The delivery capacity may vary at different delivery times and is always bounded.

In summary, in the production stage, the company has the constraint of production window, and in the delivery stage,
the company has the constraint of delivery capacity and promised delivery date. Therefore, it is possible that not all orders
can be processed within their production windows and delivered before the promised delivery times. The company has to
decidewhich orders to accept in order tomaximize the total profit based on the productionwindow, the committed delivery
date, the potential profit of each order and the overall delivery capacity.

This paper addresses the problem faced by the company under the above scenarios. We consider the commit-to-ship
model, i.e. if an order is accepted, the company guarantees the products be shipped to the customer before the committed
time,we call this time the committed delivery date; and if a third party logistics company is used, then the committed delivery
date is the date by which the company gives products to a third party logistics company. We focus on the single machine
production environment.Wehave a set of orders, each associatedwith a processing time, a size, a potential profit, a promised
delivery time and a production window before delivery time. The company can earn the profit only if the order is processed
in its productionwindowanddelivered before its promised delivery time. From the companypoint of view,we are interested
in selecting a subset of orders in order to maximize the total profit. When selecting the orders, both production schedule
and delivery schedule should be considered simultaneously. Thus we have the ‘‘coordinated scheduling problem’’: generate
a coordinated schedule, which consists of a production schedule and a delivery schedule subject to the production window,
committed delivery date, and delivery capacity constraints.

Literature review. Our problem combines two classical problems. The problem in the production stage generalizes a single
machine real time scheduling problem: there are n jobs each associated with a release time, a deadline, a weight, and a
processing time and the goal is to find a nonpreemptive schedule that maximizes the total weight of the jobs that meet
their deadline. In the standard notation for scheduling problems, the problem is 1 | ri, di | wi(1 − Ui). It is known that
this problem is NP-hard in the strong sense (see [9,10]). Bar-Noy et al. [2] have shown that an LP formulation achieves a
2-approximation for polynomially bounded integral input and a 3-approximation for arbitrary input when the weights are
arbitrary. They also showed that the problem is MAX-SNP hard when the jobs have identical weight and there are multiple
unrelated machines. It remains open if this is the case for single machine with arbitrary job weights.

The problem in the delivery stage is the Multiple Knapsack Problem (MKP) with inclusive assignment restrictions, in
which the assignment set of one item (i.e., the set of knapsacks that the itemmay be assigned to) must be either a subset or
a superset of the assignment set of another item. SinceMKP is a generalization of the classical knapsack problem, it is strongly
NP-hard. Furthermore, it does not admit a Fully Polynomial Time Approximation Scheme (FPTAS) even if the number of bins
is two [4]. Kellerer [14] gave a Polynomial Time Approximation Scheme (PTAS) for MKP with identical capacities and this
result has been generalized by Chekuri and Khanna [4] who gave a PTAS for MKP with general capacities. Later, Jansen [13]
developed an efficient PTAS for the MKP with general capacities. Recently, Kellerer et al. [15] developed a PTAS for multiple
knapsack problem with inclusive assignment set restrictions when each job’s weight equals to its size and the bins have
identical capacity.

The coordinated production and delivery scheduling problems in general have received considerable interest in recent
two decades. However, most of the research for this model is done at the strategic and tactical levels (see survey articles by
Sarmiento and Nagi [17], Erenguc et al. [7], Goetschalckx et al. [11], Bilgen and Ozkarahan [3], and Chen [5] for example).
At the operational scheduling level, Chen [6] gives a state-of-the-art survey of the models and results in this area. Based on
the delivery mode, he classified themodels into five classes: (1) models with individual and immediate delivery; (2) models
with batch delivery to a single customer by direct shipping method; (3) models with batch delivery to multiple customers
by direct shipping method; (4) models with batch delivery to multiple customers by routing method (5) models with fixed
delivery departure date. In the first model, jobs have delivery windows, and thus production windows can be incurred,
however, due to the immediate and individual delivery requirement, the problems under this model can be reduced to
fixed-interval scheduling problems (without the delivery), which can be solved as a min-cost network flow problem [16].
For all other models, no production windows have been specially considered in the survey.

Several papers considered problems with time window constraints and/or delivery capacity constraints. Amstrong et al.
[1] considered the integrated scheduling problem with batch delivery to multiple customers by routing method, subject to
delivery windows constraints. The objective is to choose a subset of the orders to be delivered such that the total demand
of the delivered orders is maximized. Garcia and Lozano [8] considered the production and delivery scheduling problems
in which time windows are defined for the jobs’ starting times. In their paper, orders must be delivered individually and
immediately after they are manufactured, so delivery capacity is not an issue. In [12], Huo, Leung and Wang considered
the integrated production and delivery scheduling problemwith disjoint time windows where windows are defined for the
jobs’ completion times. In their paper, they assume a sufficient number of capacitated vehicles are available.

New contribution. Compared with existing models, our problem is more practical and thus more complicated. Since the
problem is strongly NP-hard, our focus in this paper is to develop approximation algorithms. Suppose a set of jobs are
k-disjoint, that is, the jobs can be partitioned into k lists of jobs such that the jobs in each list have disjoint production
windows. When k is constant and there is a single delivery time, we develop the first PTAS. For multiple delivery times,



B. Fu et al. / Theoretical Computer Science 422 (2012) 39–51 41

Fig. 1. An example illustrating the feasible coordinated schedule.

when the number of delivery time is a constant as well, we also develop a PTAS which is extended from the PTAS for single
delivery time.

The difficulty of our problems comes from the possible conflicts among the objective of maximizing total profit, the
constraint of production window and the constraint of delivery capacity when selecting jobs. Our algorithm is designed to
first satisfy the productionwindow constraint, whichmay result in losing a small fraction of profit and violating the capacity
constraint. To overcome this, we use the idea of treating large jobs and small jobs separately, where ‘‘large’’ and ‘‘small’’ are
based on size. More importantly, we introduce the method of defining large jobs hierarchically and dynamically. This is the
key to make sure that, when we need to remove some jobs with sufficient size and small profit at the same time in order
to make the schedule feasible at the end, we can find such job (jobs). We expect this technique to be applied to some other
similar problems.

The rest of the paper is organized as follows. In Section 2, we formally define our problems. In Section 3, we present
an approximation scheme for single delivery time. In Section 4, we present an approximation scheme for multiple delivery
times. In Section 5, we draw some conclusions.

2. Problem formulation

Our problem can be formally defined as follows. We have a planning horizon consisting of z delivery times, T =

{D1,D2, . . . ,Dz
}. Each delivery time Dj is associated with a delivery capacity C j. We have a set of jobs J = {J1, J2, . . . , Jn}.

