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Tenectin is a novel αPS2βPS integrin ligand required for wing morphogenesis and
male genital looping in Drosophila

Stéphane Fraichard b,1, Anne-Laure Bougé b,1,2, Timmy Kendall a, Isabelle Chauvel b,
Hervé Bouhin b,⁎, Thomas A. Bunch a,⁎
a Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
b Centre des Sciences du Goût et de l'Alimentation, UMR-6265 CNRS, INRA, Université de Bourgogne, Agrosup Dijon, F-21000 Dijon, France
⁎ Corresponding authors. T.A. Bunch is to be contac
Room 3951A, 1515 N. Campbell Ave., Tucson, AZ 85724
S. Bouhin, Centre des Sciences du Goût et de l'Aliment
Université de Bourgogne, Agrosup Dijon, F-21000 Dijon

E-mail addresses: tbunch@email.arizona.edu (T.A. Bu
(H. Bouhin).

1 These authors contributed equally to this work.
2 Present address: Department of Developmental B

Recherche Scientifique (CNRS) URA 2578 Pasteur Instit

0012-1606/$ – see front matter © 2010 Elsevier Inc. A
doi:10.1016/j.ydbio.2010.02.008
a b s t r a c t
a r t i c l e i n f o
Article history:
Received for publication 19 October 2009
Revised 29 January 2010
Accepted 2 February 2010
Available online 10 February 2010

Keywords:
Tenectin
Integrin
Ecdysone
Metamorphosis
Adhesion
Looping morphogenesis
Left–right asymmetry
Morphogenesis of the adult structures of holometabolous insects is regulated by ecdysteroids and juvenile
hormones and involves cell–cell interactions mediated in part by the cell surface integrin receptors and their
extracellular matrix (ECM) ligands. These adhesion molecules and their regulation by hormones are not well
characterized. We describe the gene structure of a newly described ECMmolecule, tenectin, and demonstrate
that it is a hormonally regulated ECM protein required for proper morphogenesis of the adult wing and male
genitalia. Tenectin's function as a new ligand of the PS2 integrins is demonstrated by both genetic
interactions in the fly and by cell spreading and cell adhesion assays in cultured cells. Its interaction with the
PS2 integrins is dependent on RGD and RGD-like motifs. Tenectin's function in looping morphogenesis in the
development of the male genitalia led to experiments that demonstrate a role for PS integrins in the
execution of left–right asymmetry.
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Introduction

During development, morphogenetic movements are induced and
controlled by a variety of molecules such as growth factors or
hormones and their receptors. In holometabolous insects like the fruit
fly, Drosophila melanogaster, and the beetle, Tenebrio molitor,
ecdysteroids and juvenile hormones control development both during
embryogenesis and later during larval and pupal molts. These
hormones regulate gene expression patterns required for develop-
ment. Following changes in gene expression, cells change shape and
move by processes that require remodeling of the extracellular matrix
(ECM) and alterations in the interactions of cell surface adhesion
molecules with their intracellular and extracellular ligands. In both
invertebrates and vertebrates, ECM proteins and their receptors are
important for the anchorage of cells, cell spreading, migration,
proliferation and differentiation and they have been implicated in
numerous pathologies (Brown et al., 2000; Hynes 2002; Bökel and
Brown, 2002; Brower 2003; Danen and Sonnenberg 2003).

Integrins are a family of heterodimeric transmembrane glycopro-
teins, consisting of two subunits (α and β) that serve as receptors for
ECM molecules and cell surface molecules of neighboring cells. The
Drosophila genome contains5α subunits (αPS1–αPS5) and2β subunits
(βPS and βν) while, in vertebrates, 18 α and 8 β subunits have been
identified (Brower, 2003; Takada et al., 2007, for reviews). The best
characterized Drosophila integrin subunits, αPS1, αPS2 and αPS3, are
encoded by the multiple edematous wings, inflated and scab loci,
respectively while the βPS locus is encoded by the myospheroid locus
(Brower and Jaffe, 1989; Wilcox et al., 1989; Wehrli et al., 1993; Brown,
1994; Stark et al., 1997; Grotewiel et al., 1998). A small number of
integrin ligands have been identified in Drosophila: laminin α1,2 chain
(Graner et al., 1998), tiggrin (Fogerty, et al., 1994; Bunch et al., 1998),
tenascin-m chain (Graner et al., 1998), thrombospondin (Subramanian
et al., 2007) and collagen IV (Borchiellini et al., 1996) but it is not known
if tenascin or collagen IV binds integrins in vivo. αPS1 is a typical
laminin-binding-type subunit while αPS2 is an RGD (arginine, glycine,
aspartic acid)-binding-type subunit. SinceαPS1,αPS2 and βPS subunits
have clear homologs in vertebrates, the Drosophila integrin system is
becoming a simple powerful tool in which to characterize integrin
functions. Generally, mutants for genes involved in the integrin
pathways display clear phenotypes, which facilitate in vivo studies.

Just prior to wing morphogenesis during post-embryonic develop-
ment, αPS1βPS and αPS2βPS are expressed in a complementary fashion
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in the wing imaginal disc epithelium. αPS1βPS is expressed in the
presumptive dorsal surface and αPS2βPS on the ventral surface. At
metamorphosis the disc evaginates bringing in apposition αPS1βPS
expressing dorsal cells with αPS2βPS expressing ventral cells (Wilcox
et al., 1981; Brower et al., 1984; Leptin et al., 1987). Mutations of genes
involved in the integrin pathway often cause epithelial detachment and
wing-blistering phenotypes. Integrins also function inmuscle attachment,
short-term memory, olfaction, embryonic midgut migration and axonal
pathfinding (Brownet al., 2000;Bökel andBrown, 2002; Brower, 2003, for
reviews). Since swapping the cytoplasmic tails between the two subunits
does not detectably alter their function, crucial differences between the
two subunits are located in their extracellular ligand-binding domains
(Martin-Bermudo et al., 1997; Martin-Bermudo and Brown 1999). Thus,
the molecular characterization of integrin ligands in Drosophila is an
important step to understand integrin functions in morphogenesis.

Tenebrin was identified as a potential integrin ligand whose
expression is hormonally regulated during morphogenesis in the
beetle Tenebrio molitor. During the post-embryonic development of
holometabolous insects, each molt is induced by a pulse of 20-
hydroxyecdysone (20E), while the nature of the molt is controlled by
a sesquiterpenoid hormone, the juvenile hormone (JH). 20E directly
activates cascades of gene expression by binding to the 20E/receptor
complex and inducing expression of early genes encoding transcrip-
tion factors that coordinate the induction of large sets of secondary-
response late genes, leading to the appropriate stage and tissue-
specific biological responses (Russell et al., 1996; Thummel, 1996;
Richards, 1992; Segraves, 1994; Henrich et al., 1999). Our screen for
hormone responsive genes identified Tenebrin whose expression is
regulated by 20E and JH. Tenebrin encodes a putative ECM protein
with the RGD integrin-binding motif (Royer et al., 2004).

To analyze the role of tenebrin in development, we identified its
homolog, tenectin, inDrosophilamelanogaster anddescribed its embryonic
expressionpatterns (Fraichardet al., 2006). In this reportweused tenectin
dsRNA to generate tenectin mutants and find phenotypes in the adult
wing andmale genitalia.Drosophilawings originate from small clusters of
undifferentiated cells constituting the imaginal discs (Oberlander, 1985),
which transform from an essentially flat monolayer of epithelial cells to
mature adult structures (Fristrom and Fristrom, 1993). This striking
transformation is coordinated by pulses of 20E and requires genes
encoding transcription factors, proteases, cytoskeletal proteins, extracel-
lular matrix proteins and their receptors (Fristrom et al., 1993; Brower,
2003; Brabant et al., 1996; Prout et al., 1997; Walsh and Brown, 1998;
D'Avino and Thummel, 2000). Ecdysone regulates integrin expression in
wing morphogenesis (D'Avino and Thummel, 2000) and in the final
stages ofwingmorphogenesis an epidermal tomesenchymal transition is
regulated by the neurohormone bursicon (Kiger et al., 2007).

Looping morphogenesis of the adult male genitalia is also regulated
by hormones (Ádám et al., 2003; Wilson et al., 2006). In this process,
roles of multiple signaling pathways and an unconventional myosin
have been reported but functions of the ECM or its integrin receptors
have not (Casanova et al., 1986; Sanchez-Herrero and Crosby, 1988;
Macías et al., 2004; Wassarman et al., 2000; Abbott and Lengyel, 1991;
Grether et al., 1995; Ádám et al., 2003; Hozumi et al., 2006; Spéder et al.,
2006; Coutelis et al., 2008).

Here we report that at metamorphosis both the wing and male
genitalia require tenectin and the PS2 integrins for propermorphogenesis.
We also show that ecdysone regulates tenectin expression in wing
morphogenesis. Finally, we directly test the capacity of the PS2 integrins
and tenectin to functionally interact in cell spreading and adhesion assays.

Materials and methods

Drosophila stocks

Flies were reared on a standard cornmeal/molasses/yeast medium
at 25 °C. w1118, y1 w+; P{Act5C-GAL4}25FO1/CyO, y+ (FBst0004414),
P{GawB}elavC155 (FBst0000458),w+; P{GawB}T80/CyO (FBst0001878),
w+; P{GAL4-da.G32}UH1 (FBst0005460), y1 w67c23; P{EPgy2}
CG31422EY16369 (FBst0021205) respectively named in this paper,
WT, Act-GAL4, elav-GAL4, discs-GAL4, da-GAL4, and EY16369 were
obtained from the Bloomington stock center (stock ID is indicated in
parentheses). mysnj42, mysb13, mysb47, and mysb69 have been described
(Jannuzi et al., 2004). To obtainmysb13males itwas necessary to remove,
by recombination, extraneous lethal mutations from the original
chromosome.

Rapid amplification of cDNA ends (3′ and 5′RACE)

RNAs were extracted from staged third instar larvae using Izol-
RNA reagent (5 Prime). The 3′end of tenectin cDNA was obtained
using 3′RACE System (Invitrogen). Total RNA was reverse-transcribed
using an oligo(dT) anchor primer. Nested PCR used the anchor primer
in combination with a specific primer (tnc1-3RACE; 5′-GCAAAC-
GAGTCCACGAGCGGTCCC-3′), followed by a second specific primer
(tnc2-3RACE; 5′-GGCCGCCGTGGTGTCGGGACG-3′). The 5′end of
tenectin cDNA was obtained using 5′RACE System (Invitrogen).
Reverse transcription used total RNA and an antisense tnc internal
primer (tnc1-5RACE; 5′-TCATTGGTCATGATGCGG-3′). Homopolymeric
oligo-dC tail was added to the 3′end of the purified cDNA using terminal
deoxyribonucleotidyl transferase. A supplied sense abridged anchor
primer and an antisense tnc-specific primer (tnc2-5RACE; 5′-TGTTGG-
ATCTCCGTGTACTCC-3′) were used in a subsequent PCR. 3′ and 5′RACE
products were cloned in pGEM-T (Promega) and sequenced.

