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SUMMARY

Directional collective migration is now a widely
recognized mode of migration during embryogenesis
and cancer. However, how a cluster of cells responds
to chemoattractants is not fully understood. Neural
crest cells are among the most motile cells in the
embryo, and their behavior has been likened to
malignant invasion. Here, we show that neural crest
cells are collectively attracted toward the chemokine
Sdf1. While not involved in initially polarizing cells,
Sdf1 directionally stabilizes cell protrusions pro-
moted by cell contact. At this cell contact, N-cad-
herin inhibits protrusion and Rac1 activity and in
turn promotes protrusions and activation of Rac1 at
the free edge. These results show a role for N-cad-
herin during contact inhibition of locomotion, and
they reveal a mechanism of chemoattraction likely
to function during both embryogenesis and cancer
metastasis, whereby attractants such as Sdf1
amplify and stabilize contact-dependent cell polarity,
resulting in directional collective migration.

INTRODUCTION

Although individual cell migration often involves an epithelial-to-

mesenchymal transition (EMT) during which cell-cell adhesion is

thought to be down-regulated (Thiery and Sleeman, 2006), many

cell types undergo migration as coherent groups both during

embryonic development and in metastatic cancers. Prior to

and during collective cell migration, recent data suggest that

cell-cell adhesion molecules may establish cell polarity (Desai

et al., 2009; Dupin et al., 2009; Rieger et al., 2009). Such collec-

tive cell migration has been widely proposed as a common

mechanism of invasion of numerous tumors (Bidard et al.,

2008; Christiansen and Rajasekaran, 2006; Friedl and Wolf,

2003) and was recently observed in vivo in breast cancer cells

(Giampieri et al., 2009). It also reflects cell behaviors during

a number of developmental events ranging from lateral line

migration in zebrafish to border cell migration in Drosophila

(Friedl and Gilmour, 2009; Rorth, 2009). Cell clusters are more

than a juxtaposition of individual cells. Contact inhibition of loco-
D

motion (CIL) within the group helps establish polarity at the

leading edge (Carmona-Fontaine et al., 2008). Thus, cell-cell

contacts appear to play an active role in cell migration. However,

the molecular mechanisms underlying this cell behavior and

particularly those conferring directionality during collective

migration remain unclear.

External factors such as chemorepellents and chemoattrac-

tants have been proposed to confer directionality onto migratory

cell populations. For trunk neural crest (NC) cells, both ephrins

and semaphorins appear to restrict NC cells to the rostral half

of each somite (Kuriyama and Mayor, 2008), resulting in a

segmental pattern of migration. In contrast, less is known about

attractive signals for the neural crest. One factor that has been

proposed to attract NC cells is the chemokine Sdf1 (Belmadani

et al., 2005; Olesnicky Killian et al., 2009). However little is known

about how this, or other attractive signals, can be integrated by

a migratory group.

During chemotaxis, cells must couple the sensing of extracel-

lular chemoattractant with intracellular reorganization to allow

directional migration (Andrew and Insall, 2007; Arrieumerlou

and Meyer, 2005; Brahmbhatt and Klemke, 2003). It remains

controversial whether chemoattractants induce localized forma-

tion of cell protrusions or simply provide a bias to the lifetime of

random protrusions (Andrew and Insall, 2007; Iglesias and Dev-

reotes, 2008). Despite their critical implications in cell migration,

little is known about the putative interplay between cell interac-

tions occurring during collective migration and chemotaxis.

Here, we study the mechanism of chemotaxis and the driving

force of directional collective migration using Xenopus NC cells

as a model. In Xenopus, cephalic NC cells start their migration as

a cohesive cell population before progressively dissociating as

individual cells (DeSimone et al., 2005; Sadaghiani and Thie-

baud, 1987). We show that groups of NC cells are attracted

from a distance to a source of Sdf1 which amplifies and stabilizes

protrusions that are established at the leading edge by an N-cad-

herin/CIL-dependent mechanism. This combined mechanism

breaks the symmetry of the group and leads to directional migra-

tion in response to Sdf1 gradient. Importantly, cell contacts

dependent polarity is required for efficient chemotaxis as cell

dissociation or inhibition of N-cadherin impairs chemotaxis.

Altogether these results indicate that even if Sdf1 signaling is

received at the single cell level it is only translated in directional

information when cells have N-cadherin-dependent interactions.