Each job Ji has a promised delivery time di ∈ T , a processing time pi, a production window [li, ri], a size ci, and a profit fi
which can be earned only if Ji is processed at or before ri, and delivered before or at di. Without loss of generality, we assume
that pi ≤ ri − li and ri ≤ di for all jobs Ji, 1 ≤ i ≤ n. The problem is to select a subset of jobs from J = {J1, J2, . . . , Jn}, and
generate a feasible coordinated schedule S of these jobs so as to maximize the total profit. A feasible coordinated schedule S
consists of a feasible production schedule and a feasible delivery schedule. A production schedule is feasible if all the jobs are
processed within their production windows; and a delivery schedule is feasible if all jobs are delivered before the promised
delivery time and the delivery capacities at all times are satisfied. Fig. 1 shows an example of a feasible coordinated schedule.
There are two fixed delivery times D1

= 7, D2
= 14 with delivery capacity C1

= 6 and C2
= 3, respectively and there are

five jobs. In the feasible coordinated schedule, only three jobs are selected and scheduled in their production windows and
delivered by their promised delivery time, and the total size of jobs delivered at each delivery timeDj (j = 1, 2) is not greater
than the delivery capacity C j.

3. Single delivery time

In this section, we study the coordinated production and delivery scheduling problem where the jobs have the same
promised delivery time Dwhich is associated with a delivery capacity C . In this case, all jobs will be delivered at same time,
thus no delivery schedule is necessary as long as the delivery capacity constraint is satisfied by the selected jobs and the
production schedule of the selected jobs is feasible. Therefore the problem in this case becomes selecting a subset of orders
and generate a feasible production schedule subject to the capacity constraint. Given a constant ϵ, we develop an algorithm
which generates a feasible production schedule of a subset of jobs subject to the capacity constraint, whose profit is at least
(1 − ϵ) times the optimal. Our algorithm is a PTAS when the set of jobs J = {J1, J2, . . . , Jn} is k-disjoint and k is a constant.
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Our algorithm has four phases:

Phase I: select large jobs;
Phase II: schedule the large jobs selected from Phase I along with some small jobs selected in this phase;
Phase III: from the schedules generated in Phase II, search for the one with maximum total profits;
Phase IV: convert the schedule obtained from phase III to a feasible schedule.

3.1. Phase I: select large jobs

During this phase, we select large jobs for production and delivery, but we do not generate the production schedule. Let
us define large jobs first. Given a constant parameter 0 < δ < 1 which depends on ϵ and will be determined later, we define
a job to be a large job if its size is at least δ times the ‘‘available’’ delivery capacity; otherwise, it is a small job. From the
definition, we can see that a jobmay be ‘‘small’’ at the beginning and becomes ‘‘large’’ later as the available delivery capacity
becomes smaller due to more jobs are selected.

To select the large jobs, we use brute force. Specifically, we enumerate all the possible selections of large jobs subject
to the available capacity constraint. We use A to denote the set of all possible selections. The jobs in each selection Ap ∈ A
are selected in ⌈

1
δ
⌉ iterations. For each Ap, at the beginning of each iteration, the current available capacity C̄p is calculated

and the set of large jobs (and so small jobs) from the remaining jobs is identified, then a subset of large jobs is selected and
added to Ap. If no large jobs is selected and added to Ap at certain iteration, wemark Ap as ‘‘finalized’’, which means no more
large jobs will be selected and added to Ap in later iterations.
Phase1-Alg1

Let A be the set of all possible selections of large jobs so far; A := {∅}.
For i := 1 to ⌈

1
δ
⌉

Let A′
:= ∅

For each selection of large jobs Ap ∈ A

If Ap is marked as ‘‘finalized’’, add Ap directly to A′

Else
a. let C̄p be the capacity available for jobs not in Ap, i.e. C̄p := C −


Ji∈Ap ci

b. from the jobs not selected in Ap, find the large jobs with respect to C̄p
c. generate all possible selections of these large jobs, say X , subject to the available capacity constraint
d. for each Xj ∈ X

generate a new large job selection Aq := Ap ∪ Xj, and add Aq into A′

if Aq = Ap, mark Aq as ‘‘finalized’’.

A := A′

return A

Lemma 1. There are at most O(nO(1/δ2)) possible ways to select the large jobs in Phase1-Alg1 , where 0 < δ < 1 is a constant.

Proof. By the definition of large jobs, it is easy to see that at each iteration i, there are at most 1
δ
new large jobs. So there are

O(n1/δ) ways to select these large jobs at step (c). Since there are ⌈
1
δ
⌉ iterations, there are in total O(n⌈

1
δ
⌉/δ) = O(nO(1/δ2))

possible selections of the large jobs. �

3.2. Phase II: select and schedule

From Phase I, we get a set of large job selections A without scheduling the jobs. For a job selection Ap ∈ A, although the
delivery capacity constraint is satisfied by jobs in Ap, the production window constraint may not be satisfied, and thus, no
feasible production schedule exists for jobs in Ap. In this case, we say Ap is an infeasible job selection.

Our goal in this phase is to identify all feasible large job selections in A, and for each feasible selection Ap, to find a feasible
production schedule S that contains the large jobs in Ap, and some newly selected ‘‘small’’ jobs, where the small jobs are
identified at the beginning of the last iteration of Phase1-Alg1, and each has a size less than δC̄p. Furthermore, the profit of
this schedule, denoted by Profit(S) =


Ji ∈ S fi, is close to themaximum possible among all feasible schedules whose large

job selection is exactly Ap. On the other hand, the generated schedule S in this phase may violate the capacity constraint.
Specifically, letCp = C −


Ji∈Ap ci, be the available capacity at the end of Phase1-Alg1, which is the available capacity for

small jobs. Let Load(S/Ap) =


Ji∈S\Ap ci be the total size of the small jobs in S, it is possible thatCp < Load(S/Ap) ≤ (1+δ)Cp.
In this case, we say S is a valid schedule. Note thatCp is different from C̄p which is the available capacity at the beginning of
last iteration of Phase1-Alg1. Since some large jobs may be selected at the last iteration, we may have C̄p > Cp. Otherwise,
Ap is marked ‘‘finalized’’ at the end of algorithm, and then we have C̄p =Cp.
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Even though we know that the large job selection in a schedule S is exactly Ap, it is still unknown how to schedule the
jobs in Ap due to the production window constraint of the jobs and the unknown small jobs in S. We solve this problem
by dynamic programming. We add jobs to the schedule one by one in certain order. For this, we assume the set of jobs
J = {J1, J2, . . . , Jn} has been divided into k job lists L1, L2, . . . , Lk such that production windows of jobs in the same list are
disjoint. Let nu be the number of jobs in job list Lu (1 ≤ u ≤ k). We relabel the jobs in each job list Lu in increasing order of
their production windows’ starting time, and we use Ju,v , 1 ≤ v ≤ nu, to denote the v-th job in the job list Lu. It is easy to
see that in any feasible schedule, one can always assume the jobs in the same list are scheduled in the order they appear in
the list. So in our dynamic programming, the jobs in each list are considered in this order. In case the list L1, L2, . . . , Lk are
not given, note that dividing the jobs in J into minimum number of disjoint list of job L1, L2, . . . , Lk, is the same problem as
activity-selection problem, which can be solved greedily (See the Appendix).