Transgenic tenectin mutants

DNA from coding sequence of the tenectin gene was amplified by
PCR and cloned into the pUAST vector as an inverted repeat as
described (Enerly et al., 2002; Kennerdell and Carthew, 2000).
Amplification used sense and antisense primers containing EcoRI
and XbaI sites and BglII and XhoI sites and were 5′-CCGGAATTCTGTT-
GAAATCGACACGAAGC-3′, 5′-GAAGATCTTACCTCAGGCTCCTCATGCT-3′,
5′-GCTCTAGATGTTGAAATCGACACGAAG-3′ and 5′-CCGCTCGAGTACCT-
CAGGCTCCTCATGCT-3′ respectively. The recombinant vector, pUAST-
tnc-IR was co-injected into w1118 embryos with the helper vector
pUChsπΔ2–3. Adult, G0, transformantswere identified by outcrossing to
w1118 and chromosomes bearing tnc-IR1a (on chromosome III), tnc-IR1b
(on chromosome II) were balanced over TM3, Sb or CyO balancer
chromosomes.

Northern blot analysis

RNA was extracted, fractionated by formaldehyde agarose gel
electrophoresis and transferred onto nylon membranes as described
(D'Avino et al., 1995). 15 µg of total RNA was loaded per lane. Filters
were hybridized, washed, and stripped as described (Karim and
Thummel, 1991). To detect tenectin transcripts, a 1 kb genomic DNA
fragment from exon 5 was PCR-amplified from genomic DNA. All
probes were labeled with 32P by random priming (Prime-a-gene,
Promega). Each blot was probed with radioactive DNA derived from
E74, β-Ftz-F1 or tenectin. For reprobing, blots were stripped by boiling
for 20–30 min in 10 mM Tris–HCI (pH 7.8), 1 mM EDTA, 1% SDS.

Imaginal discs culture

Staged third instar larvae were dissected in Grace's Insect Medium
(Gibco) and the larval organs were cultured in the same at 25 °C for 3
or 6 h. In some cases 20E (5×10−6 M) or cycloheximide (7×10−5 M)
was added to the medium. Cycloheximide treatment reduced
incorporation of 35S-methionine into proteins by more than 93% in a
parallel experiment (data not shown). After incubation, tissues were
collected and total RNA was extracted for Northern blot analysis. The



506 S. Fraichard et al. / Developmental Biology 340 (2010) 504–517
levels of transcript accumulation were determined with a Molecular
Dynamics 300 S computing densitometer.

Quantitative real time PCR

Total RNA (1 µg) from staged third instar larvae was reverse-
transcribed using the iScript cDNA Synthesis Kit (Biorad). Q-PCR
reactions were carried out on a MyIQ (Biorad) using IQ SYBR green
supermix (Biorad) using the following primer pairs; for transcript 1:
5′-AGAAGCCAAATTCCCCAGTT-3′/5′-GCACTTCATGGGTTTGTTCA-3′; for
transcript 2: 5′-AGCGGTTGTATCTTGGTGGT-3′/5′-AGAATGGTTTTGGC-
CAACTG-3′. Each reaction was performed in triplicate and the mean of
three independent biological replicates was calculated. All results were
normalized to the RP49 and Actin 5C mRNA levels and calculated using
the ΔΔCt method (Pfaffl, 2001).

Whole-mount in situ hybridization and immunohistochemistry

Whole-mount in situ hybridization was performed using a
variation of the protocol described by Tautz and Pfeifle (1989). To
prepare the tenectin in situ RNA probes, two distinct cDNA encoding
regions were PCR-amplified using the primer pairs 5′-GACAATTCCC-
GAAATCTCCA-3′/5′-CAGCATCCTGAGGAGACACA-3′ and 5′-GATAAC-
CAGGTCTCATTCTC-3′/5′-TCCGGAGAGTGGTAGGGCACG-3′ and cloned
in pGEM-T easy vector (Promega). Digoxygenin-labeled sense and
antisense riboprobes were synthesized by in vitro transcription using
T7 and SP6 polymerase, respectively, using the Roche Dig RNA
labeling system.

For immunohistochemistry, imaginal discs and larval brains were
dissected in PBS and fixed with 4% paraformaldehyde in PBS for
30 min at 0 °C followed by another 30 min incubation with 4%
paraformaldehyde and 0.1% Triton X-100 in PBS. After washing in PBS,
the imaginal discs and the larval brains were incubated overnight at
4–8 °C with primary antibodies diluted in PBS containing 5% normal
goat serum, 0.1% Triton X-100, and 0.02% sodium azide. Primary
antibodies were mouse anti-elav (1:1000; Developmental Studies
Hybridoma Center, University of Iowa) and anti-tenectin (1:4000;
Fraichard et al., 2006). Detection of the different primary antibodies
was carried out using alkaline phosphatase anti-rabbit (1:50, Sigma),
AlexaFluor594 anti-mouse (1:200, Molecular Probes), and Alexa-
Fluor488 anti-rabbit (1:50, Molecular Probes). Immunolabeled sam-
ples were analyzed on a Leica TCS-SP2AOBS spectral confocal
microscope.

Tenectin fusion proteins and purification

For the cell spreading assay, a cDNA fragment encoding 68 amino
acids (residues 232–299) that includes the RGD cell attachment
sequence was cloned into the pQE30 bacterial expression vector (QIA
Expressionist, Invitrogen). Soluble tenectin fusion protein was
purified by immobilized metal affinity chromatography with Ni-NTA
resin and dialyzed into PBS.

For the cell adhesion assays, His-tagged fusion proteins were
produced by cloning cDNA fragments encoding VWC#3 or VWC#5,
plus 10 amino acids prior to the first cysteine and 8 amino acids
following the last cysteine (residues 225–308 and 2819–2731) into
pTrcHisC vector (Xpress System, Invitrogen). Mutagenic primers were
used to create KpnI and EcoRI sites for cloning at these positions.
Standard PCR mutagenesis was used to mutate potential integrin-
binding motifs. In VWC#3 RGD was mutated to SSL. In VWC#5 RDD,
RSD and RYE were mutated to ATA, SSL, and TYI respectively. Urea
denatured fusion proteins were purified by affinity chromatography
on Ni-NTA agarose (QIAexpresss, QIAGEN). To promote proper folding
and formation of the 5 disulphide bonds in the vWFc domains, fusion
proteins were dialyzed overnight in refolding buffer (1 mM EDTA,
3.5 M urea, 10 mM beta mercaptoethanol, 20 mM Tris, pH 9.1)
followed by dialysis into PBS (Cardamone et al., 1995). Fusion protein
concentrations were determined by optical density at 280 nm and
then confirmed by polyacrylamide gel electrophoresis and staining
with Coomassie Brilliant Blue.

Cell spreading and adhesion experiments

Drosophila S2/M3 cells and the same stably expressing the
αPS2m8 or αPS2c and βPS integrin subunits (under the control of
the Drosophila HSP70 heat shock promoter) were grown in Shields
and SangM3medium supplementedwith 12.5% heat-inactivated fetal
bovine serum. The medium for the transformed cells also contained
2×10−7 M methotrexate (Bunch and Brower, 1992; Zavortink et al.,
1993).

Cell spreading assays were done as described (Jannuzi et al., 2002).
Briefly, cellswerefirst cleared of accumulatedmatrix and other surface
proteins by dispase/collagenase treatment at 37 °C. This treatment
also heat shocks the cells and induces expression of the integrin
transgenes. Cellswere allowed to spread in coated 96well plates for 3–
4 h before counting. Each well of a 96 well plate was coated with 50 µl
of ligand in PBS overnight at 4 °C. Tenectin VWC#3 fusion protein was
used at a concentration of 25 µg/ml. The wells were then washed and
non-specific sites on the plate blocked by incubationwith 20% drymilk
for 1 h at room temperature. Following washing with PBS, 100 µl of
cells [at 2–4×105 cells/ml in M3 medium+2 mg/ml bovine serum
albumin (BSA)] were added. GRGDSP and GRADSP peptides (Calbio-
chem, San Diego, CA) or purified IgG fractions of the PS integrin
function blocking antibody aBG1 (Hirano et al., 1991) and the control
PS integrin-binding antibody CF.6G11 (Brower et al., 1984) were
added to the cells just prior to their placement onto the coated wells.
The number of spread and round cells was determined by phase
microscopy using a Nikon phase-contrastmicroscope (NikonDiaphot-
TMD). For each value, over 100 cells were scored as round or flat from
each of 3 different fields and the numbers represent the average of the
3 fields.

Cell adhesion assays were done as described (Jannuzi et al., 2004).
Cells were protease treated as for the cell spreading experiments and
allowed to recover for 4 h in M3 medium+2 mg/ml BSA. 100 µl of
cells (1.5×106 cells/ml)were added to 96well platewells coatedwith
ligand and the cells were allowed to attach for 20 min. Nonadherent
cells were washed from the wells by pipetting and the remaining cells
were stained with crystal violet. Dye levels were quantified using a
Synergy2 Microplate Reader (Bio-Tek Instruments) at 562 nm. Plate
coating concentrations for tenectin ligands were 20 µg/ml. To
determine the tenectin “specific” adhesionwe subtracted non-specific
values of cells adhering to wells coated with 20 µg/ml BSA. For
adhesion assays, wells were coated with ligand for 1 h at room
temperature. Adhesion assayswere done in threewells for each ligand
and cell line displayed. The values given are themean±s.e.m. for those
3 wells.

Results

tenectin encodes a putative αPS2βPS integrin ligand

tenectin is the Drosophila melanogaster homolog of tenebrin from
the beetle Tenebrio molitor. In the beetle, tenebrin was first
characterized as a gene whose expression is developmentally
regulated by both juvenile hormones and ecdysteroids. Its sequence
and subsequent experiments in Drosophila indicated that it is a
component of the extracellular matrix (ECM) (Royer et al., 2004;
Fraichard et al., 2006). To begin the genetic analysis of tenectin's
function in development we have characterized its gene structure.
Using a combination of 5′ and 3′RACE-PCR and the isolation of
multiple cDNAs, we have determined unambiguously the gene
structure of tenectin (Fig. 1A). Two transcripts, differing by 95



Fig. 1. tenectin gene organization. (A) Schematic of the tenectin gene showing the start and stop codons and intron splice sites for the two RNAs transcribed from 2 promoters (Pr. 1
and Pr. 2). The two transcripts contain identical translated sequences. The positions of the P{EPgy2}CG31422EY16369 element and sequence used for making the inverted repeat
RNAi construct (IR1) are marked. For comparison, the flybase gene structure, with errors in intron/exon positions, is presented at the top of the figure (tnc-PA). (B) Schematic of the
deduced protein showing the signal peptide, the RGD motifs, von Willebrand Factor type-c (VWC) domains and internal repeats. (C) Sequence alignments of VWC domains in
tenectin and tenebrin. Consensus cysteines are also shown.
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nucleotides in their 5′ untranslated regions have been identified. The
two cDNA sequences are 10,376 and 10,281 bp long and contain the
same open reading frame of 2819 amino acids followed by 1461
untranslated nucleotides containing a putative polyadenylation
signal. This structure for the tenectin gene differs markedly from
that previously reported in flybase for CG13648 (http://flybase.org/
cgi-bin/gbrowse/dmel/?Search=1;name=FBgn0039257) due to
CG13648 containing incorrect predictions of transcript start sites,
intron/exon positions, and the position of the AUG start codon. Our
new description of the gene structure is confirmed by additional ESTs
recently deposited in genbank that cover part of the 5′ end of tenectin
(gb|EY199010.1|) and a region of exon 5 that was previously reported
to contain an intron (gb|EC215144.1|, gb|CO309183.1|, gb|
CO307535.1|, gb|EC214929.1|, gb|EC077781.1|).

