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ABSTRACT 

Several variants of Gram-Schmidt orthogonalization are reviewed from a numeri- 
cal point of view. It is shown that the classical and modified variants correspond to the 
Gauss-Jacobi and Gauss-Seidel iterations for linear systems. Further it is shown that 
orthogonalization with respect to elliptic norms and biorthogonalization can be 
formulated as orthogonalization by obliqne projections. 

1. INTRODUCTION 

In diverse areas of applied mathematics use is made of orthogonal sets of 
vectors, or one needs to make a vector orthogonal to the linear span of a given 
set of vectors. The Gram-Schmidt algorithm is instrumental for these pur- 
poses. 

The numerical behavior of this algorithm has been clarified by Bjorck [l], 
who showed that the modified variant, working rowwise on the vectors, was 
to be preferred to the classical variant. To be certain of orthogonality, 
reorthogonalization is sometimes necessary; Gragg and coworkers [3] have 
studied the classical variant and given a rigorous method to ascertain conver- 
gence. 

The most common case when orthogonalization is needed is in the 
least-squares solution of overdetermined linear systems. There the Gram- 
Schmidt algorithm has met strong competition from methods based on 
Householder transformations, as introduced by Golub [7] and implemented 
by LINPACK [g]. 
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The Lanczos algorithm for eigenvalues and its descendants (the Arnoldi, 
nonsymmetric Lanczos, etc.) are all built up around the orthogonalization of a 
set of basis vectors. There, a Gram-Schmidt formulation is more natural, since 
the vectors are taken one at a time. Note however that even here Householder 
transformations can be used; see Golub, Underwood, and Wilkinson [8]. 

In the present contribution we will concentrate on one substep of the 
Gram-Schmidt algorithm, that is, the orthogonalization of one vector towards 
the linear span of a given set of vectors. Usually that set has been assumed to 
be orthonormalized, but we will study what happens when that is not fully 
the case, as e.g. when rounding errors are present, or when an incomplete 
algorithm has been used to compute the set. See e.g. the IOM method of Saad 
[12]. In Section 2, we show that there the classical and modified variants of 
the Gram-Schmidt algorithm correspond to the Gauss-Jacobi and Gauss-Seidel 
iterations for solving the system of normal equations. We compare this with 
the findings by Bjorck, and indicate how more powerful iterations can be 
used. 

We conclude Section 3 by studying more general notions of orthogonality. 
We formulate orthogonalization by oblique projections, and show that both 
orthogonalization with respect to elliptic norms and biorthogonalization can 
be formulated this way. These variants are especially interesting in conjunc- 
tion with nonsymmetric or generalized eigenproblems. 

A word about notation. Capital letters are used for matrices, and lower- 
case for vectors. A, is a matrix with k columns. uk denotes the kth vector in a 
sequence of iterates, while uf is the ith element of that vector. 

2. ORTHOGONALIZATION FORMULATED AS ITERATION 

Let us now formulate, in an algorithmic notation, what is done in the 
classical and modified Gram-Schmidt algorithms, and then show how this fits 
into the formulations of the Gauss Jacobi and Gauss Seidel iterative methods 
for linear systems. We concentrate our attention on one step, when we 
already have p allegedly orthonormal vectors forming an n x p matrix Q, and 
a vector a, which is to be orthogonalized eventually to form the p + 1st 
column of Q. Note that when formulating the modified algorithm, we put off 
all operations on the vector u till this step, as e.g. Gander [6] or Schwarz and 
Rutishauser [W] have suggested, instead of the rowwise ordering used e.g. by 
Bjijrck [l]. There is no numerical difference between these two variants of the 
modified algorithm, since it is the same operations performed in a different 
sequence. 
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ALGORITHM CGSA (Classical Gram-Schmidt algorithm). 

1. Start a0 = a, r” = 0 
2. For k=l,2,...do 

1. sk- 1= QTok- 1 

2 Tk = rk-l + Sk-l 

3. ok = &I_ Q&i 

3. 9p+l = ak&+lJa+l: = Ilakll) 

Note here that each iteration of step 2 is a reorthogonalization. CGSA as it 
is usually formulated corresponds to the first step (k = 1) of this process. The 
slightly awkward notation in step 3 means that the final vector uk is 
normalized to form the next column Q~+ 1 of Q, and the normalization 
coefficient enters the R matrix below the vector T: 

R,+1= [ :P :,+l,p+l]> Qp+1= [Q %+4 

In Algorithm MGSA, each iteration in step 2 is divided into p minor steps, 
each computing one element of the increment vector s: 

Algorithm MGSA (Modified Gram-Schmidt algorithm). Replace steps 
2.1-3 by 

2.1. Fori=l,..., pdo 
1. &-1 = 9~uk-l,‘-l 

2 0fk-1,i =‘uk-l,i-l _ qis;-l 
3. r.k = r!-1 + sk-’ 

2 2 uk ,‘&lf p 1 
. . 