For a given large job selection generated from Phase I, Ap ∈ A, if we can find all schedules whose large job selection is
exactly Ap, we can easily find the best schedule. However, that will be both time and space consuming. To reduce space and
time, we find a subset of schedules to approximate all possible schedules so that no two schedules in the set are ‘‘similar’’.
Let us formally define ‘‘similar’’ schedules. Given a schedule S with a large job selection Ap, let Profit(S/Ap) be the total
profit of small jobs in S. For two schedules S1 and S2 that both have the same set of large jobs Ap, we say they are similar, if
Profit(S1/Ap) and Profit(S2/Ap) are both in the interval [ωx, ωx+1) where ω = 1 +

δ
2n , and Load(S1/Ap) and Load(S2/Ap) are

both in [ωy, ωy+1) for some integers x and y.
In the following, we use T (Ap, n′

1, . . . , n
′

k) to denote the set of valid schedules such that (a) no two schedules in the set
are similar; (b) only the first n′

u jobs from list Lu (1 ≤ u ≤ k) are allowed to be scheduled; (c) and among the first n′
u jobs

in list Lu, all the jobs in Ap must be scheduled. For each schedule S, we use Cmax(S) to represent the last job’s completion
time. In T (Ap, n′

1, . . . , n
′

k), from each group of schedules that are similar to each other, we only keep the schedule with the
smallest Cmax(S) in the group.

Phase2-Alg1( J , Ap, C̄p)

• Input: a set of jobs J , which has been divided into k disjoint job lists L1, L2, . . . , Lk;
Ap: a large job selection obtained from Phase1-Alg1;
C̄p: the available capacity at the beginning of last iteration in Phase1-Alg1 for obtaining Ap.

• LetCp := C −


Ji∈Ap ci, which is the available delivery capacity for small jobs
• Initialize T (Ap, 0, . . . , 0) := {∅}.
• Construct T (Ap, n1, . . . , nk) using dynamic programming

To find the set T (Ap, n′

1, . . . , n
′

k), do the following steps
1. For t := 1 to k

(a) Consider job Jt,n′
t
, let [lt,n′

t
, rt,n′

t
] be its production window, pt,n′

t
be its processing time, ct,n′

t
be its size

(b) If Jt,n′
t
∈ Ap

For each schedule S in T (Ap, n′

1, . . . , n
′
t − 1, . . . , n′

k)
if max(Cmax(S), lt,n′

t
) + pt,n′

t
≤ rt,n′

t
get a schedule S ′ by adding Jt,n′

t
to S and schedule it at max(Cmax(S), lt,n′

t
);

add S ′ to T (Ap, n′

1, . . . , n
′

k);
(c) Else

For each schedule S in T (Ap, n′

1, . . . , n
′
t − 1, . . . , n′

k)
add S into T (Ap, n′

1, . . . , n
′

k);
if ct,n′

t
< δC̄p(i.e. a small job) and max(Cmax(S), lt,n′

t
) + pt,n′

t
≤ rt,n′

t

and Load(S ∪ {Jt,n′
t
}/Ap) ≤ (1 + δ)Cp

get a schedule S ′ by adding Jt,n′
t
to S at max(Cmax(S), lt,n′

t
);

add S ′ into T (Ap, n′

1, . . . , n
′

k);
2. From each group of schedules in T (Ap, n′

1, . . . , n
′

k) that are similar to each other, delete all but the schedule S with
minimum Cmax(S) in the group

• return the schedule S from T (Ap, n1, . . . , nk) with maximum profit

It is easy to see that the production schedule generated at steps (b) and (c) must be valid. For any feasible large job
selection Ap, we have the following lemma.
Lemma 2. Suppose Ap ∈ A is a feasible large job selection obtained from Phase I, and let S ′ be the feasible schedule that has the
maximum profit among all schedules whose large job selection is exactly Ap. Then Phase2-Alg1(J , Ap, C̄p) returns a schedule S such
that: the large job selection in S is Ap; S is valid, i.e. Load(S/Ap) ≤ (1 + δ)(C −


Ji∈Ap ci); and Profit(S) ≥ (1 − δ)Profit(S ′).

Proof. Let S ′(n′

1, . . . , n
′

k) denote the partial schedule of S
′ that contains only jobs Ju,v , for 1 ≤ u ≤ k and 1 ≤ v ≤ n′

u. Let n
′
=

n′

1 + · · · + n′

k. In the following, we first prove that for any S ′(n′

1, . . . , n
′

k), there is a schedule S ′′
∈ T (Ap, n′

1, . . . , n
′
t , . . . , n

′

k)
such that
(a) S ′′ has scheduled all jobs Ju,v ∈ Ap from job list Lu with 1 ≤ u ≤ k and v ≤ n′

u.
(b) Cmax(S ′′) ≤ Cmax(S ′(n′

1, . . . , n
′

k)),
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(c) Profit(S ′′/Ap) ≥
Profit(S′(n′

1,...,n
′
k)/Ap)

ωn′ , and

(d) Load(S ′′/Ap) ≤ ωn′

· Load(S ′(n′

1, . . . , n
′

k)/Ap).