We propose to name ‘‘collective chemotaxis’’ to this collective

interpretation of a chemotactic gradient.
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RESULTS

Sdf1-Cxcr4 Axis Is Required for NC Migration In Vivo
As previous studies involved Sdf1 signaling in regulating NC cells

migration in zebrafish and mouse embryos (Belmadani et al.,

2005; Olesnicky Killian et al., 2009), we first checked that

Cxcr4 and Sdf1 were respectively expressed in Xenopus NC

cells and their surrounding tissues during migration. Comparison

of NC markers at the premigratory and migratory stages (Figures

1A and 1B) with that of Cxcr4 (Figures 1C, 1D, and 1H) confirms

that Xenopus NC cells are expressing Cxcr4 prior to and during

migration. In addition, Sdf1 is expressed in the ectoderm facing

NC cells before the onset of migration (Figures 1E, 1G, and 1I)

and at the front and in between the migrating streams as migra-

tion proceeds (Figures 1F, 1G, and 1I). To confirm that Sdf1-

Cxcr4 axis is required for NC migration in vivo, we performed

a series of loss-of-function using Sdf1-Morpholino (Figures 1J

and 1K), AMD3100, a specific chemical inhibitor for Cxcr4

(Figures 1L and 1M), a dominant negative for Cxcr4 (dnCxcr4,

Figures 1N and 1O), and Cxcr4-Morpholino (Figures 1P–1Q0).

All these treatments induced a strong inhibition of NC migration

with injected cells accumulating next to the neuroepithelium

(Figures 1Q0 and 1R), while control cells were efficiently reaching

ventral regions (Figures 1P0 and 1R). To further confirm the spec-

ificity of these treatments, we rescued the migration of Sdf1-Mo

and Cxcr4-Mo-injected cells by respectively grafting a piece of

ectoderm overexpressing Sdf1 (Figures 1S and 1T) or coinjecting

Sdf1 mRNA in the ectoderm (Figure 1U) or Cxcr4 mRNA (Figures

1V and 1W) alongside the Morpholinos. Finally, grafts of beads

soaked in Sdf1 induce ectopic migration of NC cells in between

the streams (Figures 1Z and 1Z0, arrowheads) or cause NC cells

to stop their migration around the bead instead of migrating

further ventrally (Figures 1Y and 1Y0, arrowheads), while PBS

beads have no effect on the pattern of NC migration (Figures

1X and 1X0). Altogether these data indicate that Sdf1-Cxcr4

axis is required for directional migration in vivo of Xenopus neural

crest, making these cells a good model to further investigate the

role of Sdf1 in regulating directional migration.

Cell Interactions Are Essential for Chemotaxis
toward Sdf1
To determine if Sdf1 was able to act as a chemoattractant for NC

cells, we designed two in vitro chemotaxis assays. In brief,

heparin-acrylic beads are soaked in purified Sdf1 solution and
Figure 1. Sdf1-Cxcr4 Axis Is Required for NC Migration In Vivo

(A–H) Premigratory ([A], Twist) and migratory ([B], Twist) NC cells (arrowheads) exp

F], arrow, yellow dotted lines).

(G) Summary of NC cells and Sdf1 distribution at premigratory and migratory sta

(H and I) Sections showing Cxcr4 expression in NC cells (H) and Sdf1 in the adja

(J–R) Embryos injected with Sdf1-Morpholino ([J and K], n = 132), treated with C

Cxcr4 (N and O, n = 77) or Cxcr4-Mo ([P and Q], n = 119) show clear inhibition o

(P0–Q0) Sections of Cxcr4-Mo-injected embryo. Arrowheads indicate border of th

(R) Summary of phenotype after inhibition of Sdf1-Cxcr4 axis.

(S–U) Rescue of Sdf1 inhibition by graft of Sdf1-expressing ectoderm ([T], n = 20

(V and W) Rescue of Cxcr4-Mo by coinjection of Cxcr4-Mo and Cxcr4 mRNA (n

(X–Z0) NC cells labeled with nRFP were grafted along side PBS ([X and X0 ], n = 4) o

in vivo NC migration. Green dot, grafted bead. Note that normal NC migration (X0)

(arrowhead). (Z and Z0) Embryos analyzed by Twist in situ hybridization after graft

arrowheads, n = 2).
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either immobilized using high vacuum silicone grease or left

free to move in proximity of the cells (See Experimental Pro-

cedures for details). Immobilized beads (green asterisk in Figures

2A, 2C, 2E, and 2G) soaked in Sdf1 attract NC cells, which display

highly directional migration (Figures 2C and 2D; see Movies S1

and S2 available online), while NC expressing dnCxcr4 (Figures

2E and 2F), Cxcr4-Mo (Figures 2G and 2H), or exposed to PBS

beads (Figures 2A and 2B) spread radially (Movie S1). In addition,

in an assay in which beads can move freely after being pushed by

the cells, Sdf1 beads are actively tracked by groups of NC cells

which change their direction of migration to follow the move-

ments of the beads, whereas PBS beads are ignored (Movie

S3). Our results show that Sdf1 is a NC chemoattractant.

