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1. INTRODUCTION 

In this article we study the controllability properties of systems which are 
described by an evolution equation in a Lie group G of the form: 

where X0 ,..., X, are right-invariant vector fields on G. Systems described 
by (*) we term right-invariant. This study is based on the results of [ll], 
and is related to the work of Brockett [l]. As remarked by Brockett, there 
are many important applications in engineering and in physics which are 
not treated by classical control theory because of the assumption that the 
state space is a vector space. In particular, when controlling the orientation 
of a rigid body relative to some fixed set of axes, the state space is the tangent 
bundle of SO(3) (the group of 3 x 3 real orthogonal matrices .lI such that 
det M = 1). The evolution equation describing this system is of the form 
given by (*) [l]. Instead of restricting our study to groups of matrices, we 
consider systems described in an abstract Lie group G. This generalization 
in no essential way affects the nature of the problem. 

From the theoretical point of view a study of systems of the form (*) 
appears natural for several reasons. For instance, the algebraic criteria 
developed in [ll] can be used to obtain global results by exploiting the 
algebraic structure of the state space and the sets attainable from the identity. 
In this regard, the analogy with the controllability of linear systems is striking. 
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supported by the National Aeronautics and Space Administration under Grant 
NCR 22-007-172. The second author was supported by the U. S. Office of Naval 
Research under the Joint Electronics Program by Contract NOOO14-67-029WDO6. 
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In this article we shall look for necessary and sufficient conditions for a 
right-invariant system to be controllable. A necessary condition is that the 
system have the “accessibility property” [ll]. We show that this condition 
is also sufficient if G is connected and if either (a) the system is homogeneous 
(i.e., X,, = 0) or (b) G is compact. When neither (a) nor (b) hold, accessibility 
(plus the connectedness of G) is not sufficient for controllability. In this 
case we give some sufficient conditions, and a necessary condition, and we 
single out a particular situation in which a necessary and sufficient condition 
can be obtained. 

An obvious necessary condition for controllability is that the set A(e) of 
points reachable from the identity of G be a subgroup of G. Thus, the 
controllability problem reduces to the following: 

(a) When is A(e) a subgroup ?, and 
(b) If A(e) is a subgroup, when is A(e) = G ? 

Question (b) is much easier to answer than question (a). In Theorem 4.6 
we show that if A(e) is a subgroup; then, necessarily, this subgroup is the 
connected Lie subgroup S of G whose Lie algebra is the subalgebra L 
generated by X,, ,..., X, . From this it follows that the system will be con- 
trollable if and only if (i) A( e is a subgroup, (ii) G is connected, and (iii) L is ) 
the Lie algebra of G. This shows that the crucial question is that of deter- 
mining when A(e) is a subgroup. 

This question is (partially) answered in Sections 5 and 6. 
The organization of the article is as follows: In Section 2 we introduce 

notation and basic concepts; in addition, we quote a result about Lie groups 
which will be used later. In Section 3 we single out the relevant Lie algebras 
induced by a right invariant system. In Section 4 we derive the basic properties 
of attainable sets. In Section 5 we study the homogeneous case, and in 
Section 6 we study the general case. In Section 7 we interpret our results 
in terms of controllability. Finally, Section 8 contains examples. 

2. PRELIMINARIES 

We shall assume that the reader is familiar with the basic facts about Lie 
groups [2, 4, or 51. 

Throughout this paper, G will denote a Lie group, and L(G) will denote 
the Lie algebra of G. We shall think of L(G) as the set of vector fields on G 
that are invariant under right translations. It is known that every X EL(G) 
is analytic, and that L(G) is a Lie algebra with the obvious vector operations, 
and with the Lie product defined by [X, Y] = XY - YX. 
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The exponential map from L(G) into G is denoted by exp, Recall that 
exp(0) = e (the identity of G), and that, for each X EL(G), the curve 
t -+ exp(tX) is an integral curve of X. 

We recall that there is a one-to-one correspondence between Lie sub- 
algebras of L(G) and connected Lie subgroups of G. If H is a connected Lie 
subgroup of G, the Lie algebraL(Y) is naturally identified with a subalgebra 
of L(G). We shall also denote this subalgebra by L(H). 

