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Abstract

In the context of a toy model we discuss the phenomenon of colliding five-branes, with two of the extra space dimensions
compactified on tori. In one of the branes (hidden world) the torus is magnetized. Assuming opposite-tension branes, we
argue that the collision results eventually in a (time-dependent) cosmological vacuum energy, whose value today is tiny, lying
comfortably within the standard bounds by setting the breaking of the four-dimensional supersymmetry at a TeV scale. The
small value of the vacuum energy as compared with the supersymmetry-breaking scale is attributed to transient phenomena
with relaxation times of order of the age of the Universe. An interesting feature of the approach is the absence of a cosmic
horizon, thereby allowing for a proper definition of an S-matrix. As a result of the string non-criticality induced at the collision,
our model does not provide an alternative to inflation, given that arguments can be given supporting the occurrence of an
inflationary phase early after the collision. The physics before the collision is not relevant to our arguments on the cosmological
constant hierarchy, which are valid for asymptotically long times after it.

 2002 Elsevier Science B.V.

One of the most important unsolved puzzles in
theoretical particle physics is the issue of the smallness
of the cosmological constant (or, better vacuum energy
density) in comparison with other physical scales, for
instance, the scale at which supersymmetry is broken
in supersymmetric theories. The resolution of such
puzzles may lie in the way by which supersymmetry
is broken. One interesting idea is that supersymmetry
is broken somehow cosmologically, in the sense of
its breaking being linked to a non-zero cosmological
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constant. Such an idea has been studied recently in [1]
in the modern context of brane (M) theory.

In Ref. [1], the vacuum energy has been assumed
constant. This might not be necessarily the case,
though. One might encounter transient situations, as in
quintessence models [2], where the “vacuum” energy
is relaxing to zero asymptotically by some power
(usually quadratic) of the cosmological-frame time.
Such scenaria are interesting, since they allow for an
eventual exit from a de Sitter phase, implying non-
eternally accelerating universes. This is a welcome
fact from the point of view of string-theory [3],
given that eternally accelerating (de Sitter) universes
have cosmic horizons, which makes a definition of
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a S(cattering)-matrix connecting asymptotic states
problematic [4,5].

In this Letter we shall adopt this latter point of
view, and present a scenario, albeit crude, according
to which colliding branes in superstring theory may re-
sult in a way of breaking supersymmetry on our four-
dimensional world at a TeV scale, while maintaining
a very small vacuum energy, decreasing with cosmo-
logical time. We should notice that scenaria with time-
dependent vacuum energies have been considered by
many authors in the past [6]. However, the physics of
our model as well as its focus are different. We shall be
interested in attempting to resolve the issue of the hi-
erarchy between the cosmological vacuum energy and
the supersymmetry-breaking scale. The relaxation rate
of the vacuum energy is found to be proportional to
1/t2, where t is the Robertson–Walker time. This is
argued to be sufficient for a resolution of the cosmic
horizon problem as well.

To commence our discussion, let us consider for
definiteness two five-branes of type IIB strings, em-
bedded in a ten-dimensional bulk space–time. Two of
the longitudinal brane dimensions are assumed com-
pactified on a small torus, of radius R. In one of the
branes, from now on called hidden, the torus is mag-
netized with a constant magnetic field of intensity H .
This amounts to an effective four-dimensional vac-
uum energy in that brane of order: Vhidd =R2H 2 > 0.
Notice that such compactifications provide alternative
ways of breaking supersymmetry [7], which we shall
make use of in the current Letter.

In scenaria with two branes embedded in higher-
dimensional bulk space–times, e.g., in the scenario
of [8], it is natural to assume (from the point of view
of solutions to bulk field equations) that the two branes
have opposite tensions. We, therefore, assume that be-
fore the collision the visible brane (our world) has neg-
ative tension Vvis = −Vhidd < 0. A negative tension
brane is consistent with the possibility of accepting su-
persymmetric theories on it (anti-de Sitter-type).

The presence of opposite tension branes implies
that the system is not stable. For our purposes we as-
sume that the two branes are originally on collision
course in the bulk, with a relative velocity u. The col-
lision takes place at a given time moment. This consti-
tutes an event, which in our scenario is identified with
the initial cosmological singularity (big bang) on the
observable world. We note that similar scenaria exist

in the so-called ekpyrotic model for the universe [9].
It must be stressed, though, that the similarity pertains
only to the brane-collision event. In our approach the
physics is entirely different from the ekpyrotic sce-
nario. First of all, the collision is viewed as an event
resulting in non-criticality (departure from conformal
invariance) of the underlying string theory, and hence
in non-vanishing β functions at a σ -model level. On
the contrary, in the scenario of [9] the underlying four-
dimensional effective theory (obtained after integra-
tion of the bulk extra dimensions [9,10]) is assumed al-
ways critical, satisfying classical equations of motion,
and hence vanishing σ -model β functions. Indeed this
latter property leads only to contracting and not ex-
panding four-dimensional universes according to the
work of [10], which constitutes one of the main criti-
cisms of the ekpyrotic universe.