In our in vitro chemotaxis assay, NC cells appear to move

toward Sdf1 in dense groups. To distinguish whether cells

were migrating as an organized cluster versus as individuals in

close proximity, we labeled cells in a mosaic fashion with a

combination of membrane-GFP (mbGFP), nuclear-RFP (nRFP),

and membrane-RFP (mbRFP) and examined cell protrusions

by confocal microscopy. Interestingly, only outer cells at the

border of the group had large protrusions at the free edge

(Figure 2I), whereas inner cells had very small and transient

protrusions, the size and duration of which is negligible com-

pared with the protrusion at the free edge (Figure 2J) (size of

protrusion for outer cells: 93 ± 8 mm2; inner cells: 5 ± 2 mm2).

These are likely to be similar to cryptic protrusions described

elsewhere (Farooqui and Fenteany, 2005; Vasilyev et al., 2009).

Importantly, this organization of outer and inner cells was not

affected by exposure to Sdf1 (Figures 2K and 2L). That only outer

cell are polarized was confirmed by analyzing the dynamic of

microtubules showing that only outer cells had the centrosome

off-centered and microtubules growing preferentially toward

the free-edge (data not shown). We also looked at NC cells

migrating in vivo by confocal microscopy (Figures 2M–2P, not

all cells are labeled) and confirmed that there are no protrusions

between the cells when they are in close proximity (Figure 2N)

even if the population gets progressively looser as migration

proceeds (Figure 2O). However protrusions and high membrane

activity can be observed when cells face a free space like at the

front of the migrating stream (Figure 2P, arrowheads) confirming

our in vitro observation.

We next tested whether organization as a group was required

for Sdf1-dependent attraction by comparing the attraction of

dissociated and reaggregated cells toward Sdf1. The
ress Cxcr4 (C and D) and are surrounded by Sdf1-expressing ectoderm ([E and

ge.

cent ectoderm (I); NC cells streams are delimited by dashed circles.

xcr4 inhibitor AMD3100 ([L and M], n = 128), injected with dominant-negative

f neural crest migration on the experimental side.

e neuroepithelium and the front of NC cells migration.

) or coinjection of Sdf1-Mo and Sdf1 mRNA ([U], n = 68).

= 14).

r Sdf1 beads ([Y and Y0], n = 4). (X and Y) Frames of time-lapse movies showing

is partially affected by Sdf1 beads (Y0), with cell accumulating around the bead

of Sdf1 beads show ectopic NC cells located in between the streams (Z and Z0,
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Figure 2. Cell Interactions Are Essential for NC Cell Chemo-

taxis toward Sdf1

(A–H) In vitro attraction assay with control NC explant exposed to

beads (green asterisk) soaked in PBS (A and B) or purified Sdf1 (C–H).

(E and F) Control (ctl) and dominant-negative Cxcr4 (dn) explants

compete over an Sdf1 bead (nctl = 25; ndnCxcr4 = 32).

(G and H) Control (ctl) and Cxcr4 Morpholino-injected explants (Mo)

compete over an Sdf1 bead (nctl = 12, nMo = 12). Tracks are shown

at the right.

(I–L) In vitro, cells were labeled with mbRFP (blue) and mosaic labeling

of NC with mbGFP/nRFP. Optical sections of GFP mosaic labeled NC

from the plane of the substrate (red, cell protrusions) and from 5 mm

above (green, cell body) were overlaid with mbRFP image (blue,

surrounding cells). Outer (I and K) and inner (J and L) cells showing

no cryptic protrusions in between the cells and no influence of Sdf1

on the cluster organization.

(M–P) In vivo, confocal images of migratory NC cells labeled with

mbGFP and nRFP grafted in a control embryo. Not all cells are labeled.

Early migrating cells located near the neuroepithelium show an epithe-

lial-like organization with clear cell-cell boundaries (N). Cells in the

middle of a stream show a more mesenchymal phenotype but have

no clear protrusions in the cell contact region (O), while cells at the

front of a migrating stream facing a free space have protrusions ([P],

arrowheads).

