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In this paper, using the comparison theorem, we investigate some Pachpatte type integral
inequalities on time scales, which provide explicit bounds on unknown functions. Our
results extend some known dynamic inequalities on time scales, unify and extend some
continuous inequalities and their corresponding discrete analogues. Some applications of
the main results are given in the end of this paper.
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1. Introduction

The theory of time scales, which has recently received a lot of attention, was initiated by Hilger [1] in his Ph.D. thesis
in 1988 in order to contain both difference and differential calculus in a consistent way. Since then many authors have
expounded on various aspects of the theory of dynamic equations on time scales. For example, we refer the reader to the
papers [2–7], the monographes [8,9] and the references cited therein. At the same time, a few papers [10–14] have studied
the theory of integral inequalities on time scales.
In this paper, we study some Pachpatte type inequalities on time scales, which extend some known dynamic inequalities

on time scales, unify and extend some continuous inequalities and their corresponding discrete analogues. This paper is
organized as follows: In the next section we present some basic definitions and preliminary results with respect to the
calculus on time scales, which can also be found in [8,9]. In Section 3 we deal with our Pachpatte type inequalities on time
scales. In Section 4 we give some applications of our main results.

2. Some preliminaries on time scales

In what follows, R denotes the set of real numbers, Z denotes the set of integers.
A time scale T is an arbitrary nonempty closed subset of R. The forward jump operator σ on T is defined by

σ(t) := inf{s ∈ T : s > t} ∈ T for all t ∈ T.

In this definition we put inf∅ = supT, where ∅ is the empty set. If σ(t) > t , then we say that t is right-scattered. If σ(t) = t
and t < supT, then we say that t is right-dense. The graininessµ : T→ [0,∞) is defined byµ(t) := σ(t)− t . The set Tκ is
derived from T as follows: If T has a left–scattered maximumm, then Tκ = T− {m}; otherwise, Tκ = T.
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We say that f : T→ R is rd-continuous provided f is continuous at each right-dense point of T and has a finite left-sided
limit at each left-dense point of T. As usual, the set of rd-continuous functions is denoted by Crd. We say that p : T→ R is
regressive provided 1 + µ(t)p(t) 6= 0 for all t ∈ T. We denote by R the set of all regressive and rd-continuous functions.
We define the set of all positively regressive functions by R+ = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}. Obviously, if
p ∈ Crd and p(t) ≥ 0 for t ∈ T, then p ∈ R+.

Theorem 2.1. If p ∈ R and fix t0 ∈ T, then the exponential function ep(·, t0) is for the unique solution of the initial value
problem

x1 = p(t)x, x(t0) = 1 on T.

Theorem 2.2. Let t0 ∈ Tκ and w : T × Tκ → R be continuous at (t, t), where t ≥ t0, t ∈ Tκ with t > t0. Assume that
w1(t, ·) is rd-continuous on [t0, σ (t)]. If for any ε > 0, there exists a neighborhood U of t, independent of τ ∈ [t0, σ (t)], such
that

|w(σ(t), τ )− w(s, τ )− w1(t, τ )(σ (t)− s)| ≤ ε|σ(t)− s| for all s ∈ U,

wherew1 denotes the derivative of w with respect to the first variable, then

g(t) :=
∫ t

t0
w(t, τ )1τ

implies

g1(t) =
∫ t

t0
w1(t, τ )1τ + w(σ(t), t).

The following theorem is a foundational result in dynamic inequalities.

Theorem 2.3 (Comparison Theorem). Suppose u, b ∈ Crd, a ∈ R+. Then

u1(t) ≤ a(t)u(t)+ b(t), t ≥ t0, t ∈ Tκ

implies

u(t) ≤ u(t0)ea(t, t0)+
∫ t

t0
ea(t, σ (τ ))b(τ )1τ , t ≥ t0, t ∈ Tκ .

3. Main results

In this section, we deal with Pachpatte type inequalities on time scales. For convenience, we always assume that
t ≥ t0, t ∈ Tκ .