We prove by induction on n′. The hypotheses are obviously true when n′
= 0. Assume this is true for S ′(x1, . . . , xk)

where x1 ≤ n′

1, . . . , xk ≤ n′

k, and x1 + · · · + xk < n′. Now let us consider S ′(n′

1, . . . , n
′

k). If some job Ju,n′
u
is not selected in

S ′(n′

1, . . . , n
′

k), then S ′(n′

1, . . . , n
′

k) is the same as S ′(n′

1, . . . , n
′
u − 1, , . . . , n′

k), the hypotheses are true by induction. So we
assume that Ju,n′

u
, for all 1 ≤ u ≤ k, is contained in the partial schedule of S ′. Assume that job Jt,n′

t
has the completion time

Cmax(S ′(n′

1, . . . , n
′

k)). Removing Jt,n′
t
from S ′(n′

1, . . . , n
′

k), we get the schedule S ′(n′

1, . . . , n
′
t − 1, . . . , n′

k).
By induction hypothesis, there exists a schedule S ′′

1 ∈ T (Ap, n′

1, . . . , n
′
t − 1, . . . , n′

k) such that

(a) S ′′

1 has scheduled all jobs Jt,v ∈ Ap from job list Lt with v ≤ n′
t − 1, and jobs Ju,v from list Lu with v ≤ n′

u and 1 ≤ u ≤ k
and u ≠ t

(b) Cmax(S ′′

1 ) ≤ Cmax(S ′(n′

1, . . . , n
′
t − 1, . . . , n′

k))

(c) Profit(S ′′

1/Ap) ≥
Profit(S′(n′

1,...,n
′
t−1,...,n′

k)/Ap)

ωn′−1 , and

(d) Load(S ′′

1/Ap) ≤ ωn′
−1Load(S ′(n′

1, . . . , n
′
t − 1, . . . , n′

k)/Ap).

Adding Jt,n′
t
to S ′′

1 , we obtain a scheduleS. Furthermore,S must have a valid production schedule, since

Cmax(S) = max(Cmax(S ′′

1 ), lt,n′
t
) + pt,n′

t

≤ max(Cmax(S ′(n′

1, . . . , n
′

t − 1, . . . , n′

k)), lt,n′
t
) + pt,n′

t

= Cmax(S ′(n′

1, . . . , n
′

t , . . . , n
′

k)).

We have two cases: (1) Jt,n′
t

∈ Ap; (2) Jt,n′
t

/∈ Ap. For case (1), the small jobs inS and S ′′

1 are same, i.e. S ′′

1 \ Ap = S \ Ap;
similarly, S ′(n′

1, . . . , n
′
t − 1, . . . , n′

k) \ Ap = S ′(n′

1, . . . , n
′
t , . . . , n

′

k) \ Ap. Since ω > 1, we have

Profit(S/Ap) = Profit(S ′′

1/Ap) ≥
Profit(S ′(n′

1, . . . , n
′
t − 1, . . . , n′

k)/Ap)

ωn′−1

=
Profit(S ′(n′

1, . . . , n
′
t , . . . , n

′

k)/Ap)

ωn′−1

and

Load(S/Ap) = Load(S ′′

1/Ap) ≤ Load(S ′(n′

1, . . . , n
′

t − 1, . . . , n′

k)/Ap)ω
n′

−1

= Load(S ′(n′

1, . . . , n
′

t , . . . , n
′

k)/Ap)ω
n′

−1.

For case (2), we haveS \ Ap = S ′′

1 \ Ap ∪ {Jt,n′
t
} and S ′(n′

1, . . . , n
′
t , . . . , n

′

k) \ Ap = S ′(n′

1, . . . , n
′
t − 1, . . . , n′

k) \ Ap ∪ {Jt,n′
t
}

Profit(S/Ap) = Profit(S ′′

1/Ap) + ft,n′
t
≥

Profit(S ′(n′

1, . . . , n
′
t − 1, . . . , n′

k)/Ap)

ωn′−1
+ ft,n′

t

≥
Profit(S ′(n′

1, . . . , n
′
t − 1, . . . , n′

k)/Ap) + ft,n′
t

ωn′−1

=
Profit(S ′(n′

1, . . . , n
′
t , . . . , n

′

k)/Ap)

ωn′−1

and

Load(S/Ap) = Load(S ′′

1/Ap) + ct,n′
t
≤ Load(S ′(n′

1, . . . , n
′

t − 1, . . . , n′

k)/Ap)ω
n′

−1
+ ct,n′

t

≤ (Load(S ′(n′

1, . . . , n
′

t − 1, . . . , n′

k)/Ap) + ct,n′
t
)ωn′

−1

= Load(S ′(n′

1, . . . , n
′

t , . . . , n
′

k)/Ap)ω
n′

−1.

Let S ′′ be the schedule in the same group with S that is selected in T (Ap, n′

1, n
′

2, . . . , n
′

k). If Jt,n′
t

∈ Ap, by our
algorithm, Jt,n′

t
must be selected in all schedules T (Ap, n′

1, . . . , n
′
t , . . . , n

′

k) including S ′′. Thus (a) is true. We also have that
Cmax(S ′′) ≤ Cmax(S) ≤ Cmax(S ′(n′

1, . . . , n
′
t , . . . , n

′

k)). Since S ′′ andS are in the same group, we have that Profit(S ′′/Ap) ≥

Profit(S/Ap)
ω

≥
Profit(S′(n′

1,...,n
′
t ,...,n

′
k)/Ap)

ωn′ and Load(S ′′/Ap) ≤ ωLoad(S/Ap) ≤ ωn′

Load(S ′(n′

1, . . . , n
′
t , . . . , n

′

k)/Ap). This completes
the induction.
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Since 1
ωn′ ≥

1
ωn ≥

1
1+δ

≥ 1−δ, we have Profit(S/Ap) ≥ (1−δ)Profit(S ′/Ap), which implies Profit(S) ≥ (1−δ)Profit(S ′);

Similarly, since ωn′

≤ ωn
= (1 +

δ
2n )

n
≤ eδ/2

≤ 1 + δ,

Load(S/Ap) ≤ (1 + δ)Load(S ′/Ap) ≤ (1 + δ)

C −


Ji∈Ap

ci

 . �

Lemma 3. For a given Ap, the running time of Phase2-Alg1(J , Ap, C̄p) is O(knk(logω

n
i=1 fi) logω C).

Proof. It is easy to see that the running time is dominated by the dynamic programming. T (Ap, n1, . . . , nk) is computed
starting from T (Ap, 0, . . . , 0), which takes n1 · n2 · · · · · nk = O(nk) iterations.