(Q and R) Tracks of dissociated and reaggregated cells (Q) and

Chemotaxis index of cells dissociated, reaggregated, and small and

large clusters (R).

(S and T) Chemotaxis index of single cells (green, n = 25), single cells

having transient contacts (purple, n = 21), single cells interacting with

small clusters (red, n = 88), and large clusters (blue, n = 41). (T) Average

chemotaxis index for each category analyzed in S (**p < 0.01). Chemo-

taxis efficiency improves as cell density increases. Time in minutes.

Scale bars in (A–H), 150 mm; (I–L), 10 mm. Error bars show standard

deviation. See also Figure S1 and Movies S1–S4.
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dissociation/reaggregation cycle has no effect on cell migration

or chemotaxis and reaggragated cells were attracted as effi-

ciently as nondissociated control groups indicating that shuffling

the cells does not impair the response of the group (Figures 2Q

and 2R). However, a dramatic reduction in chemoattraction

was observed in dissociated cells compared with groups (Fig-

ures 2Q and 2R). We then looked at the migration of isolated

small clusters of NC cells to see if a critical size of the group

was required. Importantly, small clusters of only two or three

cells were responding as efficiently as reaggregated and nondis-

sociated clusters of hundred of cells (Figure 2R). In addition, the

organization of these small clusters is not fixed. Cells are not

organized as small chains of front, middle, and rear cells that

would allow them to sample a bigger portion of the gradient

but exchange positions over time (Figure S1A). Moreover, cells

show protrusions that are not properly oriented toward Sdf1

(Figure S1A), indicating that they do not chemotax more effi-

ciently because of a better alignment along the gradient. The

fact that reaggregated cells and small or large clusters showed

similar chemotaxis abilities while single cells were not respond-

ing efficiently to Sdf1 suggested that cell interactions were

important for chemotaxis. The question remains as if cells

need to interact, even transiently, with other cells or to be part

of group with stable cell contacts to chemotax toward Sdf1. To

address this point, we analyzed chemotaxis to Sdf1 after cell

dissociation in three different situations (Figures 2S and 2T;

tracks in Figure S1B): at low cell density with isolated single cells

having no contact with other cells (green), individual cells having

only transient interactions (purple), and at high cell density with

individual cells and small clusters interacting with each other

(red). Interestingly, chemotaxis becomes more efficient as cell

density increases (Figures 2S and 2T; Movie S4). More impor-

tantly, individual cells that have only transient contacts with other

cells and that are never part of a cluster show a much better

response than isolated cells indicating that only transient cell

contacts are sufficient to restore the response to Sdf1. The lower

chemotaxis of these individual colliding cells compared with

front cells from clusters with permanent contacts is likely due

to the fact that a transient contact is not as efficient in maintain-

ing directionality as a more permanent cell interaction. Alto-

gether these results indicate that single NC cells do sense

Sdf1 but can only efficiently interpret the gradient if they have

interactions with other cells. In addition, even if cell coordination

and chemotaxis are more efficient in groups, no specific size

seems to be required as small and large clusters show similar

chemotaxis abilities.

NC Cells Exhibit Collective Chemotaxis
Our observations show that NC cells respond to Sdf1 more effi-

ciently as a collective than as individual cells. Migration of indi-

vidual cells has been characterized by an alternation between

two phases: run and tumble (Polin et al., 2009; Potdar et al.,

2009). The run corresponds to a phase of directional migration,

while the tumble is described as a reorientation phase character-

ized by collapse of protrusions and a series of short, randomly

oriented movements, with no net migration. This behavior can

be observed in dissociated cells or cells in groups by looking

at the collapse of cell protrusions (Figures 3A–3D; Movie S5).

While single cells almost completely stop during tumbling due
D

to the collapse of protrusions, tumbling cells in a group are pulled

by neighboring cells, retaining forward movement at the same

speed (Figure 3C). Tumbling cells, since they collapse protru-

sions, can be considered as nonmotile cells for the period of

the tumbling. Interestingly, dividing cells, which are not motile,

keep moving forward at the same speed that nondividing cells

pulled by the rest of the group (Figure S2A). Therefore, it is likely

that this cooperation between cells inside a group accounts for

the even flow of NC clusters toward Sdf1.

The observation of tumbling and dividing cells moving forward

suggested that not all cells need to respond to Sdf1 for the group

to undergo directional migration. To specifically address this

point, we ran chemotaxis assays with control cells and cells

expressing a dominant-negative of Cxcr4 (dnCxcr4), separately

or mixed together. When mixed, dnCxcr4 cells interacting with

control cells are able to migrate toward Sdf1 (Figures 3E–3J;

Movie S6). Similar results were obtained in vivo (Figures 3K–

3M). These results suggest a non-cell autonomous behavior

such as not all cells in a group need to respond to Sdf1, similar

to lateral line migration in zebrafish (Haas and Gilmour, 2006).