Let X0 I..S, X, be elements of L(G). We shall consider the following 
control system defined on G: 

where u = (ur ,..., u,) belongs to the class of admissible controls U. Through- 
out the article we shall assume that U is one of the classes U, , U, or CJb , 
defined as follows: 

(i) U, is the class of all locally bounded and measurable functions 
defined on the interval [O, 03) and having values in R”. 

(ii) U;. is the subset of U, consisting of all elements which take 
values in the cube {z E R? i x, j < 1, i = l,..., ml. 

(iii) U, is the class of all piecewise constant functions defined on 
[O, co) with values in R” such that the components of its elements only 
take values 1 and - 1. 

We will refer to U, , U, and U, as the class of unrestricted, restricted and 
“bang-bung” controls, respectively. 

If x = (X, )...) X,) is an m + 1-tuple of elements of L(G), and if U is 
a class of admissible controls, then the system described by Eq. (1) will be 
termed right-invariant. For notational convenience, we will denote such a 
system by (X, U). We will also adopt the convention that if in a particular 
statement U is not specified explicitly, we will mean that such a statement 
is true for any class of admissible controls (i.e., U, , 73, or U,). 

We have the following basic fact: 

LEMMA 2.1. Let (X, U) be a right-kvariant system on G, and let u E U. 
Then for every g E G, there exists a unique solution1 x of (11, defked for 
0 < t < co, such that x(0) = g. 

Proof, Uniqueness and local existence follow from the standard results 
an ordinary differential equation. Moreover, we know from these results 

1 A solution of (I) is an absolutely continuous G-valued function of the real variable t, 
vvlth the property that (I) is satisfied for almost every t. 
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that there is a muximal interval [0, T)(T > 0) on which there exists a solution 
x of (1) with x(O) = g. We show that T = co. Assume T < CO. Let y(t) 
be a solution of (1) defined for T - 6 < t < T + 6, where 6 > 0, and such 
that y(T) = e. Let g’ = y(T - +S), g” = x(T - *as). Let x(t) be defined by 

z(t) = x(t) for O<t<T--&3, 

z(t) = y(t) g’-‘g” for g - $8 < t < T + 6. 

Then x(t) is a solution of (1) which satisfies x(O) = g and is defined for 
0 < t < T + 6. This contradicts the maximality of the interval [0, T). 
Therefore T = co and our proof is complete. 

If u E U and g E G we will denote the solution x of (1) which satisfies 
x(0) = g by a(g, U, m); i.e., x(t) = n(g, u, t) for all t E [0, co). If, for some 
t > 0, a(g, u, t) = g’, we say that the control u steers g into g’ in t units of 
time. If there exists u E U which steers g into g’ in t units of time, we say 
that g’ is attainable (or reachable) from g at time t. The set of all g’ E G which 
are attainable from g at time t will be denoted by A(g, t). We shall also use 
the notations 

4s T) = u 4g, t> 
OSiS'T 

A(g) = U 4g, t>. 
0<t<m 1 

We shall refer to A(g) as the set attainable from g. 
From the right invariance of our control systems it follows trivially 

that A(g, T) = A(e, T)g, A(g, T) = A(e, T)g, and A(g) = A(e)g.2 There- 
fore, without loss of generality, we can limit ourselves to the study of the sets 
attainable from the identity. 

We finish this section by quoting a result about Lie groups whose proof 
can be found in [12] (cf. also [5, pp. 2751). 

THEOREM 2.2. Let G be a Lie group, and let H be a path-connected sub- 
group of G. Then H is a Lie subgroup of G. 

3. THE ASSOCIATED LIE SUBALGEBRAS 

To every right-invariant control system (X, U) on a Lie group G, we 
shall associate the following three Lie subalgebras of L(G): 

2 If A is a subset of G, and g E G, we use Ag to denote the set of all products ag, 
where a E A. 
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(1) The subalgebra L generated by X0 ,..., X, , 

(2) The ideal of L generated by Xi ,,.., X, . This ideal will be denoted 

by Lo - 
(3) The subalgebra L of L(G) generated by X1 )..., X,, . 

We denote the corresponding connected Lie subgroups by S, S, and S. 
We have 

LEMMA 3.1. (i) L C L, C L and S C S, C S, 

(ii) L, is a subspace of L of codimension zero or one, 

(iii) So is a normal subgroup of S. 