On the other hand, in our non-critical description
of the collision we do not assume classical solutions
of the equations of motion, neither specific potentials
associated with bulk branes, as in [9]. In our approach,
we are interested only in the period after the collision.
In fact, as we shall discuss in this Letter, in order to
be able to use σ -model perturbation theory, one must
restrict oneself at times much longer after the collision.
Before the collision the moving branes may indeed
be viewed as solutions of some classical equations,
as in [9,10]. But the collision-induced deviations from
conformal invariance, we advocate here, play a rôle
analogous to a sort of (stringy) phase transition. In our
Letter we shall only be interested in the phase after the
collision, where the degrees of freedom of the system
and its description may be different: the presence of
non-criticality necessitates the introduction of a whole
new target-space dimension, the Liouville mode [11].

Notably, our perturbative approach is not valid for
times near the collision, where the string theory is
strongly coupled, in contrast to the ekpyrotic universe
case. Moreover, the deviation from conformal invari-
ance, quantified through the appearance of a central
charge deficit Q2, which depends itself on time, is
responsible for the entirely different way of obtain-
ing the fate of the four-dimensional cosmology in our
case. As we shall see, the generalized conformal in-
variance conditions (23), stemming from the Liouville
dressing of the non-critical theory [11], encode the full
dynamics of the four-dimensional theory in our ap-
proach. This dynamics, upon the identification of the
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Liouville mode with time, in a sense that will be spec-
ified in our Letter below, leads to asymptotically ex-
panding universes, in contrast to the contracting uni-
verse situation of the ekpyrotic scenario [10].

Most importantly, it must be stressed that our toy
model should, by no means, be viewed as an alter-
native to inflation, as claimed to be the case of the
ekpyrotic universe [9]. In fact this point appeared to
be the main focus of criticism of that scenario [10].
In our case, inflationary phases of the universe do ex-
ist, as demonstrated recently in the context of non-
supersymmetric type 0 strings upon deviations from
criticality by either quantum fluctuations or brane col-
lisions [3]. The presence of a time-dependent central-
charge deficit Q2(t) is crucial to the effect. As argued
in [3], the effective four-dimensional theory, obtained
after appropriate compactification or integration over
bulk dimensions, has at early times a phase, where
inflation—at least in the sense of exponential expan-
sion of the scale factor—always occur, succeeded by
graceful exit from this de Sitter-type phase, which is
not possible in critical strings.

In our Letter we shall not be interested in such
early times or such important issues as density fluc-
tuations etc. Our toy model is too crude to allow for
a full study of a present-day cosmology with matter.
Instead we would like to make an interesting observa-
tion, by means of this toy model, according to which
the above-mentioned string non-criticality leads, for
asymptotically long times after the collision (includ-
ing present eras), to a natural explanation of a hierar-
chy between the vacuum energy and the scale of su-
persymmetry breaking, as well as the lack of a cosmic
horizon. Nevertheless, we stress again, this toy non-
critical string model is expected, on the basis of the
work of [3], to exhibit an inflationary phase and even-
tual graceful exit from it.

We now make the plausible assumption that, during
the collision, there is electric current transfer from
the hidden to the visible brane, which results in the
appearance of a magnetic field on the visible brane.
We also assume that the entire effect is happening
very slowly and amounts to a slow flow of energy
and current density from the positive energy density
brane to the one with negative tension. In turn, this
results in a positive energy component of order H 2R2

in the vacuum energy of the visible brane world.
This energy component may be assumed to cancel

the pre-existing negative tension asymptotically in
time, leading to a vanishing cosmological constant
at t = ∞. It is our aim to find, by a preliminary σ -
model analysis, the asymptotic form (in large times) of
this time-dependent four-dimensional vacuum energy,
and relate this to supersymmetry breaking. Notice that
such a scenario imitates a slow relaxation period of the
Universe, which still goes on. This is in accordance
with quintessence models [2] which have not yet
reached their equilibrium state.

We should notice at this stage that the initial in-
stability due to the negative tension brane disappears
from the observable sector, given that the cosmologi-
cal time flow begins from the moment of the collision.
As we shall discuss in some detail in this Letter, at the
moment of the collision the conformal invariance of
the σ -model describing excitations on the observable
world is spoiled, thereby implying the need for Li-
ouville dressing [11,12]. This procedure restores con-
formal invariance at the cost of introducing an extra
target-space coordinate (the Liouville mode φ), which
in our model has time-like signature. Hence, initially,
one faces a two-times situation. We argue, though, that
our observable (cosmological) time X0 parametrizes a
certain curve, φ = const × X0 + const′, on the two-
times plane (X0, φ), and hence one is left with one
physical time.