The deduced tenectin protein (Fig. 1B) is very similar to tenebrin
(Royer et al., 2004). It has a molecular weight of ∼300 kDa, a pI of 4,
and the putative translational start site is followed by 31 hydrophobic
amino acids corresponding to a signal peptide sequence (von Heijne,
1984) with a cleavage site predicted to be located between position 31
and 32 (Nielsen et al., 1997). Royer et al. (2004) described five von
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Willebrand type-c (VWC) domains in both tenebrin and tenectin.
These motifs are involved in protein–protein interactions (Verweij
et al., 1986; Hunt and Barker, 1987) and have been found in ECM
proteins like collagens and mucins (Sangiorgi et al., 1985; Wang and
Granados, 1997), and also in signaling molecules like chordin (Sasai
et al., 1994). Closer examination of the tenectin and tenebrin
sequences reveals that they are of the vWFc_2 type (PROSITE, #
PS50184) with a consensus sequence of C-X(18–26)-C-X(2,3)-C-X-C-
X(6–14)-C-X(3,5)-C-X(1–12)-C-X(8–16)-C-C-X(2–5)-C. In addition
to 5 complete VWC domains, there is one partial domain at the end
of the protein that contains only the first 6 cysteines. As with tenebrin,
the cell attachment sequence Arg-Gly-Asp (RGD; Ruoslahti and
Pierschbacher 1987; Yamada, 1991) is found in tenectin within the
third VWC domain located in the N-terminus of the protein (Royer
et al., 2004). The 5th VWC domain contains 3 variants of the RGD
sequence (RDD, RSD and RYE) that may serve as cell attachment
motifs as well (Figs. 1B and C). The central region of the protein,
excluding the 4th VWC is characterized by the presence of numerous
internal repeats and is rich in Glu (19.2%), Thr (11.8%), and Pro
(11.9%) as was described for tenebrin (Royer et al., 2004). Though of
similar amino acid composition to tenebrin, the central region shows
only 36% similarity (21% identities) in a BLASTP 2.2.18 analysis, while
the VWC domains display a high degree of similarity (50–92%
identities). The high Ser-Thr and Pro content (20.4% and 11.2%,
respectively, for the entire protein) and the presence of the central
repeats with a high Ser-Thr and Pro content (Fig. S1) suggest that
tenectin may be a mucin-related-protein (Syed et al., 2008).
Tenectin's presence in the ECM of the CNS, foregut, hindgut, trachea
and wing (Royer et al., 2004; Fraichard et al., 2006) and the presence
of RGD motifs make it a likely ligand for the RGD-binding αPS2βPS
integrins (Bunch and Brower, 1992; Fogerty et al., 1994; Graner et al.,
1998; Subramanian et al., 2007).

Temporal profile of tenectin expression during metamorphosis

The tenectin homolog in Tenebrio molitor, tenebrin, is regulated by
juvenile hormones and ecdysteroids at each molt (Royer et al., 2004).
To ask if the expression of tenectin is similarly developmentally
regulated during Drosophila metamorphosis, Northern blots of total
mRNA from staged third instar larvae, prepupae, pupae and unstaged
adults were hybridized with a probe derived from the exon 5 shared
by the two tenectin transcripts. tenectin transcripts are not detectable
18 h prior to puparium formation and then increase in the next 8 h
and reach a peak level at 2 h after puparium formation (APF).
Transcript levels then decline to a low level by 6 h APF. Subsequently,
the level of tenectinmRNA increases to a second peak during the early
pupal period and to a third peak during the mid-pupal period (Fig. 2).
Fig. 2. Developmental profile of tenectin expression. Northern blot hybridization of RNA isola
used for hybridization was prepared from the common fifth exon. The blot was reprobed to d
ecdysone titer are shown (Richards, 1981; Handler, 1982; Warren et al., 2006). Developmen
detect rp49 mRNA (O'Connell and Rosbash, 1984) was used as a control for loading and tran
These peaks are correlated with peaks in ecdysone titers (Fig. 2)
(Richards, 1981; Handler, 1982;Warren et al., 2006). By reprobing the
Northern blot we compared the expression of tenectin with that of
previously described ecdysone responsive genes E74 and β-FTZ-F1
(Andres et al., 1993; Thummel, 1996, 1997). The early expression
pattern of tenectin is very similar to E74A, a class II early-response
gene. The second and third tenectin expression phases have some
characteristics of the class I early-response gene, E74B. Expression of
both rises at 14 h APF and again at 20 h. As β-FTZ-F1 expression is
repressed by ecdysone, its expression defines periods of low
ecdysone. β-FTZ-F1 expression, and by extension low ecdysone,
identifies the stages when tenectin is not expressed (hours APF 6–12
and 60–96). Though tenectin expression is complicated, the Northern
data on whole flies are consistent with it being an ecdysone regulated
gene in Drosophila just as tenebrin is in Tenebrio.

tenectin transcription is inducible by ecdysone

To demonstrate directly that tenectin expression is regulated by
ecdysone, we analyzed the transcription of tenectin in mass-isolated
third instar larval organs cultured for 0, 3 and 6 h in the absence or
presence of physiological levels of 20-hydroxyecdysone (20E)
(Fig. 3A). In the absence of added 20E, tenectin mRNA levels rise
dramatically at 3 and 6 h following dissection (black bars). This
increase in tenectinmRNA is likely due to the larval organs responding
to the pulse of ecdysone that took place prior to dissection (at 16 h
prior to puparium formation (see Fig. 2). The addition of 20E further
increases tenectin mRNA levels at both 3 and 6 h following dissection
(grey bars Fig. 3A) suggesting that the tenectin promoter is activated
directly by the high titer 20E pulse that triggers puparium formation.
To further address this possibility, we assessed the effect of
cycloheximide on the stimulation of tenectin expression by 20E.
Mass-isolated late third instar larval organs were cultured for 6 h with
20E alone, 20E and cycloheximide, or cycloheximide alone (Fig. 3B). In
the presence of physiological levels of 20E, tenectin mRNA was
increased twofold by 6 h. tenectin transcription was also induced by
20E in the presence of cycloheximide, although to reduced levels.
These results indicate that tenectin expression is directly inducible by
20E but that protein synthesis is required to obtain the full induction.
This would suggest that tenectin is an early-late, or a type II early,
ecdysone responsive gene (Stone and Thummel, 1993).

tenectin is widely expressed in imaginal discs and brain

If tenectin is important to the hormonally regulated developmental
processes of metamorphosis, it should be expressed in imaginal discs
at this time. To determine the spatial expression of tenectin at the
ted from staged late third instar larvae, prepupae, pupae and unstaged adults. The probe
etect an early gene (E74) and a prepupal gene (β-Ftz-F1). Previously identified peaks in
tal times are shown on top, in hours after puparium formation (APF). Hybridization to
sfer. This experiment was performed twice with very similar results (data not shown).



Fig. 3. Stimulation of tenectin transcription by 20E. (A) tenectin RNA levels are shown for
mass-isolated third instar larval imaginal discs maintained in culture without added
hormone (black bars) or treated with 5×10−6 M 20E (grey bars) for 0, 3 or 6 h.
(B) tenectinmRNA levels in larval organs cultured for 6 h in the absence (C) or presence
of 20E alone, 20E and cycloheximide (20E+Cy), or cycloheximide (Cy) alone. Total RNA
was analyzed by Northern blot hybridization and tenectin mRNA was quantified by
volume integration densitometry. Hybridization to detect rp49 mRNA (O'Connell and
Rosbash, 1984) was used as a control for loading and transfer. Error bars are s.e.m. and
asterisks indicate significant differences from control using Student's t test (Pb0.01).
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beginning of metamorphosis, tenectinmRNA and protein distributions
were determined in a variety of imaginal discs and brains dissected
from late third instar larvae. tenectin mRNA is detected in all of these
structures. In the brain, tenectin transcript is expressed in voluminous
cells of thoracic and abdominal ganglia and in small cells of the optic
lobes corresponding to the lamina region (Fig. 4A; arrowhead).
tenectin mRNA is detected in the eye-antennal (Fig. 4B), leg (Fig. 4C),
male genital (Fig. 4D) and wing (Fig. 4E) discs. In the eye disc, tenectin
mRNA is expressed in undifferentiated cells, anterior to the
morphogenetic furrow as shown by the result of a double labeling
for tenectin mRNA and Elav antibodies (Fig. 4B). In the male genital
disc, tenectin mRNA is localized to regions derived from A8 and A9
segments (Fig. 4D). In the wing disc, tenectin mRNA is strongly
expressed in the wing hinge and in the notum (Fig. 4E). Tenectin
protein is localized to the entire neuropil of the CNS (Fig. 4A) and
later, it is found at the surface of the two prepupal wing layers
(Fig. 4J). As expected for an ECM protein, tenectin's distribution is
wider than its mRNA expression (Figs. 4F–I). These results indicate
that just prior to, or during, metamorphosis tenectin is widely
expressed on most discs.
RNAi tenectin knockdown mutants

To begin a genetic analysis of tenectin's in vivo functions, in the
absence of mutations in the tenectin gene, we used RNA interference
(RNAi) to reduce tenectin expression. Transgenic lines were produced,
expressing a 1 kb hairpin loop RNA under the control of the UAS/GAL4
system. An inverted repeat sequence was constructed from the large
fifth exon of tenectin (Fig. 1A) in the region encoding the N-terminus
of the protein. Two transgenic lines, tnc-IR1a, tnc-IR1b, were chosen
that gave adult escapers with phenotypes when the tenectin-hairpin
loop genes were driven by the expression of the ubiquitous Actin 5c-
GAL4 (Act-GAL4) and daughterless-GAL4 (da-GAL4) drivers. We
confirmed by Northern blot analysis (data not shown) and by Q-
PCR that expression of IR1 in tnc-IR1a and tnc-IR1b leads to a
significant decrease of tenectin transcript. tnc-IR1a in combination
with Act-GAL4 results in a 90% reduction in both tenectin transcripts
while tnc-IR1b results in only a 50% reduction (Fig. 5).

tnc-IR1 expression results in lethality, and the level of lethality
correlates with the effectiveness of the hairpin loop genes. Tnc-IR1a
driven by Act-GAL4 is 90% (n=205) lethal while tnc-IR1b is only 35%
(n=145) lethal (Table 1). Comparable values are seen when these
hairpin loop genes are driven by the da-GAL4 driver (Table 1). The
reduced viability is due to death during several phases of develop-
ment with a large proportion of embryonic lethality (∼75% for tnc-
IR1a and ∼20% for tnc-IR1b). Adult escapers are lethargic and unable
to jump or fly, and a large number die within one or two days after
eclosion. Morphological defects of male genitalia and wings are
common.
tenectin and integrin mutants display male genitalia anomalies

When the tnc-IR1b line was crossed to Act-GAL4, 72% of the adult
male progeny showed a characteristic malrotation of genitalia
(Table 2; Fig. 6B) by up to 180°. Similar experiments with tnc-IR1b
crossed to da-GAL4 (Table 2), or tnc-IR1a crossed to Act-GAL4 (not
shown), also resulted in adult male progeny displaying malrotation of
genitalia. Correct positioning of the male genitalia takes place during
metamorphosis. At this stage, the distal part of the male reproductive
apparatus, the genital plate, undergoes a stereotyped 360° clockwise
rotation, inducing the spermiduct to loop around the gut in a
clockwise direction (Fig. 6C) (Gleichauf, 1936). Because external
malrotation does not allow discrimination between under-, hyper- or
counter-rotation of the genitalia, mutant males were dissected and
the looping of their spermiduct analyzed. All dissected males
expressing tnc-IR1 showed a clear under-rotation phenotype
(Fig. 6F). Our results demonstrate that tenectin is required for the
genital plate and spermiduct to undergo complete looping, but has no
role in directionality.