However, even if not all the cells need to respond to the chemo-

attractant, one could hypothesize that nonresponding cells may

help conferring a clear front-back polarity at the group level. We

therefore monitored cells at the front and at the back of an at-

tracted explant. All cells were producing protrusions toward

the free space regardless of the orientation of the gradient.

In fact, cells at the back produce protrusions oriented opposite

to the gradient (Figures S2B–S2H). In addition, when considering

large groups of NC cells exposed to Sdf1, the front of an explant

evenly progresses forward while cells at the back show chaotic

movement with phases of net movement backward, forward,

or stagnation. This shows that cells at the back do not behave

according to Sdf1 gradient and argues against the possibility

that these back cells may contribute to the global polarity of

the explant. Altogether these results indicate that NC cells are

undergoing collective migration during which responding cells

help nonresponding cells to move forward. This is likely to

explain the more efficient chemotaxis of cell clusters.

Sdf1 Amplifies Contact-Dependent Cell Polarity
To distinguish the respective roles of chemoattraction and cell-

cell contact during directional migration, we analyzed the effect

of Sdf1 exposure on single cells versus groups. Individual cells

produce a large number (Figure 4K) of small (Figure 4I), unstable

(Figure 4J) protrusions in all directions (Figures 4A and 4E), while

cells in a group have a few (Figure 4K), large (Figure 4I), well-

oriented (Figures 4C and 4G), and stable (Figure 4J) protrusions.

Strikingly, the size and orientation of protrusions appear to be

independent of Sdf1 exposure (Figures 4B, 4F, 4D, and 4H–4K;

see Movies S2 and S4 for typical single cells and cell groups

behaviors with or without Sdf1), indicating that the chemoattrac-

tant Sdf1 does not promote formation of oriented cell protrusions.

Instead, the random orientation of cell protrusions in isolated

cells suggests an intrinsic mechanism for the production of cell

protrusions. Cell clustering is both necessary and sufficient to

induce a strong front-back cell polarity, evidenced by the forma-

tion of large, well-oriented, stable protrusions at the front. Inter-

estingly, Sdf1 slightly stabilizes protrusions in single cells

(Figure 4J, gray bars) and strongly stabilize them in groups
evelopmental Cell 19, 39–53, July 20, 2010 ª2010 Elsevier Inc. 43



Figure 3. Cell Cooperation Accounts for

Efficient Collective Chemotaxis

(A–D). Run and tumbling of NC cells. Single cell (A)

and cells in a cluster (B) exposed to a source of

Sdf1 (at the bottom) show alternation of run and

tumbling. Asterisks indicate cell protrusions; white

arrowhead marks a cell collapsing protrusion

while moving forward. Time in minutes. Scale

bars, 20 mm.

(C and D) Migration speed during run and tumbling

([C], gray bars, single cells; black bars, groups)

and tumbling duration (D).

(E–M) Rescue of nonresponsive Sdf1 cells by wild-

type cells.

(E and F) Control NC cells (red nucleus, n = 6) or

dnCxcr4 (green membarne; n = 6) were separately

exposed to Sdf1.

(G and H) Mix of control (red nucleus) and dnCxcr4

(green membrane) exposed to Sdf1 (n = 20). (I)

Chemotaxis index of separated or mixed control

(red bars) and dnCxcr4 (green bars) cells. (J)

Tracks of NC cells shown in (E) –(H) as indicated.

Time in minutes. Scale bars, 150 mm.

(K–M) NC migration in vivo. Host NC cells were

removed and replaced by control (K) or dnCxcr4

(L) NC cells, or both (M). Error bars show standard

deviation. See also Figure S2 and Movies S5

and S6.
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(Figure 4J, black bars). These data, alongside our previous obser-

vation that cells at the back produce protrusions against the

gradient, indicate that the stability of the protrusions is controlled

primarily by cell-cell contacts and partially by Sdf1, while the size

and the orientation of the protrusions only depend upon cell clus-

tering. However, it remains possible that Sdf1 may not directly

stabilize protrusions. In fact, when cells are exposed to Sdf1

they move toward the same point, thus reducing the probability

of collisions while in control explants random movements may

lead to a higher rate of cell collisions and protrusions collapse.