For any T (Ap, n′

1, . . . , n
′

k), n
′
t ≤ nt , 1 ≤ t ≤ k, since we only keep one schedule from each group of similar schedules, the

size of T (Ap, n′

1, . . . , n
′

k) is atmostm1m2, wherem1 = O(logω(
n

i=1 fi)), andm2 = O(logω C). To construct T (Ap, n′

1, . . . , n
′

k),
all schedules in T (Ap, n′

1 − 1, n′

2, . . . , n
′

k), . . ., T (Ap, n′

1, . . . , n
′

k−1, n
′

k − 1) are considered. So it considers in total O(km1m2)
schedules to construct each T (Ap, n′

1, . . . , n
′

k), and thus the running time of dynamic procedure for each large jobs selection
Ap is O(nk

· km1m2) = O(knk(logω

n
i=1 fi) logω C). �

3.3. Phase III: search for the best schedule

For each feasible large job selection Ap ∈ A obtained from Phase I, the dynamic procedure of Phase II outputs a valid
schedule whose large job selection is exactly Ap. In this phase, we find a good schedule to approximate the optimal schedule.
This is done by selecting the schedule S with the maximum total profit among all the schedules generated in Phase II for all
feasible Ap-s.

Lemma 4. Let S∗ be the optimal schedule and S be the schedule with the maximum profit among all schedules generated
from Phase II. Then S must be valid and Profit(S) ≥ (1 − δ)Profit(S∗). Furthermore, the total running time to obtain S is
O( k

δ2
nO(k+1/δ2)(lg

n
i=1 fi)(lg C)).

Proof. Suppose that the set of large jobs selected by S∗ is Ap which means Ap is feasible. Since we enumerated all possible
large job selections, we must have Ap ∈ A. By Lemma 2, Phase2-Alg1(Ap, J , C̄p) must return a schedule S̄ such that S̄ is valid,
i.e. Load(S̄/Ap) ≤ (1 + δ)Load(S∗/Ap), Cmax(S̄) ≤ Cmax(S∗), and Profit(S̄) ≥ (1 − δ)Profit(S∗).

Since S is the schedule with themaximum profit among all schedules generated from Phase II, S must be a valid schedule
and Profit(S) ≥ Profit(S̄) ≥ (1 − δ)Profit(S∗).

By Lemma 1, there are total O(nO(
1
δ2

)
) possible selections of the large jobs. For each Ap, by Lemma 3, the running time of

Phase2-Alg1(J , Ap, C̄p) is O(knk(logω

n
i=1 fi) logω C). Note that ω = 1 +

δ
2n and lnω ≈

δ
2n . So the total running time from

Phase I to Phase III is

O


nO
 1

δ2


knk


logω

n
i=1

fi


logω C


= O

knO

k+ 1

δ2

 ln
n

i=1

fi

δ/2n
ln C
δ/2n


= O


k
δ2
nO

k+ 1

δ2

 
lg

n
i=1

fi


(lg C)


,

or O(knO(k)(lg
n

i=1 fi)(lg C)) since δ is a constant. �

3.4. Phase IV: convert to a feasible schedule

From Phase III, we get the schedule S with the maximum total profit among all schedules generated from Phase II which
is valid but may not be feasible, i.e.Cp ≤ Load(S/Ap) ≤ (1 + δ)Cp. To convert S into a feasible schedule, we have to delete
some jobs carefully so that the total profit will not be affected greatly. The following algorithm describes how to obtain a
feasible schedule from S.

Phase4-Alg1(S)

Input: S is the best schedule returned by Phase III, which is valid but may not be feasible
Let Ap be its corresponding large job selection in S.
Let S ′

:= S
If Load(S ′) > C (i.e. Load(S ′/Ap) >Cp )
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If Ap is marked as ‘‘finalized’’
Delete a set of small jobs of total size of at least δCp and at most 2δCp and
with the least possible profit from S ′

Else
Delete the large job in Ap with least profit from S ′

Return S ′

Lemma 5. Let δ be a constant of atmost ϵ
3 . The schedule S

′ returned by Phase4-alg1 is feasible, and Profit(S ′) ≥ (1−ϵ)Profit(S∗),
where S∗ is an optimal schedule.
Proof. Assume S is the schedule with the maximum total profit among all schedules in T (Ap, n1, n2, . . . , nk) for all Ap ∈ A,
and S ′ is obtained from S by Phase4-Alg1. By Lemma 4, we have Profit(S) ≥ (1 − δ)Profit(S∗) and Load(S/Ap) ≤ (1 + δ)Cp.

Phase4-Alg1 considered two cases depending on whether Ap is marked as ‘‘finalized’’ or not. In the case of Ap is marked
as ‘‘finalized’’ at the end of Phase I, we know starting from some iteration i (1 ≤ i < ⌈

1
δ
⌉), no more large job was selected

and C̄p = Cp. Since Load(S ′/Ap) > Cp, it means small jobs with total size of at leastCp have been scheduled and delivered.
Since each small job has size at most δC̄p = δCp, we can partition these small jobs into at least ⌈

1
2δ ⌉ groups such that the

total size of jobs in each group is in the range of [δCp, 2δCp]. We delete the group of jobs with smallest total profit, which is
at most 1

⌈
1
2δ ⌉

times the total profit of small jobs in S, Profit(S/Ap)
⌈

1
2δ ⌉

≤
Profit(S)

⌈
1
2δ ⌉

.

In case Ap is not marked as ‘‘finalized’’ at the end of Phase1-Alg1, we may not find a set of small jobs as in the first case.
However, we know that at least one large job is selected from each iteration 1 ≤ i ≤ ⌈

1
δ
⌉, so there are at least ⌈

1
δ
⌉ large

jobs in Ap. The deleted large job has the smallest profit, which is at most Profit(Ap)
⌈
1
δ
⌉

≤
Profit(S)

⌈
1
δ
⌉

. Since it is large, its size is at least

δC̄p > δCp.
So in both cases the job(s) deleted has(have) size at least δCp, thus the obtained schedule must be feasible; and the total

profit of the deleted job(s) in both case is at most Profit(S)
⌈

1
2δ ⌉

, we have

Profit(S ′) ≥ Profit(S) −
Profit(S)

⌈
1
2δ ⌉

≥


1 −

1
⌈

1
2δ ⌉


Profit(S)

≥


1 −

1
⌈

1
2δ ⌉


(1 − δ)Profit(S∗)

≥ (1 − 2δ)(1 − δ)Profit(S∗)

≥ (1 − 3δ)Profit(S∗)

≥ (1 − ϵ)Profit(S∗). �

For any constant ϵ, by Lemmas 5 and 4,we have the following theorem.
Theorem 6. For any coordinated production and delivery scheduling problem with production window and delivery capacity
constraints, if there is only one delivery time, and the job set is k-disjoint, where k is a constant, then there exists a PTAS that runs
in time O(nO(k+1/ϵ2)(lg

n
i=1 fi)(lg C)).

