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Abstract

Let P be a set of n points in the plane, no three collinear. A convex polygon of P is called empty if no point of P lies in
its interior. An empty partition of P is a partition of P into empty convex polygons. Let k be a positive integer and Nπ

k (P) be
the number of empty convex k-gons in an empty partition π of P . Define gk(P) =: max{Nπ

k (P) : π is an empty partition of P},

Gk(n) =: min{gk(P) : |P| = n}. We mainly study the case of k = 4 and get the result that G4(n) ≥ b
9n
38 c. For specified

n = 21 × 2k−1
− 4 (k ≥ 1), we obtain the better bound G4(n) ≥ b

5n−1
21 c.

c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Let P be a set of n points in general position in the plane, that is, with no three points collinear. If P is partitioned
into k subsets S1, S2, . . . , Sk such that each Si (i = 1, 2, . . . , k) is the vertex set of a convex polygon, then the partition
obtained is called a convex partition of P . A subset of a finite set of points in the plane is called an empty convex
polygon if it forms the set of vertices of a convex polygon whose interior contains no point of the set. A convex
partition of P is called a disjoint partition if C H(Si ) ∩ C H(S j ) = ∅ for any pair of indices i, j , where C H denotes
the convex hull, and it is called an empty partition if each C H(Si ) is an empty convex polygon of P . Given a point set
P , let f (P) denote the minimum number of disjoint convex polygons over all disjoint partitions of P , and g(P) the
minimum number of empty convex polygons over all empty partitions of P . Define F(n) =: max{ f (P) : |P| = n}

and G(n) =: max{g(P) : |P| = n}. In 1996 M. Urabe found some lower bounds and upper bounds for F(n) and
G(n) (see [1]). In 2003 R. Ding, K. Hosono, M. Urabe and C. Xu improved the bounds for G(n) (see [2]).

In 2001 K. Hosono and M. Urabe considered the problem of the number of disjoint empty convex k-gons in a
planar point set for a fixed k; they mainly discussed the case of k = 4 (see [3]). In this work, we remove the restriction
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of disjointness and consider a related problem: how many empty convex k-gons can be constructed in a planar point
set for a fixed k? Mainly we study the case of k = 4 as well.

Let k be a positive integer, Π π
k (P) be the number of disjoint convex k-gons in a disjoint partition π of P , and

Nπ
k (P) be the number of empty convex k-gons in an empty partition π of P . Define

fk(P) =: max

{
π∏
k

(P) : π is a disjoint partition of P

}
.

gk(P) =: max{Nπ
k (P) : π is an empty partition of P}.

Fk(n) =: min{ fk(P) : |P| = n}.

Gk(n) =: min{gk(P) : |P| = n}.

Since a set of disjoint convex k-gons is a set of empty convex k-gons, we have

Lemma 1. Gk(n) ≥ Fk(n).

K. Hosono and M. Urabe proved:

Lemma 2 ([3]). F4(9) = 2 and F4(n) ≥ b
5n
22 c.

In this work, we obtain the following results:

Lemma 3. G4(5) = 1.

Lemma 4. G4(9) = 2.

Lemma 5. G4(13) = 3.

Lemma 6. G4(17) = 4.

By using these lemmas we show that for a set of 38 points we can construct nine empty convex quadrilaterals and so
we obtain:

Theorem 7. G4(n) ≥ b
9n
38 c.

Moreover, we get the following better bound for a specified integer n:

Theorem 8. G4(n) ≥ b
5n−1

21 c, n = 21 × 2k−1
− 4 (k ≥ 1).

In the proof, we make use of the following result proved by K. Hosono and M. Urabe:

Lemma 9 ([3]). For any set of 2m + 4 points in the plane, no three collinear, we can divide the plane into three
disjoint convex regions such that one contains a convex quadrilateral and the others contain m points each, where m
is a positive integer.

2. Proofs

First, we need the following definitions and notation. For a given point set P , a convex region R is called empty,
denoted by R ∼= ∅, if its interior contains no point of P . We call the interior region of the angular domain in the plane
determined by the points a, b and c a convex cone, denoted by C(a; b, c), if a is the apex and both b and c are on the
boundary of the angular domain such that 6 bac is acute. If C(a; b, c) contains some points of a given point set P ,
then we call the point q ∈ P ∩ C(a; b, c) the attack point, denoted by A(a; b, c), if C(a; b, q) ∼= ∅. The subset of P
on the boundary of C H(P) is denoted by V (P) = {v1, v2, . . . , vt } with the order anticlockwise. The interior points
of P are the points of P that are not on the boundary of C H(P), and the set of interior points of P is denoted by
Q. We use the notation ab to refer to the line segment between a and b, and ab to refer to the extended straight line
associated with two points a and b.
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Fig. 1.