Under-rotation of the genitalia can be due to an abnormal
neuroendocrine function, due to mutation of the adhesion molecule
fasciclin2, leading to an elevated level of juvenile hormone. The
function of fasciclin2 is required in the nervous system and mutants
are rescued by ectopic expression of wild type fasciclin2 protein
promoted by the neuronal-specific elav-GAL4 driver (Ádám et al.,
2003). As tenectin is also expressed in the CNS (Fig. 4A), we asked
whether tenectin function is required in the nervous system or in the
genital disc for correct genital rotation. When expression of the tnc-
IR1 transgene is restricted to the imaginal discs using the discs-GAL4
driver, the genitalia undergo incomplete rotation (Table 2). In
contrast, and when the tnc-IR1 transgene is expressed in neuronal
cells, using the elav-GAL4 driver, the male genitalia were unaffected
(Table 2). Taken together, these results suggest that the phenotype
observed is due to abnormal tenectin expression in the genital disc and
that tenectin expression is not required in the neuroendocrine system
for correct genital rotation.



Fig. 4. tenectin is expressed in brain and imaginal discs during post-embryonic development. tenectin nucleic acid or antibody probes were hybridized to brain and discs dissected
from late third instar larvae (A–I). Brain (A) and eye-antennal disc (B) stained for tenectin transcript (green) and tenectin protein (red: A) or elav protein (red: B). Cells of the optic
lobes corresponding to the lamina region expressing tenectin transcripts are indicated (arrowhead in A). Leg (C), male genital (D) and wing (E) discs probed for tenectin transcript.
Leg (F), male genital (G) wing (H) and eye-antennal discs (I) probed for tenectin protein. Prepupal wing disc, transversal cut, stained for tenectin protein (J) showing its localization
to the apposed surfaces of the dorsal and ventral wing layers (arrowhead). Regions of the male genital discs corresponding to different abdominal segment cells (Casares et al., 1997)
are indicated (D and G). n: notum; wh: wing hinge.
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We are proposing that tenectin is a new PS2 integrin ligand and
one potential integrin mutant previously displayed malrotation of
male genitalia (Deak et al., 1982). Unfortunately, that allele was never
molecularly characterized and no longer exists. Therefore, we assayed
our collection of myospheroid (mys; βPS integrin subunit) function-
altering mutations (Jannuzi et al., 2004) for their effects on male
genitalia. Three alleles mysb47, mysb69 and mysb13 gave males with
under-rotated genitalia by up to 180° (Fig. 6C, Table 2). The frequency
of rotation defects is dependent on temperature as it is reduced when
flies are reared at 22 °C. To ask specifically if PS2 integrins are required
for this process we combined the inflated (if; αPS2 integrin subunit)
hypomorphic allele if3 (Lindsley and Grell, 1968; Brower and Jaffe,
1989; Wilcox et al., 1989), with mysb13. if3 males display no under-
rotated genitalia and mysb13 males display slightly under-rotated
genitalia at a frequency of just 2% at 22 °C. mysb13, if3 males have
under-rotated genitalia at a frequency of 100% (Table 2) and these are
typically very extreme with 61% (n=41) of them being greater than
180o under-rotated. Thus, in addition to the extracellular matrix
molecule tenectin, its proposed cell surface integrin receptor is
required for proper looping morphogenesis of male genitalia.

tenectin mutants display wing defects and interact with
integrin mutants

tenectin also has a role in wing morphogenesis. tnc-IR; Act-GAL4
transheterozygous adults exhibit multiple wing defects. Depending



Fig. 5. tenectin mRNA is reduced in flies expressing tnc-IRs. tenectin transcript levels
were quantified by real time PCR in staged third instar larvae heterozygous for tnc-IR1a
or tnc-IR1b and these levels were set as 100% for each line (tnc-IR). Levels of both
transcripts produced from the tenectin gene were measured and compared with the
levels in flies carrying one copy of tnc-IR1a (or tnc-IR1b) and one copy of the Act-GAL4
driver.

Table 2
Malrotated genitalia in tnc-IR and mys males.

Genotype Rotated genitalia

tnc-IR1b/Act-GAL4 72% (240)
tnc-IR1b/Da-GAL4 54% (218)
tnc-IR1b/discs-Gal4 48% (100)
tnc-IR1b/elav-GAL4 0% (95)
tnc-IR1b/Act-GAL4; EY16369/+ 20% (140)
mysb13 28 °Ca 10% (231)
mysb47 28 °Ca 16% (219)
mysb69 28 °Ca 20% (129)
mysb13 22 °C 2% (179)
mysb47 22 °C 0% (360)
mysb69 22 °C 1% (114)
if3 22 °C 0% (262)
mysb13, if3 22 °C 100% (41)

Number of flies examined (n) is given in parentheses.
a To avoid lethality at 28 °C, flies were raised at 18–22 °C through first or second

instar larvae and then shifted to 28 °C prior to pupal development.
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on the specific transgene used to inhibit tenectin expression the range
of defects observed included wing blisters, failure of wing expansion,
wing margin nicking, and malformed wings (Fig. 7). tenectin wing
phenotypes resemble the phenotypes associated with mutations in
integrins or their ligands (Brower and Jaffe, 1989; Brabant and
Brower, 1993; Wilcox et al., 1989; Wehrli et al., 1993; Zusman et al.,
1993; Brower et al., 1995; Bloor and Brown, 1998; Henchcliffe et al.,
1993; Martin et al., 1999; Bunch et al., 1998). To assess whether
tenectin and integrins function together to ensure proper wing
morphogenesis, we tested whether tenectin mutations could enhance
the wing blister phenotypes associated with a viable hypomorphic
βPS integrin mutation, mysnj42 (Costello and Thomas, 1981). This
allele has been used for several genetic interaction studies of cell
adhesion (Wilcox et al., 1989; Prout et al., 1997; Schöck and Perrimon,
2003). tnc-IR1b/Act-GAL4 flies do not produce wing blisters and
hemizygous mysnj42 display a low frequency of wing blisters (10%). In
mysnj42 flies, tnc-IR1b/act-Gal increased the frequency of blistering by
approximately fourfold and the overall frequency of wing defects by
sevenfold (Table 3). Taken together, these results suggest that
tenectin and integrins function in a common pathway during wing
morphogenesis.

tenectin RNAi and mysnj42 rescue ectopic tenectin expression

Overexpression of tenectin results in defects that can be rescued by
tenectin RNAi or mysnj42. An Epgy2 transposable element, EY16369,
has been found inserted between the two tenectin transcription
initiation sites (Fig. 1A; Bellen et al., 2004). This transposable element
contains GAL4-UAS sequences allowing tenectin to be overexpressed
by GAL4 drivers. Combining the ubiquitous GAL4 driver, Act-GAL4,
and EY16369 resulted in 92% lethality (Table 4). Of the adult escapers,
66% (n=33) showed wing defects characterized by an absence of
Table 1
tnc-IR induced lethality.

Genotype Lethality

tnc-IR1a/+; Act-GAL4/+ 90% (n=205)
tnc-IR1a/+; da-GAL4/+ 80% (n=180)
tnc-IR1b/Act-GAL4 35% (n=145)
tnc-IR1b/Da-GAL4 36% (n=175)
wing expansion and a large number die within one or two days after
hatching. No male genitalia defects were observed.

tnc-IR1b, which reduces tenectin expression, shows partial rescue
of the tenectin overexpression by EY16369. Tnc-IR1b/Act-GAL4;
EY16369/+ are only 23% lethal (Table 4). Also, the overexpression
by EY16369 reduced the genitalia and wing defects of Tnc-IR1b
(Tables 2 and 4). To ask if the lethality of tenectin overexpression was
due to integrin-mediated processes we combined EY16369 and
mysnj42. The 92% lethality of males expressing EY16369 is reduced to
only 25% by the presence of mysnj42 (Table 4).

Tenectin mediates cell spreading and adhesion via αPS2βPS integrins

Tenectin's RGD integrin-binding motif coupled with the pheno-
typic and genetic interaction data strongly suggest that tenectin is an
extracellular αPS2βPS integrin ligand. To confirm this, we tested the
ability of αPS2βPS to mediate spreading of S2 cells on plates coated
with recombinant tenectin. As reported for other RGD-containing
ligands (Graner et al., 1998), tenectin supports the spreading of these
cells efficiently (Fig. 8A). Cells that are not transformed with integrins
displayed no spreading (not shown). To further demonstrate the
integrin requirement for tenectin-mediated spreadingwe blocked cell
spreading with a monoclonal antibody, aBG1, that is known to block
the function of βPS integrins (Fig. 8C). That tenectin interacts with the
RGD-binding domain of integrin is supported by the ability of a
soluble competing peptide, GRGDSP, to inhibit cell spreading on
tenectin (Fig. 8C).

The recombinant tenectin VWC#3 used in the cell spreading
studies contains the integrin-binding RGD motif. VWC#5 repeat has
an RSD sequence in the same location as the RGD of VWC#3. VWC#5
also contains two other potential integrin-binding motifs, RDD and
RYE (Fig. 1C). Additional complexity in PS2 integrin–ligand interac-
tions arises due to the presence of two isoforms of the αPS2 integrin,
αPS2m8 and αPS2c, that are present in flies and display differences in
their interactions with ligands (Graner et al., 1998). To examine the
importance of VWC#3 and VWC#5 and their individual binding
motifs to both isoforms of PS2 integrins, we performed cell adhesion
assays. Untransformed cells (S2) not expressing PS2 integrins
displayed low levels of adhesion to fusion proteins containing either
VWC#3 or VWC#5 and this was increased by the expression of either
PS2 integrin isoform (Figs. 9A and B, black bars). Thus, two widely
separated VWC domains have the ability to promote cell adhesion via
both forms of PS2 integrins.