Proof. (i) and (ii) are trivial. (iii) follows from the fafact that a connected 
Lie subgroup H of a connected Lie group K is a normal subgroup of K 
if and only if L(H) is an ideal ofL(K) (cf. [2, p. 1241). 

We shall use the notation Sot for the coset of S module S, which contains 

exPw3 

4. ELEMENTARY PROPERTIES OF THE ATTAINABLE SETS 

If (X, U) is a right-invariant control system on G, then the vector fields 
X ,, ,..., X, belong to the Lie algebra of S. Therefore, we can consider (X, U) 
as a right-invariant control system on S, and Lemma 2.1 will be valid if G 
is replaced by S. This gives 

LEMMA 4.1. If (X, U) is a right-invariant system on 6, then A(e) is 
contained in S. 

The following lemma states a similar result for the sets A(e, ;d). 

LEMMA 4.2. If (X, U) is a right-invariant system on G, then for each 
t > 0 A(e, t) is contained in S,,t. 

It would be easy to prove this lemma directly, but since this result is 
included in that of Lemma 6.1 we omit the proof. 

We next derive some elementary topological properties of the attainable 
sets. If T > 0 we will denote the set of all restrictions of elements of U to 
PO, Tl by U(T). 

LISMMA 4.3. Let (X, U) b e a right-invariant control system on G. The 
mapping (u, t) -+ n(g, u, t) from U(T) x [0, T] into G is continuous for each g 

and each T > 0, if U(T) is given the topology of weak convergence. 
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The proof of this result appears in [lo], and therefore we will omit it.3 
From this we obtain: 

LEMMA 4.4. Let (X, U) be a right-invariant control system on G. 

(i) The sets A(e, T), A(e), A(e, T) aye path-connected, for each T > 0. 

(ii) If U = U, then A(e, T) and A(e, T) are compact. 

Proof. (i) will be an immediate consequence of the fact that U(T) is 
path-connected and of Lemma 4.3. The path-connectedness of U(T) is 
trivial in the unrestricted and in the restricted case. In the “bang-bang” case, 
let u and v belong to U(T). F or each t such that 0 < t < T, let wt be defined 

bY 

wtb-) = 4’) if 0 < 7 < t, 

44 = 4’) if t<r<T. 

Then wt E U(T). M oreover, w,, = u and wr = v. Since t--f wt is a con- 
tinuous path in U(T), it follows that U(T) is indeed path-connected. 

To prove (ii) we remark that, if U is the class of restricted controls, then 
U(T) is compact in the weak topology. The proof is now complete. 

In regard to the algebraic properties of the attainable sets we have the 
following: 

LEMMA 4.5. Let (X, U) be a r&ht-invariant control system on G. Then 
the set A(e) is a semi-group. 

Proof. Let g and g’ belong to A(e). Let g = z(e, u, t), g’ = rr(e, u’, t’). 
Let the control v be defined by 

V(T) = U(T) for 0 < 7 < t, 

V(T) = U’(T - t) for 7 > t. 

Then n(e, v, t + t’) = g’g, and therefore, g’g E A(e). The proof is then 
complete. 

We cannot assert, in general, that A(e) is a group. However, the following 
theorem tells us that, if A(e) is a group, then it must be the group S. 

THEOREM 4.6. Let (X, U) be a right-invariant control system on G. If 
A(e) is a subgroup of G, then A(e) = S. 

3 The result 1s proved in [lo] for groups of matrices, but the proof is valid for 
arbitrary Lie groups. Alternatively, one could use Ado’s Theorem [4] to go from the 
result of [lo] to a “local” version of Lemma 4.3, and then deduce the general result. 
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Proof. We know that A(e) is path-connected. If A(e) is a subgroup, it 
follows from Theorem 2.2 that it is a Lie subgroup of G. Let fl be its Lie 
algebra. Then fl C L, because A(e) C S (Lemma 4.1). On the ather hand, 
let a = (a, ,..., a,> be an m-tuple such that each aL is &l. Let u be the 
constant control u = (a 1 ,..., a,). Then u E U and, therefore, the curve 
t -+ n(e, U, t) (0 < t < co) is contained in A(e). In other words, if we let 

it follows that exp(tX(a)) belongs to A(e) for all t 2 0. Since A(e) is a sub- 
group, this will be true for all real t. Therefore [4, p. 94’1, we can conclude 
that X(a) belongs to rl. Since the elements X(a) form a system of generators 
of L, we conclude that L C n and, therefore, L = A and A(e) = S. 