The appearance of the magnetic field on the visible
brane, on the dimensions X4,5, is described (for times
long after the collision) within a σ -model superstring
formalism by the boundary deformation [13]:

(1)

VH =
∫
∂Σ

A5∂τX
5 − iF05ψ̄

0ρ0ψ5 − iF45ψ̄
4ρ0ψ5,

where A5 = eεX
0
HX4 and Fµν is the (Abelian) field

strength of Aµ, X0 is the time and ∂τ denotes tangen-
tial σ -model derivative on the world-sheet boundary.
The σ -model deformation (1) describes open-string
excitations attached to the brane world. In our ap-
proach, for convenience, we have set the charges at
the end of the open string on the visible world equal
to one. In (1) the presence of the quantity ε → 0+ re-
flects the adiabatic switching-on of the magnetic field
after the collision. It should be remarked that in our ap-
proach the quantity ε is viewed as a renormalization-
group scale parameter, which, as we shall argue below,
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flows in such a way that any contribution from the ex-
ponent εX0 to H is cancelled after Liouville dress-
ing.1

In addition to the magnetic field deformation,
the σ -model contains also boundary deformations
describing the ‘recoil’ of the visible world due to the
collision:

(2)Vrec =
∫
∂Σ

Y6(X0)∂nX
6 + i∂0Y6ψ̄

0ρ1ψ6,

where Y6(X0) = uX0eεX
0 , ∂n denotes normal σ -

model derivative on the world-sheet boundary and we
have assumed for simplicity that the motion of the
branes is along the sixth bulk dimension. In (2) u

denotes the recoil velocity of the visible world, which
is of the order of the incident velocity of the hidden
brane.2

As can be seen straightforwardly, by an operator-
product-expansion analysis with the free string world-
sheet stress tensor, the presence of the exponential
eεX

0 implies a small but negative world-sheet anom-
alous dimension −ε2/2 < 0, and hence the relevance
of both operators (1), (2) from a renormalization-
group point of view. By virtue of the Zamolodchikov’s
c-theorem [14] there is a central-charge deficit Q2,
whose rate of change with the renormalization-group
scale on the world sheet T is:

(3)
d

dT Q2 = −βiGij βj .

A straightforward computation of the two point cor-
relators between the operators VH ,Vrec yields the
Zamolodchikov metric in coupling constant space
[14]:

GHH

= |z|4〈eεX0(z)X4(z)∂τX
5(z)eεX

0(0)X4(0)∂τX5(0)
〉

(4)∼ e4ε2ln|L/a|2ln|L/a|2

1 At this point we should remark that one could have used a
different way of parametrizing the adiabatic switching-on of the
magnetic field, for instance, a function H(1 − e−εX0

), ε → 0+.
The conformal field theory analysis in that case is similar to the
case considered above, and will not be presented here.

2 Notice that a similar formalism describes also a plastic colli-
sion, where the two branes merge to a single one after the collision.

and similarly for Guu. The non-diagonal elements
of Gij vanish. It can be easily checked that the
contributions from the world-sheet fermionic fields are
subdominant as compared with the bosonic ones. We
may identify

(5)ε−2 ∼ ln|L/a|2,
so that the above correlators scale as space–time
length squared. It is a rather established fact that
such an identification is natural, if not unavoidable,
once one introduces simple operators with anomalous
dimension related to a new space–time scale in their
definition [15,16]. The above considerations imply
that the Zamolodchikov metric is singular in the limit
ε → 0+:

(6)GHH ∼ Guu ∼ 1
ε2 .

On the other hand, the σ -model β-functions for
the couplings H and u, corresponding to the vertex
operators (1) and (2), respectively, are: β�H = d �H

dT =
− ε2

2
�H , βū = dū

dT = − ε2

2 ū, where the barred notation
pertains to renormalized (scale-ε dependent) quanti-
ties, and T ∝ ε−2 ∼ ln|L/a|2 from (5). These relations
imply that the scale-ε dependent couplings have the
form [17]: �H ≡ εH , ū ≡ εu, where H,u are scale-ε
independent quantities.

From the above considerations one arrives at the
following differential equation for the central charge
deficit:

d

dT Q2 ∼ −H 2 + u2

T 2

(7)→ Q2(T )=Q2
0 + H 2 + u2

T ,

where, for formal completeness we give here the
more general case of n compactified tori, with n = 1
corresponding to a five-brane, n = 2 to a seven-
brane and n = 3 to a nine-brane, which exhausts the
possibilities in the case of type IIB superstring we
are dealing for definiteness here. The quantity Q2

0 =
Q2(∞) is a constant, and consists of the vacuum
energy density contributions of the visible brane world
Vvis < 0 and the energy density of the magnetic field
H 2R2n > 0. A physical meaning to (7) can be given
by noting that its H -dependent term represents the
electric-field energy density on the brane

∫
tori F

2
05 ∝

ε2H 2R2n, induced by the time-varying magnetic field
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HeεX
0 . The u-dependent term on the other hand

represents recoil kinetic energy contributions, which
in our case are subleading. As we shall explain
later on, the relaxation situation we encounter here
implies that Q0 is the equilibrium vacuum energy
density, which we take to be zero Q2

0 = 0 due to the
cancellation between the initial vacuum energies of the
colliding branes [8].