4. Multiple delivery times

In this section, we study the coordinated production and delivery scheduling problem with multiple delivery times
D1,D2, . . . ,Dz which have delivery capacity of C1, C2, . . . , C z , respectively. Our goal is to find a feasible coordinated
production and delivery schedule whose total profit is close to optimal. As in the case of the single delivery time, a feasible
production schedule is one that satisfies the production window constraint. A feasible delivery schedule, however, is more
restricted than the single delivery time: for each selected job, we have to specify its delivery time which cannot be later
than its promised delivery date; and the delivery capacity constraint has to be satisfied for all delivery times. Since the
delivery schedule can be seen as an assignment of completed jobs to z delivery times subject to the capacity constraint, in
the following, we will use delivery time assignment and delivery schedule interchangeably.

Assume the job set J = {J1, J2, . . . , Jn} is k-disjoint, when k and the number of delivery times z are both constants, we
develop a PTAS which is adapted from the PTAS for the case of single delivery time.

Phase I: select large jobs and assign them to delivery times;
Phase II: schedule the large jobs selected from phase I, along with some small jobs selected in this phase, and assign
delivery times for the selected small jobs;
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Phase III: search for the best schedule to approximate the optimal schedule;
Phase IV: remove some of the jobs to make the schedule feasible.

As one can see from above, the structure of the two PTASes are similar, but the details are different. In particular, in Phase
I and Phase II, we have to consider the delivery schedule of the jobs; and in Phase IV, we have to make sure the capacity is
satisfied for all delivery times. In the following, we will describe all phases, but we mainly concentrate on the differences of
the two PTASes. We will follow the notations and definitions unless otherwise specified.

4.1. Phase I: select and assign large jobs

During this phase, we select the large jobs and assign them to delivery timeswithout generating the production schedule.
First we need to redefine the large jobs. Given a constant parameter 0 < δ < 1, we define a job to be a large job with

respect to Dj if its size is at least δ times the available capacity of Dj; otherwise, it is a small job with respect to Dj. Note that a
job may be large with respect to one delivery time with small delivery capacity while being small with respect to another
with large delivery capacity. Even for one delivery time Dj, a job may be a small job at the beginning while be a large job
later as the available delivery capacity at Dj becomes smaller because more jobs are assigned to Dj.

As in single delivery case, we use brute force in this phase. But now, besides selecting large jobs to be processed
and delivered, we also need to enumerate all possibilities of delivery time assignment for the selected jobs. Since each
combination of selection and assignment can be simply represented by the set of jobs assigned to delivery time Dj for all
1 ≤ j ≤ z, we use A to denote the set of all possible combinations. For a given combination Ap ∈ A, Ap =

z
j=1 A

j
p, where

Aj
p is the set of large jobs assigned to delivery time Dj. As before, the selection and assignment of jobs in each Ap is still

done in ⌈
1
δ
⌉ iterations. For a given Ap, if no large jobs are assigned to Dj at certain iteration, i.e. Aj

p = Aj
q, where Aq is a

new combination derived from Ap, we mark Aj
q as ‘‘finalized’’, which means no more large jobs will be assigned to Dj in any

combination produced from Aq in later iterations. For each Ap ∈ A, let C̄p = {C̄1
p , . . . , C̄ z

p } be the available capacity at the
beginning of each iteration at D1, . . ., Dz respectively. The C̄p at the last iteration will be used in Phase II when small jobs are
added.
Phase1-Alg2

For each delivery time Dj (1 ≤ j ≤ z), initialize the available capacity to be C j

Let A be the set of all combinations of selection and assignment so far, A := {∅}.
For i := 1 to ⌈

1
δ
⌉

Let A′
:= ∅

For each Ap ∈ A, where Ap :=
z

j=1 A
j
p

(a) for each 1 ≤ j ≤ z, let C̄ j
p be the available capacity at Dj

(b) for each j such that Aj
p is not finalized, identify all jobs not in Ap that are large with respect to Dj

(c) generate all possible combinations of selection and assignment of the large jobs found above, X , subject to the
available capacity constraint and the promised due date constraint

(d)for any Xq ∈ X , Xq :=
z

j=1 X
j
q

(i) generate a new combination Aq such that Aj
q := Aj

p ∪ X j
q for 1 ≤ j ≤ z

(ii) for each j, 1 ≤ j ≤ z, if Aj
q = Aj

p, mark Aj
q as ‘‘finalized’’

(e) add all newly generated combinations into A′

A := A′

return A

Lemma 7. There are at most O(n
z
δ2 ) possible assignments of the large jobs in Phase1-Alg2, where 0 < δ < 1 is a constant.

Proof. At each iteration i, at most 1
δ
large jobs with respect to each Dj can be selected, so there are at most n

1
δ different ways

to select large jobs for Dj, 1 ≤ j ≤ z. Hence, the number of possible selections and assignments in one iteration is O(n
z
δ ).

Since there are ⌈
1
δ
⌉ iterations, there are in totalO((n

z
δ )⌈

1
δ
⌉) = O(nO(

z
δ2

)
) possible selection and assignments of large jobs. �

4.2. Phase II: select, schedule and assign

As in the case of single delivery, no production schedule is generated in Phase I. In this phase, we will detect all feasible
large job selection and assignment from A, and for each feasible Ap ∈ A, we will use dynamic programming to generate the
feasible production schedules of large jobs along with newly selected small jobs, we will also assign the small jobs so that
the delivery schedule is valid.

We have to extend some definitions from single delivery case. For a given large job selection and assignment Ap, letC j
p = C j

−


Ji∈Ajp
ci be the available capacity for small jobs that can be assigned to Dj. Assume Ap is the corresponding
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large job selection of a coordinated schedule S, we use Loadj(S) to denote the total size of the jobs assigned to Dj in S. We
define Loadj(S/Ap) to be the total size of small jobs assigned to Dj in S. We say that the delivery schedule in S is feasible if
Loadj(S/Ap) ≤ C j

p for all delivery time Dj (1 ≤ j ≤ z) and the delivery schedule in S is valid if Loadj(S/Ap) ≤ (1 + δ)C j
p for

all Dj (1 ≤ j ≤ z).
As before, we assume the jobs are divided into k disjoint lists L1, L2, . . . , Lk. Let nu denote the number of jobs in job list Lu

(1 ≤ u ≤ k). The jobs in each list are considered in the order of starting time of their production windows. For any Ap ∈ A,
we use T (Ap, n′

1, . . . , n
′

k) to represent a set of coordinated schedules such that in each schedule the production schedule is
feasible, the delivery schedule is valid, only the first n′

u jobs from list Lu (1 ≤ u ≤ k) can be scheduled, and among the first
n′
u jobs in list Lu, 1 ≤ u ≤ k, all those jobs in Ap must be scheduled and must be delivered as specified by Ap. Suppose two

coordinated schedules S1 and S2 have the same large job selection and assignment Ap, for a given constantω = 1+
δ
2n , we say

S1 and S2 are similar if Profit(S1/Ap) and Profit(S2/Ap) are both in the interval [ωx, ωx+1) for some integer 0 ≤ x ≤ logω


fi,

and for all 1 ≤ j ≤ z, Loadj(S1/Ap) and Loadj(S2/Ap) are both in [ωyj , ωyj+1) for some integer 0 ≤ yj ≤ logω C j.