5. THE HOMOGENEOUS CASE 

A right-invariant control system (X, U) is homogeneous if X0 = 0. As an 
introduction to the general case, we consider these systems first. 

The result stated in the next theorem appeared first in a study by 
R. W. Brockett El]. 

THEOREM 5.1. Let (X, U) be a homogeneous right-invariant control system 
on 6. Then the set attainable from the identity is the wbgroup S. Moreover, 
if U is unrestricted then, for each T > 0, A(e, 7’) = A(e) = S. 

Proof. To prove the first statement it is sufficient, in view of Theorem 4.6, 
to show that A(e) is a subgroup. We know that A(e) is a semigroup. It remains 
to be shown that, if g E A(e), then g-l E A(e). Let r(e, u, t) = g, where 
u E U, t > 0. Let 

v(s) = -u(t - s) for 0 < s < t, 

v(s) = u(s) for s > t. 

Obviously, v E U. Let 

f(s) = 7r(e, 24, t - s). 

Then 

Therefore, f is a solution of the evolution equation corresponding to the 
control o. By the right-invariance we must have f(s) = rr(e, v, s)h, where 
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h ==f(O) = g. But f(t) = rr e, u, 0) = e. Therefore, rr(e, U, t) = g-l, and we ( 
have shown that g-l E A(e). 

To prove the second statement, assume that U is unrestricted. Let 
g = ~(e, U, t) for some u E U and t > 0. Let s > 0, and define a control ZI by 

V(T) = (t/s) 21(9-t/s) for 0 G.7 < co. 

An easy computation shows that z(e, v, s) = g. We have therefore shown 
that A(e, t) C A(e, s). Similarly, A(e, s) C A(e, t). Thus A(e, s) = A(e, t) for 
all t, s such that 0 < t, 0 < s. Our proof is then complete. 

Remark. The previous theorem implies that, for a homogeneous system 

(a) The attainable set A(e) is a subgroup of G. 

(b) The set A(e) is the same for the three classes of controls, so that, 
in particular, every g E G that can be reached from the identity by means 
of an arbitrary control, can also be reached by means of a “bang-bang” 
control (possibly at a later time). 

(c) If U = U, , then every g E G that can be reached from the identity 
can in fact be reached in an arbitrarily short time. 

We shall see later that neither (a), nor (b), nor (c) need be true in the 
non-homogeneous case. 

6. THE GENERAL CASE 

Our subsequent study will be based on the following lemma: 

LEMMA 6.1. Let (X, U) be a right-invariant control system on G. Then 
fog each T > 0, 

(i) A(e, T) is contained in S, and the interior of A(e, T) is dense (in the 
topology of S) in A(e, T). 

(ii) A(e, T) is contained in SOT, and the interior of A(e, T) is dense (in 
the topology of S,,*) in A(e, T). 

Proof. We shall use the results of [ll]. Our system is of the form con- 
sidered in the remark following Example 5.2 of [ll], with ikl = G, and with 
G acting on G by left translations. In the notations of [1 11, we have Q = R”, 
or Q = Cm (the unit cube in R”), or Q = V’” (the set of vertices of Cm) in 
the unrestricted, restricted and “bang-bang” cases, respectively. In each 
of the three cases, the assumptions of [l 11 are satisfied, and an easy computa- 
tion shows that 4(D) = L and that 4’,(D) = L, . Since S is the integral 
manifold of L through e [2, p. 1081, our first statement follows from [Ill. 
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Similarly, it is easy to verify that SOT is precisely the submanifold Is=(L), e) 
of [ll], and the second part of our lemma follows. 

In particular, it follows from Lemma 6.1 that t/ze intlerior of A(e) relative 
to S is nonempty. 

We shall also need the following: 

LEMMA 6.2. Let H be a connected Lie group, and let L, ,..., L, be elements 
of L(H) that generate L(H). Then every h E H is a j2tite product of elements 
of the form exp(tL,), where t is real and i = l,..., n. 