Theorem 3.1. Assume that u, f , p ∈ Crd, u(t), f (t) and p(t) are nonnegative, and u0 is a nonnegative constant. If w(t, s) is as
defined in Theorem 2.2 such that w(t, s) ≥ 0 andw1(t, s) ≥ 0 for t, s ∈ T with s ≤ t, then

u(t) ≤ u0 +
∫ t

t0
[f (τ )u(τ )+ p(τ )]1τ +

∫ t

t0
f (τ )

(∫ τ

t0
w(τ, s)u(s)1s

)
1τ , t ∈ Tκ (E1)

implies

u(t) ≤ u0 +
∫ t

t0

{
p(τ )+ f (τ )

[
u0ef+A(τ , t0)+

∫ τ

t0
ef+A(τ , σ (s))p(s)1s

]}
1τ , t ∈ Tκ , (I1)

where

A(t) = w(σ(t), t)+
∫ t

t0
w1(t, s)1s. (3.1)

Proof. Define a function z(t) by the right hand of (E1). Then z(t0) = u0, u(t) ≤ z(t), and

z1(t) = f (t)u(t)+ p(t)+ f (t)
∫ t

t0
w(τ, s)u(s)1s

≤ p(t)+ f (t)
[
z(t)+

∫ t

t0
w(τ, s)z(s)1s

]
, t ∈ Tκ . (3.2)
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Let

v(t) = z(t)+
∫ t

t0
w(τ, s)z(s)1s. (3.3)

Obviously, v(t0) = z(t0) = u0, z(t) ≤ v(t), and z1(t) ≤ p(t)+ f (t)v(t). Using Theorem 2.2, we have

v1(t) = z1(t)+ w(σ(t), t)z(t)+
∫ t

t0
w1(t, s)z(s)1s

≤ p(t)+
(
f (t)+ w(σ(t), t)+

∫ t

t0
w1(t, s)1s

)
v(t)

= p(t)+ (f (t)+ A(t))v(t), t ∈ Tκ ,

where A(t) is as defined in (3.1). It is easy to see that (f +A) ∈ R+. Therefore, using Theorem 2.3, from the above inequality,
we have

v(t) ≤ u0ef+A(t, t0)+
∫ t

t0
ef+A(t, σ (s))p(s)1s, t ∈ Tκ . (3.4)

Combining (3.2)–(3.4), we obtain

z1(t) ≤ p(t)+ f (t)
[
u0ef+A(t, t0)+

∫ t

t0
ef+A(t, σ (s))p(s)1s

]
, t ∈ Tκ . (3.5)

Setting t = τ in (3.5), integrating it from t0 to t , and noting z(t0) = u0 and u(t) ≤ z(t), we easily obtain the desired
inequality (I1). The proof is complete. �

Remark 3.1. If p(t) = 0 and w(t, s) = w(s) in Theorem 3.1, then the inequality given in (I1) reduces to the inequality in
[13, Theorem 1].

Remark 3.2. Let p(t) = 0 in Theorem 3.1. If T = R, then we can obtain Theorem 2.1(a1) in [15]. If T = Z, then we easily
obtain Theorem 2.3 (c1) in [15].

Remark 3.3. Let w(t, s) = w(s) in Theorem 3.1. If T = R, then the inequality established in Theorem 3.1 reduces to the
inequality established by Pachpatte in [16, Theorem 1.7.2 (i)]. If T = Z, then from Theorem 3.1, we easily obtain Theorem
1.8.7 in [17].

Theorem 3.2. Assume that u, f , p ∈ Crd, u(t), f (t) and p(t) are nonnegative, and u0 is a nonnegative constant. If w(t, s) is as
defined in Theorem 2.2 such that w(t, s) ≥ 0 andw1(t, s) ≥ 0 for t, s ∈ T with s ≤ t, then

u(t) ≤ u0 +
∫ t

t0
f (τ )u(τ )1τ +

∫ t

t0
f (τ )

(∫ τ

t0
[w(τ, s)u(s)+ p(s)]1s

)
1τ , t ∈ Tκ (E2)

implies

u(t) ≤ u0 +
∫ t

t0
f (τ )

[
u0ef+A(τ , t0)+

∫ τ

t0
ef+A(τ , σ (s))p(s)1s

]
1τ , t ∈ Tκ , (I2)

where A(t) is as defined in (3.1).