To confirm the importance of the RGD motif in VWC#3 and to
explore potential binding motifs in VWC#5, fusion proteins with
mutated motifs were tested. The RGD sequence of VWC#3 was
mutated to SSL. VWC#5 motifs were mutated as follows; RDDNATA,



Fig. 6. Rotation of genitalia and spermiduct looping in tnc-IR and mysb13 males. (A) Image of a wild type male external genitalia (posterior view with dorsal upwards), showing the
position of the anus and penis. The direction and extent of genitalia rotation is schematized by a looping arrow (bottom left). (B and C) Images of a representative tnc-IR andmysb13

males showing genitalia malrotation. (D) Schematic representation (Ádám et al., 2003) and (E) dissected wild type male abdomen showing the rightward (when viewed from the
posterior) looping of the spermiduct. (F) Dissected tnc-IR male abdomen with under-rotation phenotype. sp, spermiduct; g, gut; p, penis.
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RSDNSSL, and RYENTYI. ATA, SSL and TYI were chosen as substitutions
for the potential integrin-binding motifs due to their presence at
identical locations in VWC#4 (Fig. 1C). This makes it unlikely that the
substitutions will cause structural changes to the VWC domains.
Significantly reduced adhesiveness was found when VWC#3 RGD
motif was mutated to SSL confirming a role for the RGD motif in cell
adhesion (Fig. 9A). Mutation of the 3 potential motifs in VWC#5 gave
varied results. Two of the potential motifs, RSD and RYE, showed no
evidence for promoting adhesion, as mutating them to SSL and TYI did
not decrease adhesion. For the PS2c integrin-expressing cells,
mutations of the RSD and RYE sequences increased adhesion
(Fig. 9B) suggesting that RSD and RYE might interfere with adhesion
to tenectin by PS2c integrins. In contrast, RDDNATA reduced adhesion
by both PS2 integrin-expressing cell lines. Thus, RDD can serve as an
integrin-binding motif in VWC#5. PS2c integrin-mediated adhesion is
reduced to levels similar to untransformed S2 cells by mutations of
either the RGD or the RDD motif. For cells expressing PS2m8 the
effects of these mutations are significant but not as dramatic.

Discussion

tenectin mutants

Tenectin is a protein localized to the ECM during Drosophila
embryonic development (Fraichard et al., 2006). The presence of an
integrin-binding RGDmotif led us to speculate that tenectin could be a
new integrin ligand. To study the function of tenectin during
Drosophila development, we generated tenectin knockdowns by RNA
interference (Fortier and Belote, 2000; Kennerdell and Carthew, 2000;
Lam and Thummel, 2000). Two strains of tenectin knockdown flies
were selected that gave visible hypomorphic phenotypes. We also
characterized flies that give phenotypes due to overexpression of the
endogenous tenectin gene. Lowering mRNA level by RNAi partially
rescued the effects of tenectin overexpression and overexpression of
tenectin partially rescues tenectin knockdown phenotypes. Thus, we
are confident that our tenectin knockdown phenotypes result
specifically from reduced tenectin expression.

Tenectin is a new ligand of αPS2βPS in wing epithelia

Lethality is the most prevalent phenotype displayed by ubiquitous
reduction in tenectin expression but in this study we have focused on
adult phenotypes to ascertain tenectin's function in morphogenetic
processes of metamorphosis. The most striking adult phenotype
observed in adult flies with reduced tenectin expression is deformed
wings including blisters, nicks, lack of expansion and malformation.
These phenotypes resemble those associated with mutations in
integrin subunits (Brower and Jaffe; 1989, Wilcox et al. 1989; Zusman
et al., 1990; Brabant and Brower, 1993), their extracellular ligands
(Henchcliffe et al., 1993; Bunch et al., 1998; Martin et al., 1999), and
genes encoding intracellular proteins that interact with integrins
(Bökel and Brown, 2002; Brower, 2003 for reviews). Three lines of
evidence support tenectin functioning as a PS integrin ligand to
facilitatewingmorphogenesis. First, we find tenectin protein localized
between the dorsal and ventral epithelial cell layers in prepupal
wings. Integrins function at this location to promote adhesion of these
cell layers (see Brower, 2003 for a review). Second, a mutation ofmys,
encoding the βPS subunit, interacts genetically to increase the



Fig. 7. tnc-IRs knockdowns exhibit wing defects. Table (A) shows the different classes of wing defects exhibited by tenectin RNAi lines. Dorsal views of adult wings (B–F) either wild
type (B and E) or double heterozygous for tnc-IR and Act-GAL4 (C, D and F). Lateral views of wild type (G) or transheterozygous for tnc-IR and Act-GAL4 (H). tenectinmutants exhibit
wing defects: blistered wings (C), malformed wings (F), wing expansion failure (H), and wing margin nicking (D).

Table 4
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frequency of blisters in flies with reduced tenectin expression. Finally,
in vitro experiments demonstrate that tenectin, throughmultiple RGD
motifs, can function to promote αPS2βPS-mediated cell spreading
and adhesion. Taken together, these genetic and biochemical data
provide strong evidence that tenectin is a new ligand of αPS2βPS
integrin in the wing.

Perhaps relevant to tenectin's function in the wing, Syed et al.
(2008), using a bioinformatics approach, identified tenectin as being a
mucin-related-protein. In our analysis of the tenectin protein we also
notice mucin like repeats. Mucins are highly hydrated O-glycosylated
macromolecules that are important to the mucosal lining of
mammalian organs. In addition to serving a protective function,
various mucins interact with growth factors and cell surface receptors
to modulate signaling. It has been shown in vertebrates that mucins
also modulate cell adhesion. For example, MUC4 was found to
sterically reduce the accessibility of integrins to extracellular matrix
ligands and thereby interfere with adhesion (Hollingsworth and
Swanson, 2004; Chaturvedi et al., 2007, 2008). Interestingly, Zhang
et al. (2008) have recently shown in Drosophila that a mucin-type
glycosyltransferase, PGANT3, glycosylates another PS2 integrin ligand,
tiggrin. Moreover, mutation of the pgant3 gene results in a wing-
blistering phenotype. In the developing wing disc PGANT3 glycosy-
lates tiggrin and other matrix molecules, thus potentially modulating
cell adhesion through integrin–ECM interactions. Future biochemical
experiments will be needed to determine if tenectin is a bona fide
Table 3
Wing defects in tnc-IR and mys males.

Genotype BW WD n=

mysnj42/Y 10% 10% 104
tnc-IR1b/Act-GAL4 0% 15% 240
mysnj42/Y; tnc-IR1b/Act-GAL4 45% 68% 29

BW; blistered wings, WD; wing defects.
mucin, glycosylated by PGANT3, and whether glycosylation down- or
up-regulates its adhesive function.

tenectin expression is regulated by 20E during metamorphosis

The formation of the flat bi-layered wing from a folded imaginal
disc involves several steps of apposition and separation of the ventral
and dorsal epidermal sheets followed ultimately by an epithelial to
mesenchymal transition and migration of the cells out of the wing
(Waddington, 1940; Johnson and Milner, 1987; Fristrom et al., 1993;
Brabant et al., 1996; Kiger et al., 2007). The resulting wing is
predominantly two layers of cuticle cemented together by ECM. These
studies point out the importance of regulating the adhesive properties
of the wing epidermal cells bymodulating the activity of integrins and
their intracellular and extracellular binding partners. One mode of
regulation is at the transcriptional level and several studies have
demonstrated that the hormone 20E plays an important role in
regulating at least some of these morphogenetic events including
integrin expression levels (Fristrom et al., 1993; D'Avino and
Thummel, 2000). Consistent with tenectin's role in wing morphogen-
esis we find that during metamorphosis tenectin mRNA expression
correlates with the ecdysone titer profile. In vitro, imaginal disc
Rescue of tenectin overexpression.

Genotype Lethality WD

+/Act-GAL4; EY16369/+ 92% (437) 66% (33)
tnc-IR1b/Act-GAL4 35% (145) 10% (462)
tnc-IR1b/Act-GAL4; EY16369/+ 23% (368) 6% (283)
mysnj42/Y; Act-GAL4/+ 24% (156) ND
mysnj42/Y; Act-GAL4/+; EY16369/+ 25% (201) ND

WD; wing defects, ND; not determined.
Number of flies examined (n=) is given in parentheses.



Fig. 8. Tenectin supports PS2 integrin-mediated cell spreading. (A) Phase-contrast
microscopy of cells transformed to express PS2m8 integrins cells spreading on tenectin
VWC#3. (B) In the absence of ligand the cells remain round and unspread. The parental
S2/M3 cells, which do not express PS2 integrins, show no spreading on tenectin
VWC#3 (not shown). (C) The anti-βPS integrin function blocking antibody aBG1
inhibits cells spreading on tenectin VWC#3while the control anti-βPS integrin CF.6G11
has no effect. Both antibodies were purified and used at a concentration of 15 µg/ml.
1.5 mg/ml of an integrin inhibitory peptide GRGDSP (RGD) inhibits cell spreading on
tenectin VWC#3 while the same concentration of a control peptide GRADSP (RAD) has
no effect.

Fig. 9. Tenectin VFC#3 andVFC#5 support PS2-mediated cell adhesion. Untransformed
(S2) cells or the same expressing PS2m8 (αPS2m8βPS) and PS2c (αPS2cβPS) integrins
were allowed to adhere to tenectin VWC#3 (A) or VFC#5 (B). The tenectin fusion
proteins used were either wild type (WT) or the samewhose potential integrin-binding
motifs had been mutated; RGD or RSDNSSL (SSL in A and B respectively); RDDNATA
(ATA); RYENTYI (TYI). Adhesion was defined by the number of cells remaining attached
after washing, 20 min after settling on the plate. The number of cells was determined by
staining the cells with crystal violet and dye levels were determined using a microplate
reader. To obtain tenectin dependent adhesion values, background adhesion observed
in wells coated with BSA was subtracted. Three wells were scored for each ligand and
the values are the mean±s.e.m. of these three values. Differences between S2 cells and
PS2m8 cells on VWF#3, between both PS2m8 cells and PS2c cells on VWF#3 wild type
versus RGDNSSL, and PS2c cells on wild type VWF#5 versus RDDNATA were significant
(Pb0.05). Consistent, but less dramatic, were the differences between PS2c cells and S2
cells on VWF#3 (P=0.06), PS2c cells and S2 cells on VWF#5 (P=0.10), PS2m8 cells on
wild type VWF#5 versus RDDNATA (P=0.09), PS2m8 cells and S2 cells on VWF#5
(P=0.13).
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cultures demonstrate that tenectin is a 20E target gene. The
comparison of the developmental tenectin expression profile with
those of early (E74A, E74B) and prepupal (β-Ftz-F1) genes defined
more precisely the temporal expression pattern of tenectin. E74B is a
class I transcript, induced in mid-third instar larvae in response to a
low concentration of 20E and repressed at higher ecdysone
concentrations. In contrast, the class II transcripts, including E74A,
are induced by high 20E concentration and their expressions are
unaffected by higher 20E concentrations (Karim and Thummel, 1992).
The temporal profile of tenectin is similar to those of E74A, with a
slight delay in the peak levels of tenectin mRNA accumulation. This
temporal delay in tenectin is similar to the delay observed in the early-
late gene profiles. The early-late genes appear to share properties with
both the early genes and late genes (Stone and Thummel, 1993).
Early-late genes respond directly to ecdysone even in the presence of
protein synthesis inhibitors like cycloheximide but unlike early genes
their full induction requires protein synthesis due to a requirement for
other ecdysone induced gene products. We propose that tenectin is an
early-late gene as its expression in cultured larval organs was induced
by 20E in the presence of cycloheximide but maximal induction
required protein synthesis. In the wing, we propose that 20E also
regulates morphogenesis by regulation of tenectin mRNA levels,
suggesting that ecdysone controls wing morphogenesis and cell
adhesion not only by regulating integrin expression but also their
ECM ligand expression. Just as E74A and E75B do not display identical
expression profiles, the tenectin expression pattern is complicated
and likely involves additional modes of regulation that will need to be
elucidated.
Tenectin and PS2 integrins are required for male genital disc rotation