Proof. The set H’ of all finite products of elements of the form exp(tLJ 
is obviously a path-connected subgroup of H. Therefore, H’ is a connected 
Lie subgroup of H (cf. Theorem 2.2). Obviously, H’ contains the one- 
parameter subgroups generated by L, ,..., L, . Therefore, [4, p. 94] L, ,..., L, 
belong to L(H’). Then, H’ = H, and our proof is complete. 

LEMMA 6.3. Let (X, U) b e a right-invariant control system on G. If the 
set attainable from the identity is dense in S, then it is equal to S. 

Proof. Let g E A(e) belong to the interior of A(e) relative to S (cf. 
Lemma 6.1). Let VC A(e) b e relatively open in S and such that g E V. 
Let W = (h-l: h E V}. Then W is a nonempty relatively open subset of $5. 
Our assumption implies that W contains an element h of A(e); then the set 
Vh [cf. footnote 21 is relatively open in S, and is contained in A(e). Moreover, 
Vh contains the identity. Therefore, the semigroup A(e) contains a neigh- 
bourhood of the identity in S. Since S is connected, we have that A(e) = S, 
and our proof is complete. 

LEMMA 6.4. Let (X, U) be a right-invariant control system on G with 
U = U, . Then s C A(e) (the closure is taken relative to S). 

Proof. By Lemma 6.2, every element of S is a product of elements of 
the form exp(tX,) (-00 < t < co, i = I,..., m). We show that exp(tXi) 
belongs to A(e) for every real t and for every i = l,..., m. Since A(e) is a 
semigroup, this will imply that SC A(e), and the desired conclusion will 
follow immediately. 

Let t be a real number, and let 1 < i < m. Let u, be the constant control 
(0 ,...) 0, 12, 0 ,...f 0) where n appears in the i-th position. Then u, E U for 
each n > 0. We have 

r(e, u, , t/n> = exp(& + n-Q(W 
= exp((t/n) X0 + tX$ 

Letting ti --+ co, we conclude that exp(tX,) E A(e), and our proof is complete. 
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Remark. If U is not unrestricted, then s need not be contained in A(e) 
(cf. Example 8.4). 

We can now prove: 

THEOREM 6.5. Let (X, U) b e a right-invariant control system on G. Assume 
that the subgroup S is compact. Then 

(i) A(e) = S. 
(ii) There exists T > 0 such that A(e, T) = A(e). 

Proof. Let H be the closure of A(e) relative to S. Then His a semigroup. 
We show that H is a group. Let h E H. Then, for every positive integer n, 
hn E H. The sequence (hn},,I ,... has a convergent subsequence {/P(~)}~,~ ,..., 
and we can assume that n(K) < n(k + 1) for all k. Now, as k---f 00, 
h-1 = lim hn(k+l)--n(K)--l = lim h, . Since n(k + 1) - n(k) - 1 is nonnega- 
tive, it follows that h, belongs to H for each k. Since H is closed, h-1 E H. 
Therefore, H is a group. Since A(e) C H and A(e) has a nonempty interior 
relative to S, the same is true for H. Since H is a group and S is connected, 
we conclude that H = S. Therefore, A(e) is dense in S, and (i) follows 
from Lemma 6.3. 

To prove (ii) we let W(t) denote, for each t > 0, the interior, relative to S, 
of A(e, t). It is easy to see that the union of all the sets W(t) is S (if g E S, 
let g E A(e, T), let h be interior to A(e, T’), and let h-1 E A(e, T”); then, 
ge W(T+ T’+- T”). 

Since the sets W(t) are increasing, it follows that W(t) = S for sufficiently 
large T, and our proof is complete. 

Remark. Theorem 6.5 shows that, if S is compact, then conditions (a) 
and (b) of the remark following Theorem 5.1 are satisfied. However, in this 
case condition (c) need not be sati.$ed. Even if U is unrestricted, it may not 
be possible to reach every element of S in an arbitrarily small time (cf. 
Example 8.1). 

If S is not compact, then A(e) need not be equal to S. The following 
theorem gives a sufficient condition under which A(e) = S; we do not know 
if this condition is also necessary. 