We first note that for each iteration in step 2 of CGSA one has 

it is the loop invariant, to use terminology from computer science, irrespective 
of the orthogonality of Q. Likewise 

uk-l,i = u _ pk-1,i 

for each iteration of step 2.1 of MGSA, where rk-l,i =(r,k,...,rikl,rik-l,..., 
rpkpl)r is an obvious fashion. 
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We can use these loop invariants to see what happens during the iteration. 
In fact we solve an overdetermined linear system (linear least squares 
problem), with Q as its matrix and a its right hand side for T, seeking the 
point where ak, the residual, is orthogonal to the span of Q. 

For CGSA we see that 

,.k = rk-l + QTak-’ 

= rk-1 + QT( a - @k-l) 

= ,.k-l+ QTa _ QT@.k-1, 

which is the Gauss-Jacobi iteration applied to the normal equations 

QTQr = Q’a. 

For MGSA 

= 
4 

k-l + qT(a _ Q,.k-U-1) 

i-l 

= r;-l+ $2 - c qf-qjr; - ; q;qjr;-? 
j=l j=i 

Setting 

QTQ=Z+L+LT, 

with a strictly lower triangular L, we get 

rk = rkel + QTu - Lrk - (I + LT)rkel, 

rk = (I + L)-‘QTa - (I + L)-lLTrk-‘, 

(2.1) 

which we recognize as the Gauss-Seidel iteration for solving (2.1). 
If the matrix Q’Q has property A (see [16]), i.e. if the elements of L can 

be confined to a nondiagonal block, the spectral radius of the Gauss-Seidel 
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iteration matrix is the square root of that of the Gauss-Jacobi. A similar 
relation holds when L has small elements, since 

(z+L)-‘LT=(Z-L+LZ-L3+ -)LT 

= LT - LLT + o(llLp) 

and LT is nilpotent. 
We are not going into a detailed analysis of rounding errors in this 

contribution, but it might anyhow be interesting to see how our finding 
relates to the analysis by Bjorck [l], where it is shown that MGSA can be 
performed without reorthogonalization, provided that we start with linearly 
independent vectors. Assuming that rounding errors are the sole cause of the 
lack of orthogonality of Q, we now ask whether Algorithm CGSA or MGSA 
hits convergence already at the first iteration k = 1. 

To see more clearly what happens, let us look at the example of Euchli 
discussed by Bjorck [l]: 

r1 1 11 

A= I E 0 
0 c 

0 I 0’ 
0 0 c 

where E is such that fZ(l + c2) = 1. Taking p = 2;we have 

1 0 

Q= 6 I I --1/a 
l/d5 ' 

Lo 

One step of CGSA yields 

0 1 

yl= 1 [I 0 

1 

u= 0 . [I 0 
6 

.l= 1 0 

--E I 0 ’ 

t i th bTal -_ _ c/a Ila’ll 1 8 1 ’ 
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which shows that we have not yet achieved the goal, but 

c2 
$2 = I I - E/2 

--E/2 ’ 
E 

Q'a"_ c/a , 
[ 1 lla211 0 

which is as good as we can ask for. Following MGSA, we get 

hitting the result already after the first iteration. 
In this case, the iteration matrices of the Gauss-Jacobi and Gauss-Seidel 

algorithms are 

respectively, and we see that is is the near-nilpotency of the Gauss-Seidel 
matrix together with the fact that the right hand side, 

Q’a= [i], 
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is graded with all the weight in the beginning that explains the success of 
MGSA. We also see that the order of the minor steps in MGSA is important; 
reversing it would yield the same iteration matrix, but a starting vector that is 
not graded in the appropriate way. We then need to perform a reorthogonal- 
ization. 

When the vectors of Q are less than perfectly orthogonalized, we get 
slower and slower convergence of the reorthogonalization process, but as long 
as the columns of Q remain linearly independent, we will get convergence 
eventually, since the Gauss-Jacobi and Gauss-Seidel algorithms converge for 
all positive definite matrices. The convergence criterion used to stop the 
iteration is then critical. Gragg et al. [3] have from other assumptions arrived 
at the criterion 

llakll ’ nllak-‘ll (2.2) 

with n a moderately sized number, e.g. l/a (they use CGSA). In our case 
we ask two questions: first, is (2.2) an appropriate criterion to guarantee 
orthogonality, and second, can we promise that (2.2) will ever be satisfied, if 
we start out with a nonorthogonal Q? 

After an intricate navigation through the labyrinth of proofs in [3], we find 
that when Q is far from orthogonal, it is necessary to choose n close to one in 
order to get an affirmative answer to the first question. Moreover, to be 
applicable, (2.2) supposes certain further, so-called T, conditions on the 
orthogonality, which rule out cases far from orthogonality. 

Sidestepping the issue, we note that the deviation from orthogonality of a k 
is just the residual of (2.1): 

and we stop whenever ]]sk]] is small enough compared to ]]ak]l. Now, however, 
we have no guarantee that the second question gets a positive answer; the 
convergence guarantee in [3] is built on the supposition that rounding errors 
eventually “take over” if a is nearly in the span of Q. 