Tenectin knockdown resulted in reduced rotation ofmale genitalia.
Looping morphogenesis of the male genitalia occurs during the pupal
stage as the genital disc undergoes a 360o dextral (clockwise) looping
around the hindgut (Gleichauf, 1936). A variety of genes expressed in
larval posterior abdominal segments A8, A9 and A10 have been
identified that affect male genital rotation. These include genes
encoding a signaling protein (Pvf1), a transcription factor (Taf1,
formerly TAF250), and a pro-apoptosis gene (hid) (Casanova et al.,
1986; Sanchez-Herrero and Crosby, 1988; Macías et al., 2004;
Wassarman et al., 2000; Abbott and Lengyel, 1991; Grether et al.,
1995). One adhesion molecule, fasciclin-2, was genetically demon-
strated to be involved in genital rotation. However, the effect was
indirect as Fas2spin mutant alters the synapses connecting neurose-
cretory cells to the organ that produces juvenile hormone (the corpora
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allata), and genitalia under-rotation is due to an excess of juvenile
hormone (Ádám et al., 2003). These authors have demonstrated that
the effects on genitalia rotation are mediated by an excess of juvenile
hormone, a retinoic-like molecule, establishing a parallel between
vertebrate and invertebrate left right asymmetry, since the retinoic
acid is involved in the control of asymmetry in vertebrates (Spéder
et al., 2007 for review). InDrosophila, excessive juvenile hormonemay
result in the attenuation of ecdysone regulated processes required for
male genital rotation as mutations in Broad-Complex, an ecdysone
early-response gene, also result in malrotation of male genitalia
(Wilson et al., 2006). Mutations of the unconventional myosin 31DF
gene (Myo31DF) have been shown to uniquely reverse the looping
direction of genitalia (Hozumi et al., 2006; Spéder et al., 2006).
Knockdown of tenectin in imaginal discs, but not in neuronal cells,
resulted in incomplete rotation of the genitalia but not in direction of
looping. Thus, we have for the first time identified a Drosophila ECM
component required for genital looping morphogenesis.

The tenectin mutant phenotype in male genitalia prompted us to
re-examine integrin hypomorphic mutations for a similar phenotype.
Males bearing 3 different hypomorphic mutations in the gene
encoding the βPS integrin subunit,mysb13,mysb47, andmysb69 (Jannuzi
et al., 2004) displayed under-rotated male genitalia when raised at
elevated temperatures. Deak et al. (1982) also described a mutation
that was likely in myospheroid that produced under-rotated male
genitalia when larvae and pupae were raised at elevated tempera-
tures. Combining mysb13 with the if3 mutation in the gene encoding
the αPS2 integrin subunit caused a dramatic increase in the
expressivity of the rotated genitalia phenotype. Therefore, tenectin's
proposed cell surface adhesion receptor is also required for the
execution of looping morphogenesis. In addition to adhesion, the PS
integrins function in the regulation of intracellular signaling pathways
and specifically the JNK pathway (Lee et al., 2003; James et al., 2007).
JNK signaling pathway has also been suggested to function in
apoptosis required for rotation of male genitalia (Macías et al.,
2004). Thus, tenectin and PS integrin function in looping morpho-
genesis could be at the level of adhesion and/or signaling. Additional
experiments are required to distinguish between these two models.

Tenectin has multiple integrin-binding motifs

Tenectin's RGD sequence in the 3rd VWC domain is conserved in
the beetle homolog, tenebrin, and supported PS2 integrin-mediated
cell spreading. This result is expected given that RGD is a well known
integrin-bindingmotif of the PS2 integrins. More novel is the presence
in the identical location in the 5th VWC of the sequence RSD and
elsewhere in this 5th repeat the occurrence of RDD and RYE
sequences. The biological importance of the 5th VWC domain is
supported by the extraordinary high degree of conservation in this
domain between Drosophila tenectin and Tenebrio tenebrin. The two
proteins share 92% (62/67) sequence identity in the 5th VWC repeat
and this includes the RDD, RSD, and RYE sequences. To date, this
domain is found conserved, with greater than 84% sequence identity,
inmosquitoes, honey bees, crickets, wasps, the beetle, and aphids (not
shown). While RGD is the best studied integrin-binding motif,
experimental evidence is accumulating that variants of this sequence
are also important. These variants include KQAGD, KGD, RSD, WGD,
MVD and RYD found in fibrinogen, thrombospondin, tenascin-W,
CD40, snake venom disintegrins, viral coat proteins, and ligand
mimetic monoclonal antibodies (Springer et al., 2008; Subramanian
et al., 2007; Meloty-Kapella et al., 2008; Prasad et al., 2003; Juárez
et al., 2008; Van de Walle et al, 2008; Taub et al., 1989; Tomiyama
et al., 1992; Hamidpour et al., 2006). Our cell adhesion assays
demonstrate that VWC#5 as well as VWC#3 promotes cell adhesion
mediated by PS2 integrins. Mutations of the individual RGD-variant
motifs in VWF#5 suggest that they have differing effects on different
integrins. The RDD is required for strong adhesion by both the PS2m8
and PS2c integrin isoforms as mutation of this sequence reduced
adhesion of cells expressing either integrin. To our knowledge, this is
the first time the RDD tripeptide in an ECM protein has been found to
function in integrin-mediated adhesion. It also appears that the RSD
and RYE motifs may be inhibitory for adhesion mediated by the PS2c
isoform as their mutations increased cell adhesion. With multiple
integrin-binding domains, both positive and inhibitory, tenectin
potentially functions in multiple processes in development and
specifically in metamorphosis.

Future experiments will be required to address the many
unanswered issues regarding tenectin–PS integrin interactions in-
cluding: which PS integrin(s) interact with tenectin in vivo; how the
function of the motifs may be affected by the context of other ECM
proteins; and how other regions of tenectin andmodifications, such as
glycosylation or cleavage, influence the functionality of the putative
integrin-binding motifs. The presence of multiple motifs also raises
the possibility that tenectin can bridge integrins on neighboring cells,
or on the surface of the same cell. Finally, the different motifs may be
needed to bind different integrins at different times in development
and this binding of different motifs may have different adhesive and/
or signaling consequences.

Acknowledgments

We thank Alban Hourdry for assistance with the determination of
the gene structure of tenectin. Danny Brower made comments and
suggestions on early versions of the manuscript. We thank Marc
Brabant for the original observation of rotated male genitalia in
combinations of integrin mutants. We thank Developmental Studies
Hybridoma Center (University of Iowa) for providing antibodies. This
work was supported in part by the Centre National de la Recherche
Scientifique (CNRS), the University of Burgundy and grants from the
Frenchministry of Research and Education and from the FRM (Medical
Research Foundation), the ARC (Cancer Research Association) and the
NIH (R01GM42474).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ydbio.2010.02.008.

References

Abbott, M.K., Lengyel, J.A., 1991. Embryonic head involution and rotation of male
terminalia require the Drosophila locus head involution defective. Genetics 129,
783–789.

Ádám, G., Perrimon, N., Noselli, S., 2003. The retinoic-like juvenile hormone controls the
looping of left–right asymmetric organs in Drosophila. Development 130,
2397–2406.

Andres, A.J., Fletcher, J.C., Karim, F.D., Thummel, C.S., 1993. Molecular analysis of the
initiation of insect metamorphosis: a comparative study of Drosophila ecdysteroid-
regulated transcription. Dev. Biol. 160, 388–404.

Bellen, H.J., Levis, R.W., Liao, G., He, Y., Carlson, J.W., Tsang, G., Evans-Holm, M.,
Hiesinger, P.R., Schulze, K.L., Rubin, G.M., Hoskins, R.A., Spradling, A.C., 2004. The
BDGP gene disruption project: single transposon insertions associated with 40% of
Drosophila genes. Genetics 167, 761–781.

Bloor, J.W., Brown, N.H., 1998. Genetic analysis of the Drosophila alphaPS2 integrin
subunit reveals discrete adhesive, morphogenetic and sarcomeric functions.
Genetics 148, 1127–1142.

Bökel, C., Brown, N.H., 2002. Integrins in development: moving on, responding to, and
sticking to the extracellular matrix. Dev. Cell 3, 311–321.

Borchiellini, C., Coulon, J., Le Parco, Y., 1996. The function of type IV collagen during
Drosophila muscle development. Mech. Dev. 58, 179–191.

Brabant, M.C., Brower, D.L., 1993. PS2 integrin requirements in Drosophila embryo and
wing morphogenesis. Dev. Biol. 157, 49–59.

Brabant, M.C., Fristrom, D., Bunch, T.A., Brower, D.L., 1996. Distinct spatial and temporal
functions for PS integrins during Drosophila wing morphogenesis. Development
122, 3307–3317.

Brower, D.L., 2003. Platelets with wings: the maturation of Drosophila integrin biology.
Curr. Opin. Cell Biol. 15, 607–613.

Brower, D.L., Bunch, T.A., Mukai, L., Adamson, T.E., Wehrli, M., Lam, S., Friedlander, E.,
Roote, C.E., Zusman, S., 1995. Nonequivalent requirements for PS1 and PS2 integrin

http://dx.doi.org/10.1016/j.ydbio.2010.02.008


516 S. Fraichard et al. / Developmental Biology 340 (2010) 504–517
at cell attachments in Drosophila: genetic analysis of the alpha PS1 integrin subunit.
Development 121, 1311–1320.

Brower, D.L., Jaffe, S.M., 1989. Requirement for integrins during Drosophila wing
development. Nature 342, 285–287.

Brower, D.L., Wilcox, M., Piovant, M., Smith, R.J., Reger, L.A., 1984. Related cell-surface
antigens expressed with positional specificity in Drosophila imaginal discs. Proc.
Natl. Acad. Sci. U. S. A. 81, 7485–7489.