THEOREM 6.6. Let (X, U) b e a right-invariant control system on G with 
U = U, . If there exists a constant control u and a sequence of positive numbers 
{tn> with t, 2 E > 0 for some E, with the property that lim v(e, u, tn) exists 
and belongs to s (the closure is relative to S), then A(e) = S. 

Proof. Let u and {tn} satisfy the conditions of the theorem, and let 
lim 7r(e, 24, t,) = x. If X =X0 + Cz, uiXi then, since u is constant, 
z-(e, u, t) = exp(tX). We first show that exp(tX) E A(e) for every real 
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number t. If {tn> is bounded, then there exists a positive number T such 
that exp(TX) E s. Let t be any real number, and let FZ be a natural number 
with nT + d > 0. Since S is a group we have that exp(-TX) E S, and 
hence exp(- TnX) E S. By Lemma 6.4, it follows that exp(-TnX) E A(e). 
Since, obviously exp((nT + t) X) E A(e), we have that 

exp(tX) = exp(-Tnx’) * exp((+ Tn + t) X), 

and hence, exp(tX) E A@. If {tn) is unbounded, let ftn,> be a subsequence 
of (tn> with t+l,,l - t%, > k, and let rlc = t,&+$ - tnb . We have that rL -+ co 
and exp T&-+ e as k + 03. Thus for any real number t, exp(tX) = 
limk,, exp((t + 4 -W. 

If k is sufficiently large, then t + TV is positive. Therefore exp((t + TV) X) 
belongs to A(e) for k large. It follows that exp(tX) E A(e). 

By Lemma 6.4, exp(tX,) belongs to A(e) for every real t and every 
i=l ,“.‘, M. Since A(e) is a semigroup, it follows that every product of 
elements of the form exp(tY) (t real, Y E(X, X, ,..., X,,)) belongs to A(e). 
Clearly, the elements X, X1 ,..., X, generate L. By Lemma 6.2, A(e) = S, 
and by Lemma 6.1, A(e) = S. This completes the proof. 

The following corollary is immediate: 

COROLLARY 6.7. Let (X, U) b e a right-invariant L-ontroE system on G 
with U = U, , If there exists a constant control u such that t -+ r(e, zc, t) is 
periodic, then A(e) = S. 

The following lemma gives a necessary condition for A(e) to be equal 
to S; however, this condition is not sufficient (see Example 8.3). 

LEMMA 6.8. Let (X, U) be a right-invariant control system on G, and let 
A(e) = S. Then, there exists a nonzero number T such that exp(X,T) E S, . 

Proof. Our assumption implies that exp(-X0) belongs to A(e, t) for 
some t 3 0. Therefore, by Lemma 4.2, exp(-X0) = exp(tX,)g where 
g E S, . To complete the proof, take T = -1 - t. 

There is one important case when Theorem 6.6 and Lemma 6.8 yield 
a necessary and sufficient condition for A(e) = S, namely, when S = S, . 
This will happen if and only if L = L, . It is easy to check that this equality 
holds if and only if all the brackets [X,, , Xi] belong to L (i = l,..., M). 

THEOREM 6.9. Let (X, U) be a right-invariant control system on G with 
U = U, f If L = L, , then a necessary and su$icient condition for A(e) to be 
equal to S is that there exist a number T, T # 0, such that exp(TX,) belongs 
to s. 

Remark. The condition L = L, holds, in particular, when [X@ , XJ = 0 
(i = l,..., m), i.e., when exp(tX,,) commutes with the elements of S. 

505/x2/2-8 
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7. CONTROLLABILITY 

Let (X, U) be a right invariant control system on G, and let g E G. We 
say that (X, U) is controllable from g if A(g) = G. We say that (X, U) is 
controllable if it is controllable from every g E G. 

THEOREM 7.1. A necessary condition for (X, U) to be controllable is that G 
be connected and that L = L(G). VG is compact, OY ;f the system is homogeneous, 
the condition is also suficient. 

Proof. The condition of the theorem holds if and only if G = S. By 
Lemma 4.1, the condition is necessary. The second part of the statement 
follows from Theorems 5.1 and 6.5 (and from the obvious fact that, if 
A(e) = G, then A(g) = G for every g). 

In the compact case, we can prove stronger controllability properties. 