In some cases, we need to orthogonalize against vectors that we know are 
not orthogonal. Consider e.g. the incomplete orthogonalization method of 
Saad [ 121. Then more than a few iterations will be needed for convergence of 
the reorthogonalization, and it is advisable to use a more powerful algorithm. 
The preferred choice, from the author’s point of view, is the LSQR algorithm 
by Paige and Saunders [lo], applied to the system 

minllQT - 41z. T 

It will considerably decrease the number of reorthogonalizations necessary. 
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3. OBLIQUE PROJECTIONS 

Let us now turn to the oblique case, when we make a orthogonal to a 
subspace spanned by W, by subtracting a vector in another subspace, 
spanned by Vj ; neither the W, nor the Vj are assumed to be orthonormal for 
the moment. Such oblique projections are discussed by Saad [14] and Ruhe 
WI. 

We see that now 

a* = a - V.r I ’ 

WkTa * = WkTa - WkT V r i 

showing that for WkTa* = 0 we now get the system 

WkTV,r = WkTa (3-I) 

corresponding to (2.1), and that 

a*= [I-l$(w$g-w;]a, (3.2) 

an oblique projection (- denotes left inverse). It is evident that the solvability 
of the system (3.1) is a condition for an orthogonalization to be possible. 
Typically, assume that k Q j, and W, are linearly independent columns. Then 
the QR factorization 

exists, and one gets 

a*=a-Vc f ’ 

c = QRmTW,Ta. 

The classical Gram-Schmidt algorithm now computes a* this way, by first 
forming Wzu, then making a forward substitution to get R-T W&z, then 
multiplying by Q, and last forming a linear combination of Vr . We also note 
that Q and R can be formed one column at a time for increasing k. 
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The notable fact now is that the modified Gram-Schmidt algorithm does 
not need a forward substitution and makes no explicit use of the nondiagonal 
elements of R. Then a is successively orthogonalized to wr, ws, . , . until wk. If 
wTc = . . . =w~_iu=O, then Wra=(O ,..., wFa)r and R-rW,ra=(O ,..., 
ri; ‘w,Ta)T, and finally 

VjQReTWiTa = Vjqi * q; ‘w:a, 

only using the ith column of Q and W,. This is a considerable simplification, 
compared to the straightforward CGSA approach, and is also likely to be 
more stable numerically. 

In algorithmic notation we get: 

ALGORITHM OMGS (Oblique modified Gram-Schmidt algorithm). 

1. start u(O) = a 
2. for i: = 1 to k do 

1. qi: = VjTWi 
2. for 1: = 1 to i - 1 do 

1. qi: = qi - q[ x($: = q;qi) 
f ~ijc~/(5i’ = l14ill)_l T (,_l) 

(i-1) - vjqiqi wia I 

3. Now a@) satisfies WkT& = 0 

Breakdown may occur in step 2.3 if WiTVj does not have linearly independent 
rows. 

In [ll] the OMGS algorithm is used in conjunction with the Amoldi 
method for computing an orthogonal basis Vj = (pi, us,. . . , uj) of the right 
Krylov subspace of a nonsymmetric matrix, 

K/&U,)= {u~,Bu, ,..., W+J~}, 

with a residual, uj+i = uj+i 
subspace, 

- Vjr, which is orthogonal to the left Krylov 

K;(B,wr)={wr,w~B ,...) WFIF}. 

Another class of problems which can be formulated as orthogonahzation 
by oblique projections is orthogonalization in elliptic norms. Assume that we 
want to make 

ViTMa = 0, 
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by subtracting a vector from Vi. Then 
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a*= [‘-qlyM~)-lyTM]a, 

which is the same as (3.2) if we choose W, = MI+ Note that now the matrix 
of (3.1) is symmetric. 

If Vi has M orthonormal columns, then a simple modified Gram-Schmidt 
orthogonahzation is possible. Such a procedure is used, e.g., in [S] for 
reorthogonalization of basis vectors in a Lanczos program, and an analysis of 
rounding errors which takes the effect of the condition of M into account is 
forthcoming [4]. 

The nonsymmetric Lanczos algorithm computes two bases Qi and Pi” of 
the right and left Krylov subspaces. They are kept biorthogonal, 

PiHQi = Ii, 

and a reorthogonalization is done by (3.2), now also with a nearly diagonal 
but nonsymmetric system (3.1). See the analysis by Saad [13]. 

Some of these results dawned upon the author during enlightening discus- 
sions with W. B. Gragg. The work was written up while the author enjoyed 
the kind hospitality and stimulating environment provided by Gene Golub 
and his group at Stanford. Supported in part by U.S. Department of Energy 
contract DE-AT-03-76ER71030 and a travel grant by Stij?elson .l. C. Kempes 
Minne at Urn& University. 
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