Proof. Define a function z(t) by the right hand of (E2). Then z(t0) = u0, u(t) ≤ z(t), and

z1(t) = f (t)u(t)+ f (t)
∫ t

t0
[w(τ, s)u(s)+ p(s)]1s

≤ f (t)
[
z(t)+

∫ t

t0
[w(τ, s)z(s)+ p(s)]1s

]
, t ∈ Tκ . (3.6)

Let

m(t) = z(t)+
∫ t

t0
[w(τ, s)z(s)+ p(s)]1s, t ∈ Tκ . (3.7)
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It is easy to see thatm(t0) = z(t0) = u0, z(t) ≤ m(t), and

m1(t) = z1(t)+ w(σ(t), t)z(t)+
∫ t

t0
w1(t, s)z(s)1s+ p(t)

≤

(
f (t)+ w(σ(t), t)+

∫ t

t0
w1(t, s)1s

)
m(t)+ p(t)

= (f (t)+ A(t))m(t)+ p(t), t ∈ Tκ , (3.8)

where A(t) is as defined in (3.1). Using Theorem 2.3, from (3.8), we obtain

m(t) ≤ u0ef+A(t, t0)+
∫ t

t0
ef+A(t, σ (s))p(s)1s, t ∈ Tκ . (3.9)

Therefore,

z1(t) ≤ f (t)
{
u0ef+A(t, t0)+

∫ t

t0
ef+A(t, σ (s))p(s)1s

}
, t ∈ Tκ . (3.10)

Setting t = τ in (3.10), integrating it from t0 to t , and noting z(t0) = u0 and u(t) ≤ z(t), we easily obtain the desired
inequality (I2). Theproof of Theorem 3.2 is completed. �

Remark 3.4. By takingw(t, s) = w(s), from Theorem 3.2, we easily obtain Theorem 4.8 (ii) in [14].

Remark 3.5. Letting w(t, s) = w(s) in Theorem 3.2, we can obtain the inequality established in [16, Theorem 1.7.2 (ii)] if
T = R, and the inequality established in [17, Theorem 1.4.6 (ii)] if T = Z.

Theorem 3.3. Assume that u, f , g ∈ Crd, u(t), f (t) and g(t) are nonnegative, and u0 is a nonnegative constant. If w(t, s) is as
defined in Theorem 2.2 such that w(t, s) ≥ 0 andw1(t, s) ≥ 0 for t, s ∈ T with s ≤ t, then

u(t) ≤ u0 +
∫ t

t0
f (τ )u(τ )1τ +

∫ t

t0
g(τ )

(
u(τ )+

∫ τ

t0
w(τ, s)u(s)1s

)
1τ , t ∈ Tκ (E3)

implies

u(t) ≤ u0

[
ef (t, t0)+

∫ t

t0
ef (t, σ (τ ))g(τ )ef+g+A(τ , t0)1τ

]
, t ∈ Tκ , (I3)

where A(t) is as defined in (3.1).

Proof. Define a function z(t) by the right hand of (E3). Then z(t0) = u0, u(t) ≤ z(t), and

z1(t) = f (t)u(t)+ g(t)
(
u(t)+

∫ t

t0
w(t, s)u(s)1s

)
≤ f (t)z(t)+ g(t)

(
z(t)+

∫ t

t0
w(t, s)z(s)1s

)
, t ∈ Tκ . (3.11)

Let

v(t) = z(t)+
∫ t

t0
w(t, s)z(s)1s, t ∈ Tκ . (3.12)

Then v(t0) = z(t0) = u0, z(t) ≤ v(t), and

v1(t) = z1(t)+ w(σ(t), t)z(t)+
∫ t

t0
w1(t, s)z(s)1s

≤ (f (t)+ g(t)+ A(t))v(t), t ∈ Tκ , (3.13)

where A(t) is as defined in (3.1). It is easy to see that (f + g + A) ∈ R+. Therefore, by using Theorem 2.3, from (3.13), we
easily have

v(t) ≤ u0ef+g+A(t, t0), t ∈ Tκ . (3.14)