The non-conformal deformed σ -model can become
conformal as usual by Liouville dressing [11]. Let ϕ be
the Liouville mode with σ -model action

(8)Lφ =
∫
Σ

Q2(T )∂ϕ∂̄ϕ +
∫
Σ

R(2)Q2(T )ϕ + · · · ,

where the zero mode of ϕ is related to the renormaliza-
tion-group scale ln|L/a|2 ∼ T , being viewed as a co-
variant renormalization scale on the world sheet [12].
The dots in (8) express possible world-sheet boundary
extrinsic curvature terms, with which we shall not deal
explicitly here.

It is customary [11] to normalize the kinetic term
of the Liouville action by rescaling

(9)ϕ → φ ≡Q(T )ϕ,

which plays the role of an extra target space–time
dimension. Due to the supercritical nature of the
central-charge deficit (7) at scales T < ∞, Q2(T ) >

0, the extra Liouville dimension is time-like [18], and
therefore one faces a two-target-times situation.

We now come to discuss the dressing of the
vertex operators VH ,Vu. This amounts to introducing
the Liouville field in the definitions of A5, Y6, that
operates as one more space–time coordinate resulting
in conformally invariant boundary deformations. The
new fields are given by

A5(X0,X4, φ) =HX4eεX
0+αφ,

(10)Y6(X0, φ)= uX0eεX
0+αφ.

The world-sheet supersymmetrized vertex operators
are now given by

VH =
∫
∂Σ

A5∂τX
5 − iF05ψ̄

0ρ0ψ5

− iF45ψ̄
4ρ0ψ5 − iFφ5ψ̄

φρ0ψ5,

(11)

Vrec =
∫
∂Σ

Y6∂nX
6 + i∂0Y6ψ̄

0ρ1ψ6 + i∂φY6ψ̄
φρ1ψ6,

where ψφ is the supersymmetric partner of the Liou-
ville field. The gravitational (Liouville) anomalous di-
mensions α are given by [11]:

(12)α = −Q(T )

2
+

√
Q2(T )

4
+ ε2

2
.

As a σ -model, this (d,2) theory is conformal [11].
From the work of [7] it becomes clear that the cou-

pling constant H is associated with supersymmetry-
breaking mass splittings. This has to do with the dif-
ferent way fermions and bosons couple to an external
magnetic field. The mass splittings squared of an open
string are generically of order δm2 ∼H . To be precise,
in the case of a constant magnetic field, examined in
[7], the supersymmetric mass splittings are

(13)*m2
string = 4HΣ45,

with Σ45 the spin operator on the plane of the torus.
To ensure the phenomenologically reasonable order
of magnitude of a TeV scale, one must assume very
small [7] H ∼ 10−30 � 1 in Planck units. In a similar
manner, one assumes naturally that the velocities u

are also much smaller than one, in order for our
perturbative world-sheet analysis to be valid [15,
17]. For such small values of the couplings H,u

one has from (7), (12) that the Liouville anomalous
dimensions are of order α ∼ ε/

√
2, ignoring H ,

u dependent terms, which are subleading for ε � 1.
In our case, we have a slowly varying magnetic

field Heαφ+εX0 , from which we may deduce approxi-
mately the corresponding mass squared splittings:

(14)*m2
string ∼Heαφ+εX0

Σ45.

The so-obtained mass splittings are constant upon the
requirement that the flow of time X0 and of Liouville
mode φ are correlated in such a way that

(15)εX0 + εφ/
√

2 = constant,

or at most slowly varying. Notice that deviations
from the condition (15) would result in very large
negative-mass squares, which are clearly unstable
configurations. Hence, the identification (15) seems to
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provide a resolution of this problem.3
The condition (15) implies a connection of the zero

mode of the Liouville field, T , with the target time
X0. In this sense Q2

0 = Q2(∞) represents the central
charge deficit of the theory asymptotically in time.
Given that the initial vacuum energy on the observable
brane is assumed to be cancelled during the collision
with the hidden world, where the flow of our cosmic
time (and hence the Liouville scale) starts, it is natural
to assume that Q2

0 = 0, which justifies our choice
above. Note also that parametrizing this condition as
X0 = −t , φ0 = √

2 t , and taking into account that,
for convergence of σ -model path integration, it is
formally necessary to work with Euclidean signature
X0 [15], the induced metric on the hypersurface (15)
in the extended space–time acquires a Minkowskian-
signature Robertson–Walker form:

ds2
hypersurf = −(dφ0)

2 + (
dX0)2 + · · ·

(16)= −(dt)2 + · · · ,
where dots denote spatial parts.