THEOREM 7.2. Let G be compact, and let (X, U) be controllable. Then 
there exists T > 0 such that, for every g E G, g’ E G, there is a control that 
steers g into g’ in less than T units of time. If G is semisimple, then there exists 
T > 0 such that, for every g E G, g’ E G, there is a control that steers g into g’ 
in exactly T units of time. 

Proof. The first statement follows from Theorem 6.5(ii). To prove the 
second statement, we observe that, if G is semisimple, then (X, U) has the 
“strong accessibility property, ” i.e., the set A(e, t) has a nonempty interior 
for every t > 0 (for a proof of this, see [ll]). From this fact the conclusion 
follows as in the proof of Theorem 6.5(ii). 

Finally, Theorem 6.9 can also be interpreted as a controllability result. 

THEOREM 7.3. Assume that the necessary conditions of Theorem 7.1 hold, 
and that (i) U = U, , and (ii) L = L, ( or, equivalently, L is an ideal of L). 
Then (X, U) is controllable if and only if exp(TX,,) belongs to S (=S,) for 
some T # 0. 

COROLLARY 7.4. If G is connected, L = L(G), U = U, and X,, belongs to 
the Lie algebra generated by XI ,..., X, , then (X, U) is controllable. 

8. EXAMPLES 

In most of the following examples, we shall work with groups of matrices. 
Our groups will be Lie subgroups of GL(n, R), the group of all n x n non- 
singular real matrices. Recall that GL(n, R) is an open subset of M(n, R) 
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(the set of all n x n real matrices). Since M(n, R) is a vector space, we can 
identify the tangent space to GL(n, R) at each point with B’(n, R). With this 
identification, a right-invariant vector field corresponds to a mapping 
X -+ AX from GL(n, R) into A&(%, R), where R is a fixed matrix. If X0 ,..., X,, 
are right-invariant vector fields, given by X--+ A,X (i = O,..., m), then the 
evolution equation becomes 

X(t) = X(t). 

EXAMPLE 8.1. Let G = SO(3), the set of all 3 x 3 real orthogonal 
matrices with positive determinant. The algebra L(G) is the set of all 3 x 3 
antisymmetric matrices. A basis for L(G) is given by the matrices 

and 

It is easy to check that [Kl , K,] = K3 , [KS, KS] = KT and [Ka , KJ = Kz . 
Thus L(G) is isomorphic to three-dimensional real space, with the Lie 
bracket corresponding to the vector product. Using this correspondence, it 
is obvious that, if A and B are any two linearly independent elements of 
L(G), then {A, B, [A, B]) is a basis forL(G). 

Let A and B be any linearly independent 3 x 3 anti-symmetric matrices, 
and let our right-invariant control system on SO(3) be described by 

X(t) = (A + aB) X(t) 

where u belongs to any class of admissible controls. Since SO(3) is compact 
and connected, Theorem 6.5 applies, and our system is controllable. More- 
over, there is a T > 0 such that, given any two elements P, Q of SO(3) 
there is a “bang-bang” control u that steers P into Q in less than T units 
of time. In this connection, it is interesting to observe that, in general, there 
may not exist arbitrarily small numbers T with the above property, even if 
the contml u is completely unrestricted. Take, for instance, A = K3 and 
3 = KS . If u is an arbitrary control, and if X(t) is the solution of the evolu- 
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tion equation corresponding to u with initial condition X(0) = 1, write 
X = (~~~)~,~=~,~,a . Then we have 

$12 = X22 + ax32 

and 
fz = -4x12 . 

Multiplying the first equation by xi, , the second equation by x3s and adding, 
we get 

+ didt ($2 + 42) = ~22x12 . 

Since x,“, + xi, vanishes at t = 0, we have 

(42 + x:2>(t) = 2 j: x22(79 ~12(7> dr. 

But x2a(r) and xi2(~) are entries of orthogonal matrices. Hence they are 
bounded in absolute value by 1. Therefore, we conclude that 

This shows that a matrix (az3) for which a:, + ai = 1 cannot be reached 
from the identity in less than g units of time. 

EXAMPLE 8.2. The considerations of the previous example can be 
generalized to G = SO(n). In this case the Lie algebra of G is the set of 
all n X n anti-symmetric matrices. 