Combining (3.11), (3.12) and (3.14), we obtain

z1(t) ≤ f (t)z(t)+ u0g(t)ef+g+A(t, t0), t ∈ Tκ ,
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which implies

z(t) ≤ u0

[
ef (t, t0)+

∫ t

t0
ef (t, σ (τ ))g(τ )ef+g+A(τ , t0)1τ

]
, t ∈ Tκ . (3.15)

It is obvious that the desired inequality (I3) follows from u(t) ≤ z(t) and (3.15). The proof of Theorem 3.3 is
complete. �

Remark 3.6. Let w(t, s) = w(s) in Theorem 3.3. Then we observe that Theorem 1.7.2 (iii) in [16] is a peculiar case of
Theorem 3.3 if T = R, and Theorem 1.4.6 (iii) in [17] is also a peculiar case of Theorem 3.3 if T = Z.

Theorem 3.4. Assume that u, a, f , p ∈ Crd, u(t), a(t), f (t) and p(t) are nonnegative. If a(t) and p(t) are nondecreasing, and
w(t, s) is as defined in Theorem 2.2 such that w(t, s) ≥ 0 andw1(t, s) ≥ 0 for t, s ∈ T with s ≤ t, then

u(t) ≤ a(t)+ p(t)
[∫ t

t0
f (τ )u(τ )1τ +

∫ t

t0
f (τ )p(τ )

(∫ τ

t0
w(τ, s)u(s)1s

)
1τ

]
, t ∈ Tκ (E4)

implies

u(t) ≤ a(t)
{
1+ p(t)

[∫ t

t0
f (τ )

(
1+ p(τ )

∫ τ

t0
ep(f+A)(τ , σ (s))(f (s)+ A(s))1s

)
1τ

]}
, t ∈ Tκ , (I4)

where A(t) is as defined in (3.1).

Proof. Define

v(t) =
∫ t

t0
f (τ )u(τ )1τ +

∫ t

t0
f (τ )p(τ )

(∫ τ

t0
w(τ, s)u(s)1s

)
1τ , t ∈ Tκ . (3.16)

Then v(t0) = 0, u(t) ≤ a(t)+ p(t)v(t), and

v1(t) = f (t)u(t)+ f (t)p(t)
∫ t

t0
w(t, s)u(s)1s

≤ f (t)
{
a(t)+ p(t)

[
v(t)+

∫ t

t0
w(t, s)(a(s)+ p(s)v(s))1s

]}
, t ∈ Tκ . (3.17)

Letting

y(t) = v(t)+
∫ t

t0
w(t, s)(a(s)+ p(s)v(s))1s, (3.18)

and noting a(t) and p(t) are nondecreasing, we easily see that y(t0) = v(t0) = 0, v(t) ≤ y(t), v1(t) ≤ f (t)[a(t)+p(t)y(t)],
and

y1(t) = v1(t)+ w(σ(t), t)(a(t)+ p(t)v(t))+
∫ t

t0
w1(t, s)(a(s)+ p(s)v(s))1s

≤ a(t)
(
f (t)+ w(σ(t), t)+

∫ t

t0
w1(t, s)1s

)
+ p(t)

(
f (t)+ w(σ(t), t)+

∫ t

t0
w1(t, s)1s

)
y(t)

= a(t)(f (t)+ A(t))+ p(t)(f (t)+ A(t))y(t), t ∈ Tκ (3.19)

where A(t) is as defined in (3.1). It is easy to see that p( f + A) ∈ R+. Therefore, using Theorem 2.3, from (3.19), we obtain

y(t) ≤
∫ t

t0
ep(f+A)(t, σ (s))a(s)(f (s)+ A(s))1s

≤ a(t)
∫ t

t0
ep(f+A)(t, σ (s))(f (s)+ A(s))1s, t ∈ Tκ . (3.20)

Therefore,

v1(t) ≤ a(t)f (t)
{
1+ p(t)

∫ t

t0
ep(f+A)(t, σ (s))(f (s)+ A(s))1s

}
, t ∈ Tκ . (3.21)

Setting t = τ in (3.21), integrating it from t0 to t , and noting v(t0) = 0, u(t) ≤ a(t) + p(t)v(t), and a(t) and p(t) are
nondecreasing, we easily obtain the desired inequality (I4). This completes the proof. �
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Remark 3.7. Lettingw(t, s) = w(s), p(t) = 1 in Theorem 3.4, we immediately obtain Theorem 2(a) in [13], Theorem 1.7.4
in [16] if T = R, and Theorem 1.4.2 in [17] if T = Z.