At this stage an important comment is in order
regarding the stability of the condition (15) in the
context of Liouville strings. In our approach so far we
have assumed a situation in which the magnetic field is
adiabatically switched-on after the collision and then
asymptotes to a constant value. On the other hand,
one may consider an equally plausible situation in
which the magnetic field is switched-on on our world,
due to transient phenomena described above, and then
relaxes to zero again. In such a case the magnetic field
intensity on the brane world assumes the form

(17)H
(
Θε

(−X0) +Θε

(
X0)),

where Θε(X) = −i
∫

dω
ω−iε

eiωX , ε → 0+, denotes
the regularized Heaviside function [15]. A contour
integral representation yields Θε(X) = θ(X)e−εX,
with X > 0 and θ(X) the conventional Heaviside
(unregularized) function.

3 Note, however, that if one used the alternative representation
of the adiabatic switching-on of the magnetic field H(1 − e−εX0

),
ε > 0, the masses would be finite as X0 → ∞. Nevertheless the
condition (15) would still be necessary from the physical point of
view of having a single observable temporal coordinate in space–
time. We discuss some consequences of the case where φ and X0

are independent variables later on in the Letter.

In this case, one obtains a pair of independent
σ -model deformations, corresponding to the two Θ

functions in (17). The Liouville dressing procedure
is now a bit more complicated, but as we shall argue
below, this case yields indeed the dynamical stability
requirements for the condition (15). To this end, we
first remind the reader that in our previous analysis we
have used the Liouville anomalous dimensions (12).
The restoration of conformal invariance by Liouville
dressing, however, actually requires in general two sets
of anomalous dimensions α± [11]

(18)α± = −Q(T )

2
±

√
Q2(T )

4
+ ε2

2
.

In Liouville theory it is common to ignore the α− as
leading to states that “do not exist”, as leading to non-
normalizable states in the semiclassical limit where
the central charge of the theory goes to infinity. This
is what we have done so far. However, in the context
of string theory, with target-space–time interpretation,
the “wrong sign” states corresponding to α− may
not be excluded, and under certain conditions such
“wrong-sign” dressing leads to physical states. This
is our case here, since as we shall see below, one
actually does not face a situation with divergent central
charge deficit which is cut off at a finite value at
the ultraviolet world-sheet fixed point of the theory
(Liouville scale φ0 → 0). Using therefore opposite
sign screening Liouville operators for the two vertex
operators corresponding to the two Θ functions in
(17), one encounters a supersymmetry-breaking mass
spectrum for the string theory at hand of the form:

(19)*m2
string ∼ 2H cosh

(
ε√
2
φ + εX0

)
Σ45.

It is evident that in such a case minimization of
the potential energy in target space based on (19)
will lead to the condition (15), thereby providing us
with a dynamical stability argument in favour of the
identification of the Liouville world-sheet zero mode
with the target time. Physically, one may interpret this
result as implying that a time-varying magnetic field
of the form (17) induces back reaction of strings onto
the space–time in such a way that the mass splittings
of the string excitation spectrum as a result of the field
are actually stabilized.
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From the Liouville action (8) we then observe that
in our case the dilaton field is

(20)Φ =Qφ =Q2ϕ ∼ (
H 2 + u2),

that is, one faces a situation with an asymptotically
constant dilaton. This is a welcome fact, because
otherwise, the space–time would not be asymptotically
flat, and one could face trouble in appropriately
defining masses.4

In the case of a constant dilaton the vacuum energy
is determined by the central-charge charge deficit Q2

(7), which in our case is:

(21)Λ = R2n

φ2
0

(
H 2 + u2)2

,

where φ0 is the world-sheet zero mode of the rescaled
Liouville field (9).

It must be stressed that, due to the condition
StrM2 = 0, which is a characteristic feature of the
magnetically-induced supersymmetry-breaking scena-
rio of [7], there are no quadratically divergent terms
in the one-loop effective potential of the low-energy
theory, which assumes the form [19]:

V1 = V0 + 1
64π2 StrM0Λ4

uv ln
Λ2

uv

µ2

+ 1
32π2 StrM2Λ2

uv

+ 1
64π2 StrM4 ln

M2

Λ2
uv

+ · · · ,

(22)StrMn =
∑
i

(−1)2Ji (2Ji − 1)mn
i ,

where µ is a scale, and V0 is a field-independent
contribution. In our case V0 is given by Λ in (21).
Note also that in a supersymmetric theory (even
if supersymmetry is broken) StrM0 = 0, due to a
balance between fermionic and bosonic degrees of
freedom. If the supersymmetry is broken at a TeV
scale, then, the remaining StrM4 ln M

Λuv
term in (22),

which induces quadratic corrections to the Higgs
mass, produces a stable hierarchy.