Let A = (a,$) and B = (b,,) be matrices defined as follows: a,,,, = 1 
for i = l,..., n - 2, a,,i-1 = -1 for i = 2 ,..., n - 1, ae3 = 0 otherwise, 
and let b,-l,, = 1, b,,,-, = -1, b,, = 0 otherwise. It is easy to show that 
the smallest subalgebra that contains A and B is exactly L(G). Thus, even 
though SO(n) is @(n - I)-dimensional, the system X = (A + uB)X, in 
which only one control is involved, is controllable. Moreover, as before, we 
can limit u to be “bang-bang.” An easy argument shows that this fact, which 
has been shown to be true for the particular matrices A and B defined above, 
is in fact true for “almost all” pairs (A, B) EL(G) x L(G). Precisely, the 
set of pairs (A, B) such that A and B generate L(G) is open and dense in 
L(G) x L(G). 

Remark. If G is an arbitrary connected Lie group such that L(G) is 
generated by two elements, then Theorem 5.1 enables us to conclude, in 
a way similar to that of the previous examples that the homogeneous system 
on G of the form x(t) = (uA + uB) X(t) is controllable for “almost all” 
pairs (A, B) EL(G) x L(G). Th is result holds even if we restrict u and u 
to be “bang-bang.” 
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The previous statement holds, in particular, when G = SL(n, R), the set 
of all n x n real matrices whose determinant is 1, or when G = GJ(n, R), 
the set of all n x n real matrices whose determinant is greater than 0. 

EXAMPLE 8.3. We show that, if A, B generatel(G), and if G is connected 
and not compact, then the system X = (A + uB)X need not be controllable, 
even if L(G) is a simple Lie algebra. In particular, this will show that the 
necessary condition of Lemma 6.8 is not sufficient. Take G = SL(2, R). Let 

It is clear that A and I3 generate L(G) and that L(G) is simple. Let u be an 
arbitrary control, and let X(t) be the solution of the evolution equation 
corresponding to u, with initial condition X(0) = 1. Let X = (~~~)~,+~,a . 
Then %,, = xl1 + uxzl and *a1 = uxll - xar . Multiplying the first equation 
by xi1 , the second one by xpI and subtracting, we get 

Thus the function x:,(t) - x&(t) is nondecreasing for every trajectory of 
our system. Since its value for t = 0 is 1, it follows that every element of 
SL(2, R) that can be reached from the identity in positive time satisfies the 
inequality & 2 ~2”~ + 1. Hence, the system is not controllable. In the 
notations of Section 3, it is clear that L = L(G). Thus, we have shown that 
A(e) is not a group. However, L, = L(G) (because L(G) is simple), and hence 
S, = G. Therefore, exp(td) belongs to S, for all t >, 0. This shows that 
the condition of Lemma 6.8 is satisfied. 

EXAMPLE 8.4. In this example we show that Lemma 6.4 and Theorem 6.6 
need not be valid if U is not assumed to be unrestricted. Let G = R x B, 
the product of the real line and the unit circle. Let X0 be the generator of 
the one parameter group t -+ (t, e 2rat), and let Xi be the generator of the 
one parameter group t -+ (t, 1). Let U = U, , or U = U, . Then 
A(e) = [0, co) x 9, which is not a group. But if u = 0, then rr(e, U, 1) = 
exp X0 = (1,l) which belongs to S. Thus, Theorem 6.6 does not hold. AS 
for Lemma 6.4 it is clear that S and A(e) are closed, but S cf A(e). 

EXAMPLE 8.5. In view of Theorem 6.6 it might seem that a necessary 
condition for a right-invariant system to be controllable is that exp tX, 
“gets arbitrarily close” to S for some nonzero values of t. This example 
shows that such a statement is false. 
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Let G = SL(2, R), and let 

A = (:, -$ B = (1; ;,. 

Consider the system X = (A + Bu)X where u belongs to the class of 
unbounded controls. 

Let u be the constant control u = 1. Then the trajectory t +- n(l, U, Z) 
is the curve t + et(A+B), which is periodic with period 2~. By Corollary 6.7, 
the system is controllable. 

We have that 

et-4 = and ebb= (I--r ?- ). 

-7 117 

Now it is obvious that etA stays away from S for all positive values of t. 
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