Brown, N.H., 1994. Null mutations in the alpha PS2 and beta PS integrin subunit genes
have distinct phenotypes. Development 120, 1221–1231.

Brown, N.H., Gregory, S.L., Martin-Bermudo, M.D., 2000. Integrins as mediators of
morphogenesis in Drosophila. Dev. Biol. 223, 1–16.

Bunch, T.A., Brower, D.L., 1992. Drosophila PS2 integrin mediates RGD-dependent cell–
matrix interactions. Development 116, 239–247.

Bunch, T.A., Graner, M.W., Fessler, L.I., Fessler, J.H., Schneider, K.D., Kerschen, A., Choy, L.P.,
Burgess, B.W., Brower, D.L., 1998. The PS2 integrin ligand tiggrin is required for proper
muscle function in Drosophila. Development 125, 1679–1689.

Cardamone, M., Puri, N.K., Brandon, M.R., 1995. Comparing the refolding and
reoxidation of recombinant porcine growth hormone from a urea denatured
state and from Escherichia coli inclusion bodies. Biochemistry 34, 5773–5794.

Casanova, J., Sánchez-Herrero, E., Morata, G., 1986. Identification and characterization of
a parasegment specific regulatory element of the abdominal-B gene of Drosophila.
Cell 47, 627–636.

Casares, F., Sánchez, L., Guerrero, I., Sánchez-Herrero, E., 1997. The geneital disc of
Drosophila melanogaster. I. Segmental and compartmental organization. Dev. Genes
Evol. 207, 216–228.

Chaturvedi, P., Singh, A.P., Batra, S.K., 2008. Structure, evolution, and biology of the
MUC4 mucin. FASEB J. 22, 966–981.

Chaturvedi, P., Singh, A.P., Moniaux, N., Senapati, S., Chakraborty, S., Meza, J.L., Batra, S.K.,
2007. MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and
invasive properties and interferes with its interaction to extracellular matrix proteins.
Mol. Cancer Res. 5, 309–320.

Costello, W.J., Thomas, J.B., 1981. Development of thoracic muscles in muscle-specific
mutant and normal Drosophila melanogaster. Neuroscience 7, 543 Abstr.

Coutelis, J.B., Petzoldt, A.G., Spéder, P., Suzanne, M., Noselli, S., 2008. Left–right
asymmetry in Drosophila. Semin. Cell Dev. Biol. 19, 252–262.

D'Avino, P.P., Crispi, S., Polito, L.C., Furia, M., 1995. The role of the BR-C locus on the
expression of genes located at the ecdysone-regulated 3C puff of Drosophila
melanogaster. Mech. Dev. 49, 161–171.

D'Avino, P.P., Thummel, C.S., 2000. The ecdysone regulatory pathway controls wing
morphogenesis and integrin expression during Drosophila metamorphosis. Dev.
Biol. 220, 211–224.

Danen, E.H., Sonnenberg, A., 2003. Integrins in regulation of tissue development and
function. J. Pathol. 201, 632–641.

Deak, I.I., Bellamy, P.R., Bienz, M., Dubuis, Y., Fenner, E., Gollin, M., Rähmi, A., Ramp, T.,
Reinhardt, C.A., Cotton, B., 1982. Mutations affecting the indirect flight muscles of
Drosophila melanogaster. J. Embryol. Exp. Morphol. 69, 61–81.

Enerly, E., Larsson, J., Lambertsson, A., 2002. Reverse genetics in Drosophila: from
sequence to phenotype using UAS-RNAi transgenic flies. Genesis 34, 152–155.

Fogerty, F.J., Fessler, L.I., Bunch, T.A., Yaron, Y., Parker, C.G., Nelson, R.E., Brower, D.L.,
Gullberg, D., Fessler, J.H., 1994. Tiggrin, a novel Drosophila extracellular matrix
protein that functions as a ligand for Drosophila alpha PS2 beta PS integrins.
Development 120, 1747–1758.

Fortier, E., Belote, J.M., 2000. Temperature-dependent gene silencing by an expressed
inverted repeat in Drosophila. Genesis 26, 240–244.

Fraichard, S., Bouge, A.L., Chauvel, I., Bouhin, H., 2006. Tenectin, a novel extracellular
matrix protein expressed during Drosophila melanogaster embryonic development.
Gene Expr. Patterns 6, 772–776.

Fristrom, D.R., Fristrom, J.W., 1993. The metamorphic development of the adult
epidermis. In: Bate, M., Martinez Arias, A. (Eds.), The Development of Drosophila
melanogaster, Vol. 2. Cold Spring Harbor Laboratory Press, New York, pp. 843–897.

Fristrom, D., Wilcox, M., Fristrom, J., 1993. The distribution of PS integrins, laminin A
and F-actin during key stages in Drosophila wing development. Development 117,
509–523.

Gleichauf, R., 1936. Anatomie und variabilität des geschlechtapparates von Drosophila
melanogaster (Meigen). Z. Wiss. Zool. 148, 1–66.

Graner, M.W., Bunch, T.A., Baumgartner, S., Kerschen, A., Brower, D.L., 1998. Splice
variants of the Drosophila PS2 integrins differentially interact with RGD-containing
fragments of the extracellular proteins tiggrin, ten-m, and D-laminin 2. J. Biol.
Chem. 273, 18235–18241.

Grether, M.E., Abrams, J.M., Agapite, J., White, K., Steller, H., 1995. The head involution
defective gene of Drosophila melanogaster functions in programmed cell death.
Genes Dev. 9, 1694–1708.

Grotewiel, M.S., Beck, C.D., Wu, K.H., Zhu, X.R., Davis, R.L., 1998. Integrin-mediated
short-term memory in Drosophila. Nature 391, 455–460.

Hamidpour, M., Behrendt, M., Griffiths, B., Partridge, L., Lindsey, N., 2006. The isolation
and characterisation of antiplatelet antibodies. Eur. J. Haematol. 76, 331–338.

Handler, A.M., 1982. Ecdysteroid titers during pupal and adult development in
Drosophila melanogaster. Dev. Biol. 93, 73–82.

Henchcliffe, C., García-Alonso, L., Tang, J., Goodman, C.S., 1993. Genetic analysis of lamininA
reveals diverse functions during morphogenesis in Drosophila. Development 118,
325–337.

Henrich, V.C., Rybczynski, R., Gilbert, L.I., 1999. Peptide hormones, steroid hormones, and
puffs: mechanisms and models in insect development. Vitam. Horm. 55, 73–125.

Hirano, Y., Kando, Y., Hayashi, T., Goto, K., Nakajima, A., 1991. Synthesis and cell
attachment activity of bioactive oligopeptides: RGD, RGDS, RGDV, and RGDT.
J. Biomed. Mater. Res. 25, 1523–1534.
Hollingsworth, M.A., Swanson, B.J., 2004. Mucins in cancer: protection and control of
the cell surface. Nat. Rev. Cancer 4, 45–60.

Hozumi, S., Maeda, R., Taniguchi, K., Kanai, M., Shirakabe, S., Sasamura, T., Spéder, P.,
Noselli, S., Aigaki, T., Murakami, R., Matsuno, K., 2006. An unconventional myosin in
Drosophila reverses the default handedness in visceral organs. Nature 440, 798–802.

Hunt, L.T., Barker, W.C., 1987. von Willebrand factor shares a distinctive cysteine-rich
domain with thrombospondin and procollagen. Biochem. Biophys. Res. Commun.
144, 876–882.

Hynes, R.O., 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110,
673–687.

James, B.P., Bunch, T.A., Krishnamoorthy, S., Perkins, L.A., Brower, D.L., 2007. Nuclear
localization of the ERK MAP kinase mediated by Drosophila alphaPS2betaPS
integrin and importin-7. Mol. Biol. Cell 18, 4190–4199.

Jannuzi, A.L., Bunch, T.A., Brabant, M.C., Miller, S.W., Mukai, L., Zavortink, M., Brower, D.
L., 2002. Disruption of C-terminal cytoplasmic domain of betaPS integrin subunit
has dominant negative properties in developing Drosophila. Mol. Biol. Cell 13,
1352–1365.

Jannuzi, A.L., Bunch, T.A., West, R.F., Brower, D.L., 2004. Identification of integrin beta
subunit mutations that alter heterodimer function in situ. Mol. Biol. Cell 15,
3829–3840.

Johnson, S.A., Milner, M.J., 1987. The final stages of wing development in Drosophila
melanogaster. Tissue Cell 19, 505–513.

Juárez, P., Comas, I., González-Candelas, F., Calvete, J.J., 2008. Evolution of snake venom
disintegrins by positive Darwinian selection. Mol. Biol. Evol. 25, 2391–2407.

Karim, F.D., Thummel, C.S., 1991. Ecdysone coordinates the timing and amounts of E74A
and E74B transcription in Drosophila. Genes Dev. 5, 1067–1079.

Karim, F.D., Thummel, C.S., 1992. Temporal coordination of regulatory gene expression
by the steroid hormone ecdysone. EMBO J. 11, 4083–4093.

Kennerdell, J.R., Carthew, R.W., 2000. Heritable gene silencing in Drosophila using
double-stranded RNA. Nat. Biotechnol. 18, 896–898.

Kiger Jr., J.A., Natzle, J.E., Kimbrell, D.A., Paddy, M.R., Kleinhesselink, K., Green, M.M.,
2007. Tissue remodeling during maturation of the Drosophila wing. Dev. Biol. 301,
178–191.

Lam, G., Thummel, C.S., 2000. Inducible expression of double-stranded RNA directs
specific genetic interference in Drosophila. Curr. Biol. 10, 957–963.

Lee, S.B., Cho, K.S., Kim, E., Chung, J., 2003. blistery encodes Drosophila tensin protein and
interacts with integrin and the JNK signaling pathway during wing development.
Development 130, 4001–4010.

Leptin, M., Aebersold, R., Wilcox, M., 1987. Drosophila position-specific antigens
resemble the vertebrate fibronectin-receptor family. EMBO J. 6, 1037–1043.

Lindsley, D.L., Grell, E.H., 1968. Genetic Variations of Drosophila melanogaster. Carnegie
Inst., Wash.. Publ. No. 627.

Macías, A., Romero, N.M., Martín, F., Suárez, L., Rosa, A.L., Morata, G., 2004. PVF1/PVR
signaling and apoptosis promotes the rotation and dorsal closure of the Drosophila
male terminalia. Int. J. Dev. Biol. 48, 1087–1094.

Martin, D., Zusman, S., Li, X., Williams, E.L., Khare, N., DaRocha, S., Chiquet-Ehrismann,
R., Baumgartner, S., 1999. wing blister, a new Drosophila laminin alpha chain
required for cell adhesion and migration during embryonic and imaginal
development. J. Cell Biol. 145, 191–201.

Martin-Bermudo, M.D., Brown, N.H., 1999. Uncoupling integrin adhesion and signaling:
the betaPS cytoplasmic domain is sufficient to regulate gene expression in the
Drosophila embryo. Genes Dev. 13, 729–739.