Theorem 3.5. Assume that u, f , g ∈ Crd, u(t), f (t) and g(t) are nonnegative, and u0 is a nonnegative constant. If w(t, s) is as
defined in Theorem 2.2 such that w(t, s) ≥ 0 andw1(t, s) ≥ 0 for t, s ∈ T with s ≤ t, then

u(t) ≤ u0 +
∫ t

t0
f (τ )u(τ )1τ +

∫ t

t0
f (τ )

(∫ τ

t0
g(s)u(s)1s

)
1τ

+

∫ t

t0
f (τ )

[∫ τ

t0
g(s)

(∫ s

t0
w(s, ξ)u(ξ)1ξ

)
1s
]
1τ , t ∈ Tκ , (E5)

implies

u(t) ≤ u0

{
1+

∫ t

t0
f (τ )

[
ef (τ , t0)+

∫ τ

t0
ef (τ , σ (s))g(s)ef+g+A(s, t0)1s

]
1τ

}
, t ∈ Tκ , (I5)

where A(t) is as defined in (3.1).

Proof. Define a function z(t) by the right hand of (E5). Then z(t0) = u0, u(t) ≤ z(t), and

z1(t) = f (t)u(t)+ f (t)
∫ t

t0
g(s)u(s)1s+ f (t)

∫ t

t0
g(s)

(∫ s

t0
w(s, ξ)u(ξ)1ξ

)
1s

≤ f (t)
[
z(t)+

∫ t

t0
g(s)z(s)1s+

∫ t

t0
g(s)

(∫ s

t0
w(s, ξ)z(ξ)1ξ

)
1s
]
, t ∈ Tκ . (3.22)

Let

v(t) = z(t)+
∫ t

t0
g(s)z(s)1s+

∫ t

t0
g(s)

(∫ s

t0
w(s, ξ)z(ξ)1ξ

)
1s, t ∈ Tκ . (3.23)

Obviously, v(t0) = z(t0) = u0, z(t) ≤ v(t), and

v1(t) ≤ f (t)v(t)+ g(t)
[
v(t)+

∫ t

t0
w(s, ξ)v(ξ)1ξ

]
, t ∈ Tκ . (3.24)

Setting

m(t) = v(t)+
∫ t

t0
w(s, ξ)v(ξ)1ξ, t ∈ Tκ , (3.25)

we easily see thatm(t0) = v(t0) = u0, v(t) ≤ m(t), and

m1(t) = v1(t)+ w(σ(t), t)v(t)+
∫ t

t0
w1(t, ξ)v(ξ)1ξ

≤ (f (t)+ g(t)+ A(t))m(t), t ∈ Tκ , (3.26)

where A(t) is as defined in (3.1). Using Theorem 2.3, from (3.26), we have

m(t) ≤ u0ef+g+A(t, t0), t ∈ Tκ . (3.27)

Then from (3.24), (3.25) and (3.27) we obtain

v1(t) ≤ f (t)v(t)+ u0g(t)ef+g+A(t, t0), t ∈ Tκ , (3.28)

which implies the estimate for v(t) such that

v(t) ≤ u0

[
ef (t, t0)+

∫ t

t0
ef (t, σ (s))g(s)ef+g+A(s, t0)1s

]
, t ∈ Tκ . (3.29)

Combining (3.22), (3.23) and (3.29), we obtain

z1(t) ≤ u0f (t)
[
ef (t, t0)+

∫ t

t0
ef (t, σ (s))g(s)ef+g+A(s, t0)1s

]
, t ∈ Tκ . (3.30)

Setting t = τ in (3.30), integrating it from t0 to t , and noting z(t0) = u0 and u(t) ≤ z(t), we easily obtain the desired
inequality (I5). This completes the proof. �
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Remark 3.8. Let w(t, s) = w(s) in Theorem 3.5. If T = R, then the inequality established in Theorem 3.5 reduces to the
inequality established by Pachpatte in [16, Theorem 1.7.3 (i)]. If T = Z, then from Theorem 3.5, we easily obtain Theorem
1.4.7 (iv) in [17].

