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Abstract 

Poor surface finish of 3D-printed metals significantly deteriorates their corrosion, wear and fatigue resistance. Ultrasonic nano-crystal surface 
modification (UNSM) is an innovative surface processing technique that utilizes low amplitude ultrasonic frequency vibrations superimposed 
on a static load to generate plastic deformation on a metal surface to its improve properties and performance. In this study, we investigate the 
effect of UNSM on the surface finish of 3D-printed metals. An aluminum AlSi10Mg alloy fabricated by direct metal laser sintering (DMLS) 
was used as an example. It has been demonstrated that UNSM can significantly improve surface finish of 3D-printed aluminum alloy. For 
example, the surface roughness of the AlSi10Mg alloy was decreased from 18 to 3.5 µm. With a better surface finish, UNSM is expected to 
improve the properties and performance of 3D-printed metals.  
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1. Introduction 

     Metals fabricated by additive manufacturing hold many 
potential applications in the biomedical, aerospace and 
defense industries [1]. The poor surface finish of additive 
manufactured metals, however, significantly deteriorates their 
corrosion, wear and fatigue resistance and thus hampering 
their wide applications [2].  
     Ultrasonic nanocrystal surface modification (UNSM) [3,4] 
is an innovative technique that utilizes low amplitude 
ultrasonic frequency vibrations superimposed on a static load 
to induce high strain rate plastic deformation on a metal 
surface to improve its properties and performance  [5]. In a 
UNSM process, a tungsten carbide ball attached to an 
ultrasonic device scans over material surface while striking it 
at high frequency (20 kHz). The overlap of the mechanical 
impacts generates plastic strain at the material surface and 
leads to surface plastic deformation. The process parameters 
in UNSM include the static load, the dynamic load, the 
interval between neighbouring scans and the scanning speed. 
These parameters can be precisely controlled and the system 

can be easily integrated into a modern manufacturing system.  
     It has been reported that UNSM can improve the fatigue 
[6], wear [7] and corrosion [8] resistance of metallic materials. 
In a recent study [9], the effect of UNSM on the tribological 
behavior of a sintered Cu-based alloy has been investigated 
and it was reported that the surface roughness has been 
significantly reduced. 
      In this study, a 3D-printed aluminium AlSi10Mg alloy 
was processed by UNSM. The effect of the UNSM 
parameters on the surface finish of 3D-print material was 
investigated. 

 

2. Materials and Experiment Method 

2.1. Materials 

An AlSi10Mg alloy was fabricated by the direct metal 
laser sintering (DMLS) method using an EOS M280 system. 
The composition of the alloy is shown in Table 1. A stress 
relieving cycle of 2 hours at 300ºC was used to relieve the 
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thermal stress generated during DMLS. The relative density is 
approximately 99.85% and the density is 2.67 g/cm3. 

Table 1. Composition of the AlSi10Mg alloy 

Element Weight 
Percentage 

Si 9.96 

Fe 0.15 

Cu < 0.005 

Mn < 0.005 

Mg 0.35 

Zn < 0.005 

Pb < 0.05 

Ti < 0.004 

 

2.2. UNSM processing 

Fig. 1a shows a side view of the UNSM tip and the sample 
fixture; Fig. 1b shows a schematic of the UNSM process. In a 
UNSM process, a tungsten carbide ball attached to an 
ultrasonic device scans over the metal surface while striking it 
at high frequency. At the same time, a static load is applied to 
the ball against the material surface. The repeated, high 
frequency strikes cause severe surface plastic deformation on 
metal surfaces. Generally, tool wear is observed after 
extended operation time. It is recommended to replace the 
tungsten carbide tip after 20 to 50 hours of processing.  

 

  

 

Fig. 1. (a) Lateral view of the UNSM unit; (b) Schematic of the UNSM 
process 

The UNSM parameters used in this study are shown in 
Table 2. With a vibration frequency of 20 kHz and a feed rate 
of 2400 mm/min, the spacing between impacts is 2 µm.  To 
investigate the effects of interval and vibration amplitude on 
surface finish, different intervals and vibration amplitudes 
were used.  