Phase2-Alg2(J , Ap, C̄p, C)

• Input: J := {J1, J2, . . . , Jn}: the job set which has been divided into k job lists L1, L2, . . . , Lk;
Ap :=

z
j=1 A

j
p: a large job selection and assignment obtained from Phase1-Alg2;

C̄p := {C̄1
p , . . . , C̄ z

p }: the available capacity at the beginning of last iteration from Phase1-Alg2 for obtaining Ap

C := {C1, C2, . . . , C z
}: capacity at delivery times D1,D2, . . . ,Dz

• Initialize T (Ap, 0, . . . , 0) := {∅}

• Construct T (Ap, n1, . . . , nk) using dynamic programming
To find the set T (Ap, n′

1, . . . , n
′

k), do the following steps

1. For t := 1 to k: consider job Jt,n′
t
, let [lt,n′

t
, rt,n′

t
] be its production window, pt,n′

t
be its processing time, ct,n′

t
be its size.

If Jt,n′
t
∈ Aj

p for some j (i.e. Jt,n′
t
is a large job assigned to Dj in Ap)

for each schedule S in T (Ap, n′

1, . . . , n
′
t − 1, . . . , n′

k) such that max(Cmax(S), lt,n′
t
) + pt,n′

t
≤ rt,n′

t

if Dj
≥ max(Cmax(S), lt,n′

t
) + pt,n′

t
build a new schedule S ′ by adding job Jt,n′

t
to S such that Jt,n′

t
is scheduled

at max(Cmax(S), lt,n′
t
) and assigned to Dj;

add S ′ to T (Ap, n′

1, . . . , n
′

k);
Else for each schedule S in T (Ap, n′

1, . . . , n
′
t − 1, . . . , n′

k)

add S into T (Ap, n′

1, . . . , n
′

k);
for each delivery time Dj such that Dj

≤ dt,n′
t
and ct,n′

t
≤ δC̄ j

p (i.e. Jt,n′
t
is a small job with respect to Dj)

if max(Cmax(S), lt,n′
t
) + pt,n′

t
≤ rt,n′

t
, max(Cmax(S), lt,n′

t
) + pt,n′

t
≤ Dj and

Loadj(S ∪ {Jt,n′
t
}/Ap) ≤ (1 + δ)C j

p

build a new schedule S ′ by adding Jt,n′
t
to S such that Jt,n′

t
is scheduled

at max(Cmax(S), lt,n′
t
) and delivered at Dj;

add S ′ into T (Ap, n′

1, . . . , n
′

k);
2. From each group of schedules in T (Ap, n1, . . . , nk) that are similar to each other, delete all but the schedule S with

minimum Cmax(S) in the group

• return the schedule S from T (Ap, n1, . . . , nk) with maximum profit

Similar to single delivery case, if a large job selection and assignment Ap ∈ A is not feasible, the above dynamic procedure
will return an empty schedule. For each feasible large job selection and assignment Ap, we have:

Lemma 8. Suppose Ap ∈ A is a feasible large job selection and assignment obtained from Phase1-Alg2, and let S ′ be the feasible
schedule that has maximum profit among all schedules whose large job selection and assignment is exactly Ap. Then Phase2-
Alg2(J , Ap, C̄p, C) returns a schedule S such that S is valid, i.e. Loadj(S/Ap) ≤ (1 + δ)(C j

−


Ji∈Ajp
ci) for all 1 ≤ j ≤ z, and

Profit(S) ≥ (1 − δ)Profit(S ′).

Proof. Let S ′(n′

1, . . . , n
′

k) denote the partial coordinated production and delivery schedule of S ′ that contains only jobs Ju,v ,
1 ≤ u ≤ k and 1 ≤ v ≤ n′

u. Let n
′
= n′

1 + · · · + n′

k. As in Lemma 2, it is sufficient to prove that for any S ′(n′

1, . . . , n
′

k), there
is a schedule S ′′

∈ T (Ap, n′

1, . . . , n
′
t , . . . , n

′

k) such that

(a) S ′′ has scheduled all jobs Ju,v ∈ Ap from job list Lu with 1 ≤ u ≤ k and v ≤ n′
u, and if Ju,v ∈ Aj

p in Ap, Ju,v is assigned to Dj
in S ′′

(b) Cmax(S ′′) ≤ Cmax(S ′(n′

1, . . . , n
′

k)),
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(c) Profit(S ′′/Ap) ≥
Profit(S′(n′

1,...,n
′
k)/Ap)

ωn′ , and

(d) Loadj(S ′′/Ap) ≤ ωn′

· Loadj(S ′(n′

1, . . . , n
′

k)/Ap) .

We can prove by induction and it is almost the same as that of Lemma 2, so we omit it. �

Lemma 9. The running time of Phase2-Alg2(J , Ap, C̄p, C) is O(knk(logω

n
i=1 fi)

z
j=1(logω C j)) for a given Ap.

Proof. As in the single delivery time case, the running time is dominated by the dynamic programming, which takes
n1 · n2 · . . . · nk = O(nk) iterations.

For any T (Ap, n′

1, . . . , n
′

k), n
′
t ≤ nt , 1 ≤ t ≤ k, the size of T (Ap, n′

1, . . . , n
′

k) is at most

O


logω

n
i=1

fi


z

j=1

(logω C j)


.

To construct T (Ap, n′

1, . . . , n
′

k), all schedules in T (Ap, n′

1 − 1, n′

2, . . . , n
′

k), . . ., T (Ap, n′

1, . . . , n
′

k−1, n
′

k − 1) are considered. So
it considers in total O(k(logω

n
i=1 fi)

z
j=1(logω C j)) schedules to construct T (Ap, n′

1, . . . , n
′

k), and thus the running time of
dynamic procedure for each large job selection Ap is O(knk(logω

n
i=1 fi)

z
j=1(logω C j)). �

4.3. Phase III: search for the best schedule

For each large job selection and assignment Ap ∈ A obtained from Phase I, the dynamic procedure of Phase II returns a
coordinated schedule S such that the production schedule of S is feasible and the delivery schedule of S is valid, and all the
jobs in Ap have been selected and delivered as specified by Ap. In this phase, to find a good approximation, we will pick the
schedule with the maximum total profit among all such schedules.