Fig. 2.

Proof of Lemma 3. The result is obvious by the fact that F4(5) = 1 (see [3]). �

Proof of Lemma 4. We can find an eight-point set P with g4(P) = 1 (see Fig. 1); thus G4(8) = 1 holds, and hence
G4(9) ≤ 2. On the other hand, we have G4(9) ≥ F4(9) = 2 by Lemmas 1 and 2. So G4(9) = 2. �

Proof of Lemma 5. To prove G4(13) = 3 it suffices to prove g4(P) ≥ 3 for any finite set P in general position in the
plane with |P| = 13.

If |V (P)| ≥ 7, that is, if C H(P) is a k-gon (k ≥ 7), then there exists an extended straight line l associated with an
edge of C H(Q) such that l separates a convex i-gon (i ≥ 4) from the remaining at most nine points. By Lemma 4,
we therefore find three empty convex quadrilaterals, that is, g4(P) ≥ 3.

In the following proof, we assume that:
(∗) There does not exist the extended straight line l associated with an edge of C H(Q) which separates an i-

gon (i ≥ 4) from the remaining points of P .
If there exists a triangle, say 4vi−1vivi+1, determined by three adjacent points of V (P), which is empty, then the

empty quadrilateral vi−1vivi+1v is separated from the remaining nine points, where v is the point nearest to vi−1vi+1
of the remaining points of P . So we may assume that no such triangle is empty. Let pi = A(vi ; vi+1, vi+2), where we
identify indices modulo t which is the number of vertices of C H(P). Obviously, the convex cone C(vi ; vi+1, pi ) is
empty. If C(vi+1; vi , pi ) is not empty, let yi = A(pi ; vi , vi−1); then the line segment pi yi is an edge of C H(Q) and
the extended straight line pi yi separates the empty convex quadrilateral vivi+1 pi yi from the remaining points of P ,
which is contrary to (∗) (see Fig. 2). So we may assume that C(vi+1; vi , pi ) ∼= ∅.

Next we show that pi 6= p j for any pair of indices i 6= j (i, j = 1, 2, . . . , t). If not, there must exist some i such
that pi = pi+1; then C(vi ; vi+1, pi ) ∪ C(vi+1; vi+2, pi ) ∼= ∅ holds. Let z = A(pi ; vi , vi−1); then the line segment
pi z is an edge of C H(Q) and the extended straight line pi z separates the empty convex quadrilateral vivi+1 pi z from
the other points of P , which is contrary to (∗) (see Fig. 3). Thus we may assume:

(∗∗) C(vi ; vi+1, pi ) ∪ C(vi+1; vi , pi ) ∼= ∅, and pi 6= p j for any pair of indices i 6= j (i, j = 1, 2, . . . , t).
Now we discuss the remaining cases.

Case 1: |V (P)| = 6 or |V (P)| = 5. Consider the interior of the triangular domain Ti determined by vi−1 pi−1,
vi+1 pi and pi pi−1 for every i . By (∗∗), there exists some Ti ∼= ∅. Denote the quadrilateral corresponding to Ti by
Qi = pi pi−1vi−1vi+1 (see Fig. 4). If Qi ∼= ∅, then the remaining points of P are contained in C(vi ; pi , pi−1); there



L. Wu, R. Ding / Applied Mathematics Letters 21 (2008) 966–973 969

Fig. 3.

Fig. 4.

exist three empty convex quadrilaterals by Lemma 4, that is, g4(P) ≥ 3. If Qi is not empty, then vi pivpi−1 is an
empty convex quadrilateral disjoint from the other nine points, where v is the point nearest to pi pi−1 in Qi , so we
can find three empty convex quadrilaterals by Lemma 4.

Case 2: |V (P)| = 4. There exists some Ti , say T1, which contains at most one point by (∗∗). If T1 ∼= ∅, we are done
by the same argument as for Case 1. Next we discuss case of T1 containing one point q.

Let p = A(v2; p1, q); then v1 p1 p A(p; v1, q) is an empty convex quadrilateral disjoint from the remaining nine
points of P , and we obtain the result g4(P) ≥ 3 by Lemma 4. Thus we may assume that C(v2; p1, q) ∼= ∅. Let
q1 = A(v2; q, p4). Considering the positions of q1 we have two subcases:

(1) q1 ∈ C(v1; p1, q). Then the empty convex quadrilateral v1 p1q1q is separated from the other nine points;
g4(P) ≥ 3 holds.