Remark 3.9. Using ourmain results, we can obtainmany dynamic inequalities for some peculiar time scales. Due to limited
space, their statements are omitted here.

4. Some applications

In this section, we present some applications of Theorem3.1 to investigate certain properties of solutions of the following
dynamic equation

u1(t) = F
(
t, u(t),

∫ t

t0
H(t, s, u(s))1s

)
, u(t0) = C, t ∈ Tκ , (4.1)

where C is a constant, F : Tκ×R×R→ R is a continuous function, andH : Tκ×Tκ×R→ R is also a continuous function.

Theorem 4.1. Assume that{
|F(t, u, v)| ≤ f (t)(|u| + |v|),
|H(t, s, u(s)| ≤ w(t, s)|u(s)|, t, s ∈ Tκ . (4.2)

If u(t) is a solution of Eq. (4.1), then

|u(t)| ≤ |C |
[
1+

∫ t

t0
f (τ )ef+A(τ , t0)1τ

]
, t ∈ Tκ , (4.3)

where f ∈ Crd, f (t) ≥ 0, w(t, s) is as defined in Theorem 2.2 such that w(t, s) ≥ 0 and w1(t, s) ≥ 0 for t, s ∈ T with s ≤ t,
and A is as defined in (3.1).

Proof. Clearly, the solution u(t) of Eq. (4.1) satisfies the following equivalent equation

u(t) = C +
∫ t

t0
F
(
τ , u(τ ),

∫ τ

t0
H(τ , s, u(τ ))1s

)
1τ , t ∈ Tκ . (4.4)

It follows from (4.4) and (4.2) that

|u(t)| ≤ |C | +
∫ t

t0

∣∣∣∣F (τ , u(τ ), ∫ τ

t0
H(τ , s, u(τ ))1s

)∣∣∣∣1τ
≤ |C | +

∫ t

t0
f (τ )

(
|u(τ )| +

∫ τ

t0
|H(τ , s, u(s))|1s

)
1τ

≤ |C | +
∫ t

t0
f (τ )

(
|u(τ )| +

∫ τ

t0
w(τ, s)|u(s)|1s

)
1τ , t ∈ Tκ . (4.5)

Using Theorem 3.1, the desired inequality (4.3) is obtained from (4.5). The proof of Theorem 4.1 is complete. �

Theorem 4.2. Assume that{
|F(t, u1, u2)− F(t, v1, v2)| ≤ f (t)(|u1 − v1| + |u2 − v2|),
|H(t, s, u1)− H(t, s, u2)| ≤ w(t, s)|u1 − u2|, t, s ∈ Tκ , (4.6)

where f andw are as defined in Theorem 4.1. Then the Eq. (4.1) has at most one solution.

Proof. Let u1(t) and u2(t) be two solutions of Eq. (4.1). Then we have

u1(t)− u2(t) =
∫ t

t0

[
F
(
τ , u1(τ ),

∫ τ

t0
H(τ , s, u1(τ ))1s

)
− F

(
τ , u2(τ ),

∫ τ

t0
H(τ , s, u2(τ ))1s

)]
1τ , t ∈ Tκ . (4.7)
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It follows from (4.6) and (4.7) that

|u1(t)− u2(t)| ≤
∫ t

t0
f (τ )

[
|u1(τ )− u2(τ )| +

∫ τ

t0
|H(τ , s, u1(s))− H(τ , s, u2(s))|1s

]
1τ

≤

∫ t

t0
f (τ )

[
|u1(τ )− u2(τ )| +

∫ τ

t0
w(τ, s)|u1(s)− u2(s)|1s

]
1τ , t ∈ Tκ . (4.8)

By Theorem 3.1, we have |u1(t) − u2(t)| ≡ 0, t ∈ Tκ . Therefore, u1(t) = u2(t), i,e., the Eq. (4.1) has at most one solution.
This completes the proof of Theorem 4.2. �
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