Lemma 10. Let S∗ be the optimal schedule and S be the schedule with the maximum profit among all schedules produced from
Phase III, we have Profit(S) ≥ (1− δ)Profit(S∗) and Loadj(S/Ap) ≤ (1+ δ)C j

p for all j, 1 ≤ j ≤ z. Furthermore, the total running
time to obtain S is

O


k
δ2

(n)O( z
δ2

+k)


lg

n
i=1

fi


z

j=1

(lg C j)


.

Proof. By Lemma 8, the first part is obviously true. The running time follows directly from Lemmas 7 and 9. �

4.4. Phase IV: convert to a feasible schedule

From Phase III, the schedule S with themaximum total profit has been selected from all schedules in T (Ap, n1, n2, . . . , nk)
for all Ap ∈ A. Note that the production schedule of S must be feasible but delivery schedule of S may be valid but not feasible,
i.e. for some delivery time Dj, 1 ≤ j ≤ z,C j

p ≤ Loadj(S/Ap) ≤ (1+δ)C j
p. To convert S so that it has feasible delivery schedule,

we delete some jobs from S.

Phase4-Alg2(S)

Input: S is the best schedule found by Phase III, which has a feasible production schedule and a valid delivery schedule.
Let Ap :=

z
j=1 A

j
p be its corresponding large job selection.

For each delivery time Dj (1 ≤ j ≤ z) such that Loadj(S) > C j

If Aj
p is marked as ‘‘finalized’’

delete from S the jobs that are small with respect to Dj and
have total size of between δC j

p and 2δC j
p and with the least

possible total profit
Else

delete from S the large job that is in Aj
p with least profit

Return S

Lemma 11. Given any constant 0 < ϵ < 1, let δ be any constant at most ϵ/3. The coordinated schedule S generated from
Phase4-Alg2 has both feasible production schedule and feasible delivery schedule , and we have Profit(S) ≥ (1 − ϵ)Profit(S∗),
where S∗ is the optimal schedule.

Proof. Assume S is the schedule with the maximum total profit among all schedules in T (Ap, n1, . . . , nk), Ap =
z

j=1 A
j
p

for all Ap ∈ A, and S ′ is obtained from S after Phase4-Alg2. By Lemma 10, we have Profit(S) ≥ (1 − δ)Profit(S∗) and
Loadj(S/Ap) ≤ (1 + δ)C j

p for all 1 ≤ j ≤ z.
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For each delivery time Dj such that Loadj(S) > C j (i.e.C j
p < Loadj(S ′/Ap)), Phase4-Alg2 deletes either a large job or a set

of small jobs assigned to Dj depending on whether Aj
p is marked as ‘‘finalized’’ or not. In case Aj

p is marked as ‘‘finalized’’,
we haveC j

p = C̄ j
p and we choose a set of small jobs to delete from Dj. We do the same as in the single delivery time case:

partition these small jobs into groups such that the total size of jobs in each group is in the range of [δC j
p, 2δC j

p], whereC j
p = C j

−


Ji∈Ajp
ci , there are at least ⌈ 1

2δ ⌉ groups, delete the group of jobs with smallest total profit. In both cases, the total

size of the deleted job(s) is at least δC j
p. Therefore after the deletion, the final delivery schedule must be feasible.

All we need to show is that the total profit of S is still close to that of S∗. Let Aj be all the jobs assigned to Dj in S, then the
small jobs assigned toDj in S is Aj

\Aj
p. As in the proof of Theorem5, we can show that for a given delivery timeDj whose large

job assignment is Aj
p, if a large job assigned to Dj is deleted from S, the profit of this large job is at most Profit(Ajp)

⌈
1
δ
⌉

≤
Profit(Aj)

⌈
1
δ
⌉

;

on the other hand, if a set of small jobs assigned to Dj is deleted from S, then their total profit is at most 1
⌈

1
2δ ⌉

times the total

profit of small jobs assigned to Dj, i.e. Profit(Aj\Ajp)

⌈
1
2δ ⌉

≤
Profit(Aj)

⌈
1
2δ ⌉

≤ 2δProfit(Aj). Therefore in either case, we have the total profit

deleted from Dj is at most 2δProfit(Aj).
So we have

Profit(S ′) ≥ Profit(S) −

z
j=1

2δProfit(Aj)

≥ Profit(S) − 2δProfit(S)
≥ (1 − 2δ)Profit(S)
≥ (1 − δ)(1 − 2δ)Profit(S∗)

≥ (1 − ϵ)Profit(S∗). �

For any constant ϵ, by Lemmas 9 and 11, we have the following theorem.

Theorem 12. For any coordinated production and multiple delivery scheduling problem with production window and delivery
capacity constraints, when there are constant number of delivery times z, and the job set is k-disjoint where k is a constant, there
exists a polynomial time approximation scheme. Furthermore, that runs in time

O


nO


z
ϵ2

+k
 

lg
n

i=1

fi


z

j=1

(lg C j)


.

5. Conclusion

In this paper, we studied the problem of coordinated production and delivery scheduling problem with production
window constraint and the delivery capacity constraint. When the jobs are k-disjoint and k is a constant, we develop a
PTAS for the case of single delivery time. We then extend the PTAS to solve the problem with constant number of delivery
times. One open question is to develop constant approximation algorithms for the general problem.

Appendix. Converting a list of jobs into k-disjoint lists

Our algorithms assume that the jobs are k-disjoint and the running time of both algorithms exponentially depends on the
parameter k. It is essential to find the minimum k and partition the jobs into k-disjoint lists. This can be solved by a simple
greedy algorithm. For completeness, we will give the algorithm below.

Theorem 13. Given a set of jobs, there exists an O(n2) time algorithm that partitions the jobs k-disjoint lists, where k is the
minimum.

Proof. Weuse greedymethod.We start with an empty list. We repeatedly add into the list the jobwith the least production
window’s starting time such that no overlap of production windows is produced. Suppose in total, we build k lists. Let Jk,1
be the first job in the k-th list, and the start time of its production window is lk,1. Then it must be the case, that in each of the
first (k − 1) lists, there is one job whose production window includes the time lk,1. Otherwise, Jk,1 should be added to one
of the k − 1 lists due to the greedy approach. This means k is the minimum number of lists required by any algorithm. �
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