(2) q1 ∈ C(v1; q, p4).

(a) C(q; v2, q1) ∼= ∅. Then v2q1qp1 is an empty convex quadrilateral disjoint from the other nine points; we get the
conclusion g4(P) ≥ 3.

(b) C(q; v2, q1) is not empty.

(i) C(p4; p1, q1) is not empty. Let q2 = A(p4; p1, q1). Then the two empty quadrilaterals v1qq2 p4 and
v2 p1q1 A(q1; v2, p2) are separated from the other five points; there exist three empty convex quadrilaterals by
Lemma 3, that is, g4(P) ≥ 3.

(ii) C(p4; p1, q1) ∼= ∅.

(A) q1 ∈ C(p1; p4, v4); let q3 = A(q1; p4, v4). If q3 = v4, then v1qq1 p4 is an empty convex quadrilateral disjoint
from the other nine points. Otherwise, v2 p1q A(q1; v2, p2) and v1q1q3 p4 are two empty quadrilaterals disjoint
from the other five points.

(B) q1 is not in C(p1; p4, v4). Let q4 = A(q1; p4, v4).

(I) q4 6= v4. Then the two empty quadrilaterals v2 p1q A(q1; v2, p2) and v1q1q4 p4 are separated from the other five
points.
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(II) q4 = v4. Let q5 = A(q1; v4, p3).

If q5 is on the opposite side of v1q1 to v4, then the empty convex quadrilateral q1q5v4 p4 is disjoint from the other nine
points. Next we discuss the case of q5 on the same side of v1q1 as v4.

(α) q5 is on the same side of v2v4 as v1.

• C(v4; q1, q5) ∼= ∅. Then the two empty quadrilaterals v2 p1q A(q1; v2, p2) and v1q1q5 p4 are separated from the
other five points.

• C(v4; q1, q5) is not empty. Let q6 = A(v4; q1, q5).

� q6 ∈ C(v1; p1, q). Then v1 p1q6q and q1 p4v4q5 are two empty quadrilaterals disjoint from the other five points.
� q6 ∈ C(v1; q, q1).
If C(q; v2, q6) ∼= ∅, the empty quadrilateral v2 p1qq6 is separated from the other nine points. If C(q; v2, q6)

is not empty but C(q6; p1, v2) is empty, then v2 p1q6 A(q6; v2, p2) and v1qq1 p4 are two empty quadrilaterals
disjoint from the other five points. If both C(q; v2, q6) and C(q6; p1, v2) are not empty, let q7 = A(q6; p1, v2).
If q7 ∈ C(v1; p1, q), then the two empty quadrilaterals v1 p1q7q and v4 p4q1q6 are separated from the remaining
five points. If q7 ∈ C(v1; q, q6), then the two empty quadrilaterals v1qq7q6 and p1q1v4 p4 are separated from the
remaining five points.

� q6 ∈ C(v1; q1, q5). Then v2 p1q A(q1; v2, p2) and v1q1q6 p4 are two empty quadrilaterals disjoint from the other
five points.

(β) q5 is on the opposite side of v2v4 to v1. Then by an argument similar to that for the previous subcase (α) we
obtain g4(P) ≥ 3.

So we can assume that both C(v2; p1, p4) and C(v4; p4, p1) just contain the point q by symmetry.
If C(v2; p4, v4) ∼= ∅, then p1v2v4 p4 is an empty convex quadrilateral and the remaining points of P are contained

in C(v1; p1, p4), that is, the convex hull of the remaining points does not contain any point of {p1, v2, v4, p4}, so there
are three empty convex quadrilaterals by Lemma 4. Thus we can assume that both C(v2; p4, v4) and C(v4; p1, v2)

are not empty. Let t1 = A(v2; p4, v4), t2 = A(v4; p1, v2). Consider the following two subcases.
(1) t1 = t2; let t1 = t2 = t . Without loss of generality, we assume that t is on the same side of v1q as p4.
(a) C(v4; t, v2) is not empty. Let l1 = A(v4; t, v2).
(i) l1 ∈ C(v1; p1, q).
(A) C(v4; l1, v2) is not empty. Let l2 = A(v4; l1, v2).
(I) l2 ∈ C(v1; p1, l1). Then v1 p1l2l1 and v4 p4qt are two empty quadrilaterals disjoint from the other five points.
(II) l2 ∈ C(v1; l1, q). Then v1l1l2q and v4 p4 p1t are two empty quadrilaterals disjoint from the other five points.
(III) l2 ∈ C(v1; q, p4). If l2 is on the opposite side of p4t to v4, then v1l2tp4 and p1ql1 A(l1; p1, v2) are two empty

quadrilaterals disjoint from the other five points. If l2 is on the same side of p4t as v4, then v1 p1l1q and v4 p4tl2 are
two empty quadrilaterals disjoint from the other five points.