Martin-Bermudo, M.D., Dunin-Borkowski, O.M., Brown, N.H., 1997. Specificity of PS
integrin function during embryogenesis resides in the alpha subunit extracellular
domain. EMBO J. 16, 4184–4193.

Meloty-Kapella, C.V., Degen, M., Chiquet-Ehrismann, R., Tucker, R.P., 2008. Effects of
tenascin-W on osteoblasts in vitro. Cell Tissue Res. 334, 445–455.

Nielsen,H., Engelbrecht, J., Brunak, S., vonHeijne,G., 1997. Identificationof prokaryotic and
eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6.

O'Connell, P.O., Rosbash, M., 1984. Sequence, structure, and codon preference of the
Drosophila ribosomal protein 49 gene. Nucleic Acids Res. 12, 5495–5513.

Oberlander, H., 1985. The imaginal discs. In: Kerkut, G.A., Gilbert, L.I. (Eds.),
Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 2. Cold
Spring Harbor Laboratory Press, Oxford, pp. 151–182.

Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time
RT-PCR. Nucleic Acids Res. 29, e45.

Prasad, K.S., Andre, P., He, M., Bao, M., Manganello, J., Phillips, D.R., 2003. Soluble CD40
ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet
activation by outside-in signaling. Proc. Natl. Acad. Sci. U. S. A. 100, 12367–12371.

Prout, M., Damania, Z., Soong, J., Fristrom, D., Fristrom, J.W., 1997. Autosomal mutations
affecting adhesion betweenwing surfaces in Drosophila melanogaster. Genetics 146,
275–285.

Richards, G., 1981. The radioimmune assay of ecdysteroid titres in Drosophila
melanogaster. Mol. Cell. Endocrinol. 21, 181–197.

Richards, G., 1992. Switching partners? Curr. Biol. 2, 657–659.
Royer, V., Hourdry, A., Fraichard, S., Bouhin, H., 2004. Characterization of a putative

extracellular matrix protein from the beetle Tenebrio molitor: hormonal regulation
during metamorphosis. Dev. Genes Evol. 214, 115–121.

Ruoslahti, E., Pierschbacher, M.D., 1987. New perspectives in cell adhesion: RGD and
integrins. Science 238, 491–497.

Russell, S.R., Heimbeck, G., Goddard, C.M., Carpenter, A.T., Ashburner, M., 1996. The
Drosophila Eip78C gene is not vital but has a role in regulating chromosome puffs.
Genetics 144, 159–170.

Sanchez-Herrero, E., Crosby, M.A., 1988. The Abdominal-B gene of Drosophila
melanogaster: overlapping transcripts exhibit two different spatial distributions.
EMBO J. 7, 2163–2173.



517S. Fraichard et al. / Developmental Biology 340 (2010) 504–517
Sangiorgi, F.O., Benson-Chanda, V., de Wet, W.J., Sobel, M.E., Ramirez, F., 1985. Analysis
of cDNA and genomic clones coding for the pro alpha 1 chain of calf type II collagen.
Nucleic Acids Res. 13, 2815–2826.

Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L.K., De Robertis, E.M., 1994. Xenopus
chordin: a novel dorsalizing factor activated by organizer-specific homeobox
genes. Cell 79, 779–790.

Schöck, F., Perrimon, N., 2003. Retraction of the Drosophila germ band requires cell–
matrix interaction. Genes Dev. 17, 597–602.

Segraves, W.A., 1994. Steroid receptors and orphan receptors in Drosophila develop-
ment. Semin. Cell Biol. 5, 105–113.

Spéder, P., Ádám, G., Noselli, S., 2006. Type ID unconventional myosin controls left–
right asymmetry in Drosophila. Nature 440, 803–807.

Spéder, P., Petzoldt, A., Suzanne, M., Noselli, S., 2007. Strategies to establish left/right
asymmetry in vertebrates and invertebrates. Curr. Opin. Genet. Dev. 17, 351–358.

Springer, T.A., Zhu, J., Xiao, T., 2008. Structural basis for distinctive recognitionoffibrinogen
gammaC peptide by the platelet integrin alphaIIbbeta3. J. Cell Biol. 182, 791–800.

Stark, K.A., Yee, G.H., Roote, C.E., Williams, E.L., Zusman, S., Hynes, R.O., 1997. A novel
alpha integrin subunit associates with betaPS and functions in tissue morphogen-
esis andmovement during Drosophila development. Development 124, 4583–4594.

Stone, B.L., Thummel, C.S., 1993. The Drosophila 78C early late puff contains E78, an
ecdysone-inducible gene that encodes a novel member of the nuclear hormone
receptor superfamily. Cell 75, 307–320.

Subramanian, A., Wayburn, B., Bunch, T., Volk, T., 2007. Thrombospondin-mediated
adhesion is essential for the formation of the myotendinous junction in Drosophila.
Development 134, 1269–1278.

Syed, Z.A., Härd, T., Uv, A., van Dijk-Härd, I.F., 2008. A potential role for Drosophila
mucins in development and physiology. PLoS ONE 3, e3041.

Takada, Y., Ye, X., Simon, S., 2007. The integrins. Genome Biol. 8, 215.
Taub, R., Gould, R.J., Garsky, V.M., Ciccarone, T.M., Hoxie, J., Friedman, P.A., Shattil, S.J.,

1989. A monoclonal antibody against the platelet fibrinogen receptor contains a
sequence that mimics a receptor recognition domain in fibrinogen. J. Biol. Chem.
264, 259–265.

Tautz, D., Pfeifle, C., 1989. A non-radioactive in situ hybridization method for the
localization of specific RNAs in Drosophila embryos reveals translational control of
the segmentation gene hunchback. Chromosoma 98, 81–85.

Thummel, C.S., 1996. Files on steroids—Drosophilametamorphosis and the mechanisms
of steroid hormone action. Trends Genet. 12, 306–310.

Thummel, C.S., 1997. Dueling orphans—interacting nuclear receptors coordinate
Drosophila metamorphosis. Bioessays 19, 669–672.

Tomiyama, Y., Brojer, E., Ruggeri, Z.M., Shattil, S.J., Smiltneck, J., Gorski, J., Kumar, A.,
Kieber-Emmons, T., Kunicki, T.J., 1992. Amolecular model of RGD ligands. Antibody
D gene segments that direct specificity for the integrin alpha IIb beta 3. J. Biol.
Chem. 267, 18085–18092.
Van de Walle, G.R., Peters, S.T., VanderVen, B.C., O'Callaghan, D.J., Osterrieder, N., 2008.
Equine herpesvirus 1 entry via endocytosis is facilitated by alphaV integrins and an
RSD motif in glycoprotein D. J. Virol. 82, 11859–11868.

Verweij, C.L., Diergaarde, P.J., Hart, M., Pannekoek, H., 1986. Full-length vonWillebrand
factor (vWF) cDNA encodes a highly repetitive protein considerably larger than the
mature vWF subunit. EMBO J. 5, 1839–1847.

von Heijne, G., 1984. How signal sequences maintain cleavage specificity. J. Mol. Biol.
173, 243–251.

Waddington, C.H., 1940. The genetic control of wing development in Drosophila.
J. Genet. 41, 75–139.

Walsh, E.P., Brown, N.H., 1998. A screen to identify Drosophila genes required for
integrin-mediated adhesion. Genetics 150, 791–805.

Wang, P., Granados, R.R., 1997. Molecular cloning and sequencing of a novel
invertebrate intestinal mucin cDNA. J. Biol. Chem. 272, 16663–16669.

Warren, J.T., Yerushalmi, Y., Shimell, M.J., O'Connor, M.B., Restifo, L.L., Gilbert, L.I., 2006.
Discrete pulses of molting hormone, 20-hydroxyecdysone, during late larval
development of Drosophila melanogaster: correlations with changes in gene
activity. Dev. Dyn. 235, 315–326.

Wassarman, D.A., Aoyagi, N., Pile, L.A., Schlag, E.M., 2000. TAF250 is required for
multiple developmental events in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 97,
1154–1159.

Wehrli, M., DiAntonio, A., Fearnley, I.M., Smith, R.J., Wilcox, M., 1993. Cloning and
characterization of alpha PS1, a novel Drosophila melanogaster integrin. Mech. Dev.
43, 21–36.

Wilcox, M., Brower, D.L., Smith, R.J., 1981. A position-specific cell surface antigen in the
Drosophila wing imaginal disc. Cell 25, 159–164.

Wilcox, M., DiAntonio, A., Leptin, M., 1989. The function of PS integrins in Drosophila
wing morphogenesis. Development 107, 891–897.

Wilson, T.G., Yerushalmi, Y., Donnell, D.M., Restifo, L.L., 2006. Interaction between
hormonal signaling pathways in Drosophila melanogaster as revealed by genetic
interaction between Methoprene-tolerant and Broad-Complex. Genetics 172,
253–264.

Yamada, K.M., 1991. Adhesive recognition sequences. J. Biol. Chem. 266, 12809–12812.
Zavortink, M., Bunch, T.A., Brower, D.L., 1993. Functional properties of alternatively

spliced forms of the Drosophila PS2 integrin alpha subunit. Cell Adhes. Commun. 1,
251–264.

Zhang, L., Zhang, Y., Ten Hagen, K.G., 2008. A mucin-type O-glycosyltransferase
modulates cell adhesion during Drosophila development. J. Biol. Chem. 283,
34076–34086.

Zusman, S., Grinblat, Y., Yee, G., Kafatos, F.C., Hynes, R.O., 1993. Analyses of PS integrin
functions during Drosophila development. Development 118, 737–750.

Zusman, S., Patel-King, R.S., Ffrench-Constant, C., Hynes, R.O., 1990. Requirements for
integrins during Drosophila development. Development 108, 391–402.


	Tenectin is a novel αPS2βPS integrin ligand required for wing morphogenesis and male genital lo.....
	Introduction
	Materials and methods
	Drosophila stocks
	Rapid amplification of cDNA ends (3′ and 5′RACE)
	Transgenic tenectin mutants
	Northern blot analysis
	Imaginal discs culture
	Quantitative real time PCR
	Whole-mount in situ hybridization and immunohistochemistry
	Tenectin fusion proteins and purification
	Cell spreading and adhesion experiments

	Results
	tenectin encodes a putative αPS2βPS integrin ligand
	Temporal profile of tenectin expression during metamorphosis
	tenectin transcription is inducible by ecdysone
	tenectin is widely expressed in imaginal discs and brain
	RNAi tenectin knockdown mutants
	tenectin and integrin mutants display male genitalia anomalies
	tenectin mutants display wing defects and interact with �integrin mutants
	tenectin RNAi and mysnj42 rescue ectopic tenectin expression
	Tenectin mediates cell spreading and adhesion via αPS2βPS integrins

	Discussion
	tenectin mutants
	Tenectin is a new ligand of αPS2βPS in wing epithelia
	tenectin expression is regulated by 20E during metamorphosis
	Tenectin and PS2 integrins are required for male genital disc rotation
	Tenectin has multiple integrin-binding motifs

	Acknowledgments
	Supplementary data
	References