We now remark that the restoration of the con-
formal invariance by the Liouville mode results in

4 For instance, in theories with linear dilatons in time asymptot-
ically [18], q0X

0, it is known that boson masses acquire tachyonic
shifts δm2

B
= q2

0 , while fermion masses remain unaffected.

the following equations for the σ -model background
fields/couplings gi near a fixed-point of the world-
sheet renormalization group (large-times cosmology)
we restrict ourselves here [3,11,12,20]:

(23)
(
gi

)′′ +Q
(
gi

)′ = −βi(g),

where the prime denotes derivative with respect to the
Liouville zero mode φ0, and the sign on the right-hand
side is appropriate for supercritical strings [18] we are
dealing with here. In fact the βi functions satisfy a
gradient flow property

(24)βjGij = δC[g]
δgi

,

where Gij = z2z̄2〈Vi(z)Vj (0)〉 is the Zamolodchikov
metric in string theory space [14], with Vi the appro-
priate vertex operators corresponding to the couplings
gi , and C[g] is the effective action which can be iden-
tified with the central charge deficit squared Q2[g,φ0]
in our case.

It should be mentioned for completeness that the
Liouville equations (23), (24), which restore con-
formal invariance, can always be viewed as confor-
mal invariance conditions of a σ -model in (d + 1)-
dimensional space–time, with the extra coordinate
provided by the Liouville mode φ. They themselves
can be derived from a (d + 1)-dimensional action,
since the appropriate (Helmholtz) conditions are sat-
isfied in this case [12]. Close to a fixed point, i.e., up
to order g2 in weak σ -model couplings/background
fields, the action has the form [12]:

(25)S =
∫

dφ0

(
1
2
gi

′Gij gj
′ −C[g]

)
.

Indeed, it can be readily checked that the Lagrange
equations in theory space of this action reproduce
the conformal invariance conditions (23), provided
G′
ij =QGij , a property, which as explained in detail in

[12], characterizes Liouville dressing. Terms involving
gi

′
∂mGij gj

′ are of order higher than g2 and hence are
ignored in our approach here. Notice that such an ap-
proach has also been used in [20] in discussing string
cosmology and its relation to the renormalization-
group on the world-sheet.

In our case gi is the metric Gµν , the dilaton Φ and
the electromagnetic field Aµ. The latter has already
been discussed, and in our case, for asymptotic times
we are interested in, the dilaton is constant (20). In
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what follows, therefore, we shall use (23) to determine
the form of the metric Gµν , assuming a Robertson–
Walker universe with scale factor a(t, φ0). We shall
be interested only in the effective four-dimensional
low-energy theory, obtained by integrating our extra
compact and bulk dimensions, as in [3].

The relevant four-dimensional equations are (ignor-
ing contributions from the recoil velocities u assumed
of order lower than (or at most similar to) H ):

3
ä

a
= 0,

(26)−2
(
ȧ

a

)2
− ä

a
= 2

a′′

a
+ 2

(
a′

a

)2
+ 2

H 2

φ0

a′

a
,

where the dot denotes derivative with respect to time
t =X0. From these equations we obtain the following
solution for the scale factor (in string units):

(27)a(t, φ0)= a0φ
b
0 , b = 1

2
− H 2

2
� 1

2
.

We stress that this is the only acceptable solution from
the point of view of Liouville dressing. The constant
solution b = 0, which naively seems to be allowed, is
excluded by the fact that such a solution corresponds
to trivial gravitational dressing, g′ = 0, which occurs
if and only if Q2(T ) = 0 [11] (critical-string, decou-
pling of the Liouville mode), in contradiction to our
case, where Q2 > 0 (7).

We now recall (15), according to which φ0 is
related linearly to the cosmic time X0 = −t , φ0 =√

2 t . For asymptotically large times, therefore, this
implies that the scale factor and the cosmological
“vacuum” energy in our case behave as follows:

(28)a(t)∼ a0
√
t, Λ∼ H 4R2n

t2
.

We should remark that, since the dilaton is constant,
the dilaton equation does not yield any further infor-
mation apart from consistency checks, which are eas-
ily performed. In particular, renormalizability of the
σ -model requires an additional constrain, namely the
Curci–Paffutti equation [21] which relates the dilaton
β-function to the rest. This is valid for non-vanishing
β-functions, and hence is applicable to our case as
well [3]. It can be seen easily that from this equation
one obtains no other information than a consistency
check on the scaling behaviour of the central charge
deficit Q2 obtained above (7).