If true, such differences in terms of cell coordination could explain

the difference in terms of cell protrusions. To address this point,

we first compared protrusions stability at the border of control

explants that were spreading randomly in all direction and in

control explants that were spontaneously moving in one direc-

tion. Importantly, we found no difference in protrusions stability

between the two conditions (Figures S3A–S3G), indicating that

cell alignment is not sufficient to increase protrusions stability.

We then compared protrusions stability in a mosaic of control

and dnCxcr4 cells exposed to Sdf1 (Figures S4H and S4I). Protru-

sions in control cells had a high stability while protrusions in
44 Developmental Cell 19, 39–53, July 20, 2010 ª2010 Elsevier Inc.
dnCxcr4 cells had a low stability similar

to that of control cells in absence of Sdf1.

These data further reinforce the idea that

high protrusion stability observed at the

front of an explant migrating toward

Sdf1 is due to a direct effect of the chemo-

kine on cell protrusions and is not a side

effect of cell coordination occurring

during directional movement.

Some of the main regulators of protru-

sions formation and stability are the small
Rho GTPases, Rac1 and Cdc42 (Ridley et al., 2003). We have

recently showed that Rac1 plays a major role on NC migration,

while we found no evidence for Cdc42 (Carmona-Fontaine

et al., 2008; Matthews et al., 2008). Therefore, we examined

the respective influence of Sdf1 and cell contacts on Rac1

activity and localization using FRET analysis. Importantly, outer

cells in control (Figure 4M) and Sdf1 conditions (Figure 4P)

have a clearly polarized Rac1 activity distribution with low levels

at the regions of cell-cell contacts and high levels at the free

edge. In contrast single cells, with no contacts with other cells,

or inner cells, that are completely surrounded, show no obvious

polarity (Figures 4L, 4N, 4O, and 4Q). Seventy-five percent of

single and 90% of inner cells show no Rac1 polarity (Figures

4S and 4U), while 67% of outer cells are polarized according

to the cell contact (Figure 4T) and less than 20% according to

Sdf1. These results show that the distribution of Rac1 activity

inside the cells is depending on cell-cell contacts and not

on Sdf1. Despite its lack of effect on Rac1 distribution, Sdf1

amplifies the polarity of cells at the front of an explant

by further increasing Rac1 activity at the free edge (Figure 4R,

compare Figures 4M and 4P) but has no influence on Rac1



Developmental Cell

Collective Chemotaxis Requires Contact Inhibition
activity in inner cells (Figure 4R). These data suggest that Sdf1

breaks the radial symmetry of the group and polarizes the

explant by stabilizing protrusions at the front.

N-Cadherin Mediates Cell Interactions during NC
Cell Migration
Previous observations in other species (Bronner-Fraser et al.,

1992; Monier-Gavelle and Duband, 1995; Theveneau et al.,

2007; Xu et al., 2001) have shown that some migratory neural

crest populations express N-cadherin. Our findings show that

premigratory and migratory Xenopus NC cells express N-cad-

herin at both mRNA and protein levels in vivo (Figures 5A–5F),

making it a good candidate for mediating NC cell interactions.

To test whether N-cadherin plays a functional role during migra-

tion, we inhibited it by using an antisense Morpholino (Nanda-

dasa et al., 2009). The results show dramatic effects on cell

migration (Figures 5G and 5H). In the reciprocal experiment,

overexpression of full-length N-cadherin blocked NC migration

(Figures 5I–5J). These data show that the levels of N-cadherin

must be correctly regulated in order to allow for proper NC

migration. To confirm that N-cadherin was involved in functional

cell junctions in migratory NC, we grafted neural crest labeled

with rhodamine-dextran into unlabeled host in vivo (Figures

5K–5M) and monitored N-cadherin (Figures 5N and 5O), b-cate-

nin (Figures 5P and 5Q), and p120-catenin (Figures 5R and 5S)

localizations (Movie S7). All these factors were observed at

regions of cell contact between labeled migrating neural crest

cells supporting the idea that N-cadherin is involved in functional

cell-cell contacts during migration.

We next performed the fixed bead chemotaxis assay in the

presence of N-cadherin-blocking antibody (NCD2, Takeichi,

1988) or a control IgG. Interestingly, we found that NC cells

that were preincubated with NCD2 showed a dramatic loss of

attraction toward Sdf1 (Figures 5V and 5W) compared with

controls that underwent collective migration toward Sdf1 (Fig-

ures 5U and 5W) and were similar to cells spreading randomly

in absence of Sdf1 (Figures 5T and 5W; Movie S8).