(B) C(v4; l1, v2) ∼= ∅. By a discussion similar to that for the previous subcase (A), we can obtain g4(P) ≥ 3.
(ii) l1 ∈ C(v1; q, t).
(A) C(q; v2, l1) ∼= ∅. Then the empty convex quadrilateral v2 p1ql1 is separated from the other nine points;

g4(P) ≥ 3 holds.
(B) C(q; v2, l1) is not empty.
(I) C(v2; t, l1) is not empty. Let l3 = A(v2; t, l1).
(α)l3 ∈ C(v1; p1, q).
If l1 is on the opposite side of p4t to v4, then v2l3qp1 and v1l1tp4 are two empty convex quadrilaterals disjoint

from the other five points. If l1 is on the same side of p4t as v4, then v1 p1l3q and v4 p4tl1 are two empty convex
quadrilaterals disjoint from the other five points.

(β) l3 ∈ C(v1; q, l1).

• C(q; v2, l3) ∼= ∅. Then the empty quadrilateral v2 p1ql3 is separated from the other nine points.
• C(q; v2, l3) is not empty. Then v2 p1l3 A(l3; v2, p2) and v1qtp4 are two empty quadrilaterals separated from the

other five points.

(II) C(v2; t, l1) ∼= ∅. Then v2 p1l1 A(l1; v2, p2) and v1qtp4 are two empty quadrilaterals separated from the other
five points.
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(iii) l1 ∈ C(v1; t, p4). Then v2 p1q A(q; v2, p2) and v1tl1 p4 are two empty quadrilaterals separated from the other
five points.

(b) C(v4; t, v2) ∼= ∅. Let l4 = A(v4; v2, p2); by a discussion similar to that for subcase (a) we reach the result
g4(P) ≥ 3.

(2) t1 6= t2.
(a) t1 and t2 are on the same side of v1q; without loss of generality, let t1 and t2 be on the same side of v1q as p1.

If C(q; v4, t2) ∼= ∅, then v4 p4qt2 is an empty convex quadrilateral separated from the other nine points; otherwise
v4 p4t2 A(t2; v4, p3) and v1 p1t1q are two empty quadrilaterals separated from the other five points.

(b) t1 and t2 are on the opposite side of v1q .
(i) C(p1; v2, t1) is not empty. Then v1qt2 p4 and t1 p1v2 A(t1; v2, p2) are two empty quadrilaterals separated from

the other five points.
(ii) Both C(p1; v2, t1) and C(p4; v4, t2) are empty by symmetry.
If C(t1; p4, t2) is not empty, let s = A(t1; p4, t2). If s is on the opposite side of v1q to p1, then v2 p1 p4t1 and

v1qs A(s; p4, t2) are two empty quadrilaterals separated from the other five points. Otherwise v1 p1t1s and qp4v4t2 are
two empty quadrilaterals separated from the other five points. So we may suppose C(t1; p4, t2) ∼= ∅.

By the same discussion we suppose that C(t1; t2, v4) ∼= ∅ and C(v4; t1, v2) ∼= ∅. Then t1t2v4v2 is an empty convex
quadrilateral and the convex hull of the remaining points does not contain any point of {t1, t2, v2, v4}, so we may find
three empty convex quadrilaterals by Lemma 4.

Case 3: |V (P)| = 3. There exists some Ti , say T1, containing at most two points of P by (∗∗). If T1 contains at most
one point, by the reasoning similar to that for Cases 1 and 2 we obtain g4(P) ≥ 3. Then we just consider the case of T1
containing exactly two points. Let p = A(v2; p1, p3), q = A(v3; p3, p1). If p is not in T1, then v1 p1 p A(p; v1, p3)

is an empty convex quadrilateral separated from the other nine points; thus we can assume that both p, q ∈ T1 by
symmetry.

A finite set of points in the plane is called in convex position if it forms the set of vertices of a convex polygon. If
p = q or {p, q, p1, p3} are not in convex position, the conclusion g4(P) ≥ 3 is obvious. So we only need to consider
the case of p 6= q and {p, q, p1, p3} are in convex position. Consider the following two subcases.