Table 2. UNSM parameters 

Parameter Value 

Frequency 20 kHz 

Interval 10 to 70 µm 

Static load 10 N 

Scanning speed 2400 mm/minute 

Tip diameter 4 mm 

Vibration amplitude 8 to 20 μm 

 

2.3. Surface morphology characterization 

A Zygo NewView 7300 surface profiler was used to 
measure the surface roughness of untreated and treated 
samples. The dimension of the measured area is 2.83 mm by 
2.12 mm. In this study, the surface roughness Ra numbers 
were reported.  

3. Results and Discussion 

 

 

Fig. 2. 3D surface morphology of the untreated sample (a) with a Ra of 18.0 
µm and the UNSM-treated sample (b) with a Ra of 3.5 µm, (UNSM 

parameters, static load 10 N, interval 10 µm, vibration amplitude 12 µm), the 
measured area is 2.83 mm by 2.12 mm 

(a) 

(b) 
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Fig. 2 compares the surface morphology of the samples 
before and after UNSM processing. The sample in Fig. 2a has 
a surface roughness (Ra) of 18.0 µm. A rough surface with 
peaks and valleys can be observed. This is a typical surface 
morphology of samples prepared by powder-bed-based 
additive manufacturing. Fig. 2b shows the surface 
morphology of UNSM-processed sample. We can observe 
that majority of the peaks were removed by UNSM. The 
UNSM-processed sample assumes a much smoother surface 
morphology with a surface roughness of 3.5 µm. Through 
UNSM processing, a significant surface roughness reduction 
has been achieved.  

Fig. 3 compares the 1D surface profiles of the untreated 
sample and the UNSM-treated sample. We can clearly 
observe (Fig. 3a) that the untreated sample has many peaks 
and valleys. The height difference between the peak and the 
valley can be as great as 100 µm. For the UNSM-processed 
sample (Fig. 3b), however, the sample is smooth with a height 
difference between peaks and valleys around 15 µm.  

 
 

 

 

Fig. 3. 1D surface profile of the untreated sample (a) with a Ra of 18.0 µm 
and the UNSM-treated sample (b) with a Ra of 3.5 µm (UNSM parameters: 
static load 10 N, interval 10 µm, vibration amplitude 12 µm) 

The effects of UNSM interval and amplitude on the surface 
roughness were investigated. Fig. 4a shows the surface 
roughness (Ra) of the untreated and UNSM-treated samples 
with different UNSM intervals while other parameters were 
the same. We can observe that as the interval decreases, the 
surface roughness decreases, indicating better surface finish at 
lower UNSM intervals. While the interval represents the 
distance between neighboring UNSM scans, the lower 
interval means higher overlap of the UNSM scans, i.e., more 
UNSM scans over a given area. This means at smaller 
interval, more UNSM scans were imposed on the sample 
surface, leading to better surface finish.  

The UNSM amplitude also affects the surface roughness. 
In UNSM, higher amplitude represents higher impact energy. 
We can observe from Fig. 4b that while all amplitudes lead to 

much better surface finish compared with the untreated 
samples, lower amplitude has the best surface finish with an 
Ra of 3.0 µm. This means a low amplitude of 8 µm is 
sufficient to effectively process the AlSi10Mg alloy to 
improve its surface finish. It should be noted that higher 
amplitude with higher impact energy would produce a deeper 
compaction and thus overall better surface/subsurface 
microstructure. This will be investigated in a future study.  

 

 

 

Fig. 4. (a) Surface Ra as a function of interval (static load 10 N, vibration 
amplitude 12 μm) and (b) Surface Ra as a function of vibration amplitude 

(static load 10 N, interval 10 µm) 

  

4. Conclusion 

In summary, a 3D-printed AlSi10Mg alloy was processed 
by a novel technique called UNSM with the goal of improved 
surface finish. After UNSM, the surface roughness (Ra) of the 
AlSi10Mg alloy was decreased from 18 to 3.5 μm. While 
better surface finish is beneficial for material corrosion, wear 
and fatigue resistance, UNSM has high potential in processing 
3D-printed metals. Further investigation is underway.   
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