Because efficient chemotaxis requires contact-mediated inhi-

bition of cell protrusions at the cell contact region, we hypothe-

sized that N-cadherin may be involved in this process. To test

this, we first injected NC cells with N-cadherin MO and looked

at cells protrusions during cell migration. Morpholino-injected

cells were highly motile, dispersed quicker than controls, and

produced numerous protrusions (Movie S9). Importantly, mor-

phant cells produce protrusions on top of each other, and wide

overlapping between the cells is observed (Figure S4). This indi-

cates that N-cadherin inhibition directly affects the ability of the

NC cells to sense each other. In contrast, control cells had a

more steady behavior, low migratory activity, and no apparent

cell protrusions between them (Figure S4; Movie S9). To sub-

stantiate this, we created cell mosaics by injecting mbGFP and

mbRFP at different stages and looked at morphant and control

cells surrounded by other control cells. As described above

(Figure 2), control inner cells exhibit very small cryptic protru-

sions (Figures 6A and 6B). However, N-cadherin MO-injected

inner cells showed clear cell protrusions regardless of Sdf1, indi-

cating that these cells had lost the ability to inhibit protrusions by

cell contact (Figures 6C–6E). We confirmed this observation

in vivo by confocal microscopy (Figures 6F–6G0). NC cells
D

injected with N-cadherin Morpholino are disorganized and

have diffused cell-cell boundaries with overlapping regions (Fig-

ures 6G and 6G0), whereas controls cells show a clear cell

contact region (Figures 6F and 6F0). Furthermore, we found

that NCD2 treatment dramatically reduced Rac1 polarity in the

outer cells (Figures 6H–6J) and increased Rac1 levels at the

region of cell contacts (Figure 6K). Interestingly, the global levels

of Rac1, including the front, were reduced (Figure 6L), suggest-

ing some kind of positive feedback loop from back to front

related to the polarized distribution of Rac1.

Altogether these results indicate that N-cadherin-dependent

cell contacts polarize the cells by inhibiting Rac1 at the cell

contact and increasing Rac1 activity at the free edge; this polar-

ized distribution of Rac1 activity appears to be essential for the

cells to respond to a chemoattractant.

N-Cadherin-Dependent Cell Contacts Are Required
for Contact Inhibition of Locomotion
We recently described that the formation of cell protrusions in

between NC cells is prevented by CIL mediated by the Wnt/

PCP pathway (Carmona-Fontaine et al., 2008). When CIL is abol-

ished, a dramatic increase of the size of the cryptic protrusions

was observed. As we obtained a similar effect after N-cadherin

inhibition, we decided to test whether N-cadherin was involved

in CIL. Two main methods were originally used to analyze CIL:

single cells collisions assays and explants invasion assays

(Abercrombie and Heaysman, 1953; Carmona-Fontaine et al.,

2008). We used both to address N-cadherin requirement in

CIL. As expected, collisions between control NC cells lead to

a dramatic change of direction (Figures 7A–7E; Movie S10) while

after inhibition of N-cadherin cells ignore each other showing no

change of direction after contact (Figures 7F–7J; Movie S10). In

addition, control NC explants cannot efficiently invade each

other (Figures 7K, 7L, and 7O, gray bar; Movie S10). However,

when one or both explants were treated with NCD2, NC cells

groups were able to invade each other and widely overlapped

(Figures 7M, 7N, and 7O; black bar, Movie S10). These data

confirm that NC cells need functional N-cadherin to exhibit CIL.

In a normal context, NC cells experience the influence of CIL

and external cues at the same time. We therefore decided to

analyze the interplay between CIL and Sdf1 by analyzing colli-

sions between controls cells in presence or absence of Sdf1

gradient. No differences were noted in between the two condi-

tions (Figure S4). This suggests that the presence of a chemoat-

tractant does not reduce the cell polarization induced by CIL,

thus supporting the notion that cell polarity is mainly determined

by cell contacts rather than by a chemoattractant. Furthermore,

as all our treatments affecting cell contacts (dissociation, N-cad-

herin-Mo or NCD2 blocking antibody) also affect the ability of the

cell to chemotax, our data emphasize the idea that collective

chemotaxis is CIL dependent.