From (28) we observe that for times t of the order
of the age of the observable universe, t ∼ 1060 in
Planck units, and H = 10−30 as required by TeV scale
supersymmetry breaking, the cosmological vacuum
energy is extremely suppressed at present according
to this model. Significantly larger relaxation rates are
obtained if the recoil effects are the dominant ones,
a case which will be discussed briefly below. On the
other hand, the

√
t scaling of the scale factor implies

an asymptotically decelerating universe, ä ∼ −t−3/2,
but on the other hand there is no cosmic horizon,
and hence in this universe one can define properly
asymptotic states, and thus an S-matrix.

Notice, therefore, that in our non-critical string sce-
nario, one does indeed obtain an expanding universe,
in contrast to standard ekpyrotic scenaria [9,10], based
on critical strings and specific solutions to classical
equations of motion. Such scenaria correspond to a
vanishing Q2, and hence βi = 0 as discussed above
in (23). In such a case, the effective actions used in
[9,10] are given by the flow function C[g] for the spe-
cific set of backgrounds used in those works. As we
have seen, the presence of non-zero deficits Q2 and
Liouville dependence leads to very different physics.

One of the most important features of the existence
of a non-equilibrium phase of string theory due to the
collision is the possibility for an inflationary phase.
Although the physics near the collision is strongly
coupled, and the σ -model perturbation theory is not
reliable, nevertheless one can give compelling phys-
ical arguments favouring the existence of an early
phase of the brane world where the four-dimensional
universe scale factor undergoes exponential growth
(inflation). This can be understood as follows: in our
model we encounter two type II string theory branes
colliding, and then bouncing back. From a stringy
point of view the collision and bounce will be de-
scribed by a phase where open strings stretch between
the two branes worlds (which can be thought of as ly-
ing a few string scales apart during the collision). Dur-
ing that early phase the excitation energy of the brane
worlds can be easily computed by the same methods
as those used to study scattering of type II D-branes in
[22]. Essentially, the time integral of the relevant po-
tential energy yields the scattering amplitude for the
two branes, which was computed in [22]. According
to standard arguments of type II string theory the ex-
change of open strings between two parallel D-branes
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is described by the emission of open-string pairs, and
thus an annulus world-sheet diagram.5 As a result of
the annulus graphs, the exchange of pairs of open
strings results in the appearance of “spin structure fac-
tors” in the scattering amplitude, which are expressed
in terms of appropriate sums over Jacobi Θ functions.
In particular, for small relative velocities u� 1 of the
colliding branes, the appropriate spin structures start
of at quartic order in u [22]:

∑
α=2,3,4

eαΘα(u|τ )Θ3
α(0|τ )∼O

(
u4),

(29)e2 = −e3 = e4 = 1.

This is a result of the property of the Jacobi func-
tions that are even functions of their argument, as well
as that the Θ function satisfies by definition a “dif-
fusion” equation: [∂τ + i

4π ∂
2
ν ]Θα(ν|τ ) = 0. The re-

sulting excitation energy is therefore of order O(u4)
and may be thought of as an initial value of the cen-
tral charge deficit of the non-critical string theory de-
scribing the physics of our brane-world after the col-
lision. The deficit Q2 is thus cut off at a finite value
in the ultraviolet, and hence one never encounters a
semiclassical limit for the underlying world-sheet field
theory. This justifies, as already mentioned, the use
of “wrong-sign” Liouville screening operators in this
case. One may plausibly assume that the central charge
deficit remains constant for some time, which is the era
of inflation, as expressed by Eq. (23) for the scale fac-
tor. For (finite) constant Q2 = Q2∗ = O(u4) it is easy
to infer from (23) a scale factor exponentially growing
with the Liouville zero mode a(φ0) = eQ∗φ0/2. Upon
the condition (15), then, one obtains an early inflation-
ary phase after the collision, in contrast to the critical-
string based arguments of [10]. The duration of the
inflationary phase is tinf ∼ 1/Q∗ ∼ O(u−2), which
yields the conventional values of inflationary models
of order tinfl ∼ 109tPlanck for u2 ∼ 10−9. This is com-
patible with the non-relativistic approximation for the
D-branes, where our formalism is valid. Note that for
such values of u the recoil effect is the dominant one
in the relaxation of the vacuum energy (21), while the

5 This is in contrast to the type I string case where the
corresponding exchange of open strings is described by a world-
sheet disk to lowest order.

magnetic field is mainly responsible only for the su-
persymmetry breaking.

A final comment on the issue of inflation concerns
the role of the dilaton as an inflaton field. During
the phase of constant Q∗ one may imagine the
appearance of a scalar dilaton field in (X0, �x ) space–
time which is linear in X0: Φ = Q∗X0 such that after
the condition (15) it cancels any dilaton effects, in
the sense of a trivial world-sheet curvature coupling.
This is a consistent solution of the conditions (23),
implying a constant dilaton β-functionQ2∗, as required
in non-critical strings with constant central-charge
deficit [18]. Note that in this scenario, asymptotically
in time, the dilaton Φ(X0, �x ) tends to a constant, so
on the hypersurface (15) of the D+1 extended space–
time resulting after Liouville dressing the dilaton plays
no actual rôle in the scenario. However, we stress that
there is a dilaton field Φ(X0, �x ) at the initial stage
after the collision, which is non-trivial on the (D+ 1)-
dimensional extended space–time, and hence one can
safely speak about a dilaton acting like an inflaton field
in this scenario.