(1) C(p1; p3, v3) is not empty. Let q1 = A(p1; p3, v3). Consider three possible positions of q1.
(a) q1 ∈ C(v1; p1, p). Then v1 p1q1 p and qp3v3 A(q; v3, p2) are two empty quadrilaterals separated from the other

five points.
(b) q1 ∈ C(v1; p, q).
(i) C(p3; p1, q1) is not empty. Let q2 = A(p3; p1, q1).
(A) q2 ∈ C(v1; p1, p). Then v1 p1q2 p and p3qq1 A(q1; p3, v3) are two empty quadrilaterals separated from the

other five points.
(B) q2 ∈ C(v1; p, q1).
(I) C(p3; q2, q1) is not empty. Let q3 = A(p3; q2, q1).
(α) q3 ∈ C(v1; p1, p). Then v1 p1q3 p and p3qq2 A(q2; p3, q1) are two empty quadrilaterals separated from the

other five points.
(β) q3 ∈ C(v1; p, q2). Then v1 pq3q2 and p1q1 p3q are two empty quadrilaterals separated from the other five

points.
(γ ) q3 ∈ C(v1; q2, q1). Then v1q2q3q and p1q1 p3 p are two empty quadrilaterals separated from the other five

points.
(II) C(p3; q2, q1) ∼= ∅. Then v1q2q1q and v2 p1 p A(p; v2, p2) are two empty quadrilaterals separated from the

other five points.
(ii) C(p3; p1, q1) ∼= ∅.
(A) C(p3; q1, v2) is not empty. Let q4 = A(p3; q1, v2).
(I) q4 ∈ C(v1; p1, p). Then v1 p1q4 p and p3qq1 A(q1; p3, v3) are two empty quadrilaterals separated from the

other five points.
(II) q4 ∈ C(v1; p, q1).
(α) C(p; v2, q4) ∼= ∅. Then v2 p1 pq4 is an empty convex quadrilateral separated from the other nine points.
(β) C(p; v2, q4) is not empty.
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Fig. 5.

• C(q4; p1, v2) ∼= ∅. Then v1 pq1q and v2 p1q4 A(q4; v2, p2) are two empty quadrilaterals separated from the other
five points.

• C(q4; p1, v2) is not empty. Let r = A(q4; p1, v2).

If r ∈ C(v1; p1, p), then v1 p1r p and p3qq1 A(q1; p3, v3) are two empty quadrilaterals separated from the other
five points. If r ∈ C(v1; p, q4), then v1 pq4r and p1q1 p3q are two empty quadrilaterals separated from the other five
points.

(III) q4 ∈ C(v1; q1, q). Then v1q1q4q and v2 p1 p A(p; v2, p2) are two empty quadrilaterals separated from the
other five points.

(IV) q4 ∈ C(v1; q, p3). Then v1qq4 p3 and p1 pq1 A(q1; p1, v2) are two empty quadrilaterals separated from the
other five points.

(B) C(p3; q1, v2) ∼= ∅. Let q5 = A(p3; v2, p2). Like in the previous subcase (A) we get g4(P) ≥ 3.
(c) q1 ∈ C(v1; q, p3). Then v1qq1 p3 and v2 p1 p A(p; v2, p2) are two empty quadrilaterals separated from the other

five points.
(2) Both C(p1; p3, v3) and C(p3; p1, v2) are empty by symmetry. Let q6 = A(p1; v3, p2); we get g4(P) ≥ 3 by

an argument similar to that for subcase (1).
For all cases mentioned above we have g4(P) ≥ 3. On other hand, for any P with |P| = 13 obviously g4(P) ≤ 3.

Thus g4(P) = 3 for any P with |P| = 13. By the definition, we obtain the result G4(13) = 3. �

Proof of Lemma 6. Let |P| = 17. If |V (P)| ≥ 4, we are done by the same argument as for Lemma 5. Next we
discuss the remaining case of |V (P)| = 3.

There exists some Ti , say T1, containing at most three points of P by (∗∗). If T1 contains at most two points, by
exactly the same argument as for Lemma 5 we reach the conclusion that g4(P) ≥ 4. Then we only need to consider
the case of T1 containing exactly three points. Here p and q are defined in the same way as Case 3 of Lemma 5. Since
if p = q , we can easily find an empty quadrilateral to be separated, we suppose that p 6= q .

Let r be the remaining point in T1. If q is on the opposite side of pp3 to v1, then p3v1q A(q; v1, p) is an empty
convex quadrilateral separated from the other 13 points. Thus we may assume that q is on the same side of pp3 as
v1 and p is on the same side of p1q as v1 by symmetry. If r ∈ C(v1; p1, p), then v1 pr p1 and v3 p3q A(q; v3, p2) are
two empty quadrilaterals separated from the other nine points. Thus we suppose that r is not in C(v1; p1, p); then r is
also not in C(v1; q, p3) by symmetry, and r ∈ C(v1; p, q). If r is on the opposite side of pq to v1, then v1 pqr is an
empty convex quadrilateral separated from the other 13 points, so we can assume that r is on the same side of pq as
v1. If r ∈ C(p1; p, v1) or r ∈ C(p3; q, v1), then v1 p1 pr or v1rqp3 is an empty convex quadrilateral separated from
the other 13 points. Now consider the case where r is in the interior of the triangular domain determined by p1 p, p3q
and pq. There are two subcases to discuss in the following.

(1) C(p1; p3, v3) is not empty. Let q1 = A(p1; p3, v3); then q1 has four possible positions (see Fig. 5).
(a) q1 ∈ C(v1; p1, p). Then v1 p1q1 p and p3qr A(r; p3, v3) are two empty quadrilaterals separated from the other

nine points.
(b) q1 ∈ C(v1; p, r). Then v1 pq1r and v3 p3q A(q; v3, p2) are two empty quadrilaterals separated from the other

nine points.
(c) q1 ∈ C(v1; r, q).
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(i) C(p3; p1, q1) ∼= ∅. Then v1rq1q and v2 p1 p A(p; v2, p2) are two empty quadrilaterals separated from the other
nine points.

(ii) C(p3; p1, q1) is not empty. Let q2 = A(q1; p1, v2).
(A) q2 ∈ C(v1; p1, p). Then v1 p1q2 p and rqp3q1 are two empty quadrilaterals separated from the other nine

points.
(B) q2 ∈ C(v1; p, r). Then v1 pq2r and p1q1 p3q are two empty quadrilaterals separated from the other nine points.
(C) q2 ∈ C(v1; r, q1). Then v1rq2q1 and p1 pqp3 are two empty quadrilaterals separated from the other nine points.
(d) q1 ∈ C(v1; q, p3). Then v1qq1 p3 and p1 pr A(r; p1, v2) are two empty quadrilaterals separated from the other

nine points.
(2) C(p1; p3, v3) ∼= ∅. Also C(p3; p1, v2) ∼= ∅ by symmetry. Let s = A(p1; v3, p2). We obtain the result

g4(P) ≥ 4 by an argument similar to that for subcase (1).
By the argument above, we obtain the result g4(P) ≥ 4. Thus g4(P) = 4 holds by the fact that g4(P) ≤ 4 when

|P| = 17. So we get the conclusion G4(17) = 4. �

Proof of Theorem 7. Let P be a set of n points in the plane, no three collinear. Any 38 points can be divided into nine
empty convex quadrilaterals by Lemma 6 and Lemma 9. Take a line l not parallel to any line determined by any two
points of P . We move l in a direction orthogonal to itself until exactly 38 points are on one side of l. Continue in the
same way so that we obtain d

n
38e disjoint convex regions such that each region contains 38 points of P except probably

the last region R which contains m points of P , 1 ≤ m ≤ 38. If 4k + 1 ≤ m ≤ 4k + 4 for k = 0, 1, 2, 3, then there
exist at least k empty convex quadrilaterals. If 17 ≤ m ≤ 21, we can find at least four empty convex quadrilaterals by
Lemma 6. If 4k + 2 ≤ m ≤ 4k + 5 for k = 5, 6, 7, 8, there exist at least k empty convex quadrilaterals. If m = 38, we
can find at least nine empty convex quadrilaterals. Therefore, we can obtain at least b

9n
38 c empty convex quadrilaterals.

�

Proof of Theorem 8. Notice that the inequality to be proved is equivalent to the following inequality:

G4(21 × 2k−1
− 4) ≥ 5 × 2k−1

− 1 (k ≥ 1).

Let α(k) = 21 × 2k−1
− 4, β(k) = 5 × 2k−1

− 1. Using Lemma 9, the inequality can be proved easily by induction
on k. This completes the proof for n = 21 × 2k−1

− 4. �

3. Remark

We expect G4(4k + 1) = k to also hold for k ≥ 5. Therefore we conjecture that G4(n) = b
n−1

4 c.
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