Before closing we would like to make some brief
remarks on the possible relevance of this toy model
to realistic present-era cosmology, although we stress
again, this is not the main purpose of our Letter. If
one takes into account recent astrophysical claims [2]
according to which the present era of the universe
appears accelerating, then our results above seem to be
ruled out by experiment. Of course the naive way out
would be to observe that the above results are valid for
times much later than the present era where one sees
the acceleration.

Another interesting feature is the order of magni-
tude of the present-era vacuum energy. Physically, the
relaxation to zero of the vacuum energy we find here
seems quite plausible, given the transient nature of the
collision of the two-branes. It is interesting to notice
that its order of magnitude depends crucially on which
is the dominant effect in the relaxation rate (21). If one
insists on getting an inflationary era that lasts accord-
ing to arguments of standard cosmology, then, as we
have seen above, one requires recoil velocities of or-
der u < 10−4, which imply that recoil of the colliding
branes is the dominant effect in providing (long after
the scattering event) a vacuum-energy relaxation rate
of order u4/t2 upon the identification (15) of Liouville
mode with target time. This would then yield a vac-
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uum energy which lies comfortably within the current
observations [3,6].6

In this latter respect, however, an interesting obser-
vation can be made regarding our results. Notice that
in case one does not care too much about the order
of magnitude of the duration of the inflationary phase,
but restricts oneself to the case where the recoil of the
branes is subdominant as compared to the magnetic
field effects, then the coefficient of the 1/φ2

0 scaling
in (21) is of order H 4, which by itself yields the or-
der 10−120 in Planck units, in the case of supersym-
metry breaking advocated here. This value is of the
same order as the one claimed by the astrophysicists
to have been “observed” from the preliminary super-
novae data for the current era cosmological vacuum
energy. Interestingly enough, therefore, the order of
this coefficient by itself is what one needs [1] to re-
solve the supersymmetry-breaking/cosmological con-
stant hierarchy. In our case naively, one could have ob-
tained this latter result had one not made the connec-
tion of the Liouville scale with the time (15). Indeed,
in such a case, where φ and X0 are independent vari-
ables, which notably is mathematically consistent, one
can freeze the renormalization group scale φ0 to or-
der Rn, to obtain a vacuum energy contribution (21)
of the required magnitude. This vacuum energy is in-
dependent of time, and the solution of the metric equa-
tions (26) varies only with respect to the scale φ0 (cf.
(27)). Notice that this scenario is compatible with the
alternative way of parametrizing the adiabatic switch-
ing-on of the magnetic field on the observable brane,
H(1 − e−εX0

).
However, as we have explained above, the transient

nature of the colliding branes scenario, we are advo-
cating here, seems to imply that the correct physical
picture is the one in which (15) is valid and the exci-
tation energy of the non-equilibrium system is given
by a relaxing-to-zero time-dependent Λ (28), as in
quintessence models [2]. The equilibrium state, which
is the true ground state of the relaxing system, is then
only reached asymptotically in time, and in our case

6 Notice that the coefficient of 1/t2 is of the same order as the
initial vacuum energy Q2∗ ∼ u4 during the inflationary era for type II
strings. This suggests that a natural interpolating function for Q2(t)
from the end of inflation t0 ∼ 109 (in Planck (string) units) until the
present era would be Q2(t) = u4/[(t − t0)

2 + O(1)]. At present,
however, we cannot support this by any quantitative analysis.

has vanishing energy, due to the cancellation of the
(positive) supersymmetry breaking energy contribu-
tion H 2 by the opposite in sign vacuum energy con-
tribution of the negative tension brane, assumed to be
our world. As we mentioned above, the initial insta-
bility due to the presence of negative tension branes is
not necessarily a drawback in our cosmological non-
equilibrium framework. The phenomenology of this
transient scenario, therefore, seems to favour the recoil
effect as the dominant one in the vacuum energy relax-
ation rate, without affecting our previous arguments
on supersymmetry breaking which solely occurs due
to the magnetic field.

This concludes our discussion on this toy model. It
would be interesting to attempt and construct phenom-
enologically realistic supersymmetric brane–universe
models along the lines outlined above, exhibiting an
accelerating phase at late times. Such a situation is
encountered in the non-supersymmetric case of [3].
The hope is that a realistic stringy universe model can
be found, which has a late times accelerating phase
and is capable of resolving the hierarchy between
the supersymmetry-breaking scale and the present-era
cosmological vacuum energy. This is left for future
work.
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