DISCUSSION

We have shown here that cell clusters exhibit radial polarity with

large stable protrusions in the polarized outer cells and high level

of Rac1 at the free edge and nonpolarized inner cells. This radial

symmetry is broken upon addition of a chemoattractant that

further stabilizes protrusions and increases Rac1 activity at the
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front, leading to directional migration of the cluster toward the

source of the chemoattractant (Figure 7P). This cell polarity is

N-cadherin/CIL dependent and essential for efficient chemo-

taxis (Figures 7P and 7Q). Inhibition of cell interactions leads to

a loss of CIL resulting in a loose arrangement of cells with no

difference between inner or outer cells, no stable cell polarity,

and poor chemotaxis (Figure 7Q). These data, alongside in vivo

description of Xenopus NC cells migration, suggest that these

cells migrate as a cohesive cluster progressively breaking

away as single cells, similar to the original description of cluster

migration done by Trinkaus (Trinkaus, 1988). The effect of cell

dissociation on chemotaxis in vivo may be counterbalanced by

inhibitory cues at the border of the migration route in order to

maintain the cells in close proximity (Figure 7R) or by a hypothet-

ical attraction between the cells.

One of the big issues with collective movement is how the

driving force is generated. While in small clusters like the

Drosophila border cells it is possible that a couple of front cells

may pull the rest of the group, it is unlikely that a few front cells

would be sufficient to achieve the same effect in large popula-

tions like the NC. In fact, studies on cell sheet migration have

shown that the main driving force arises from cells inside the

group while leading cells are mainly giving direction (Trepat

et al., 2009). However, despite the fact that we demonstrated

the requirement of cell interactions, NC cells remain a mesen-

chymal population. Relative positions of a given cell and its direct

neighbors are not fixed. Cells do exchange positions and gaps

are constantly appearing in between the cells leading some inner

cells to form protrusions and behaving as front cells for a while

before colliding with the cells in front or next to them. These

observations strongly indicate that the NC cells population

should be seen as a relatively cohesive population progressively

breaking up as a collection of small clusters of variable cell

composition that are constantly splitting, colliding, and reassem-

bling (Figure 7R), rather than as a group with stable organization

over time in which a wide group of inner cells would have to be

pulled by a few front cells. Consequently, we think that NC

migration cannot be directly compared with epithelial move-

ments during wound healing or lateral line migration in terms of

physical motion of the group.

Another aspect of collective migration that studies on lateral

line have highlighted is the possibility that inner cells could act

as a sink by trapping Sdf1 using Cxcr7 and therefore helping

to shape the gradient itself (Dambly-Chaudiere et al., 2007;

Valentin et al., 2007). In this system, Sdf1 expression in the

surrounding tissues is homogenous (David et al., 2002), making

necessary an additional system like the sink model to shape
Figure 4. Sdf1 Stabilizes Cell Polarity Induced by Cell Interactions

(A–D) Two-plane confocal image to show cell protrusions (red) and cell shape (gre

indicated.

(E–H) Orientation of cell protrusions analyzed from time-lapse movies in single c

(I–K) Size (I), duration (J), and numbers (K) of protrusions are shown for each co

*p < 0.05; ***p < 0.005.

(L–U) FRET analysis of Rac1 activity in single, outer, and inner cells without (L–N)

contacts.

(R) Levels of Rac1 activity in outer cells at the front (n = 26) or at the back (n = 25)

without (�, n = 6) Sdf1. ***p < 0.005.

(S–U) Summary of Rac1 activity distribution in single (S), outer (T), and inner (U) c

polarities, which were quantified. Error bars show standard deviation. See also F

D

a gradient along which the cells can move. On the contrary, in

Xenopus, Sdf1 expression is progressively shifting ventrally

and is constantly ahead of the NC cells position along the

dorso-ventral axis. In addition, isolated small clusters, in which

there are no inner cells, as they are all exposed to a free space

and produce protrusions, migrate as efficiently as big groups.

Moreover, transient contacts between single cells are sufficient

to partially restore chemoattraction. All these observations indi-

cate that a sink system similar to that described for the lateral line

is unlikely to be required for NC cell migration. Although our

results demonstrate a crucial role for cell interactions during

NC directional migration, we can not exclude that other mecha-

nisms, such as inner cell acting as sink for chemoattractant

signals or a global detection of chemoattractants by the whole

cluster, could also cooperate with CIL in vivo.

Different alternatives about how chemoattractant are gener-

ating directional migration have been proposed (Andrew and

Insall, 2007; Iglesias and Devreotes, 2008). Some argue that che-

mokines induce the formation of cell protrusions and use the

protrusions as a physical markers of responding cells (Haas and

Gilmour, 2006), while others suggested that stabilization of cell

protrusions formed independently of the chemotactic signaling

could be sufficient to generate directional movement (Andrew

and Insall, 2007). A recent study clearly showed that the increase

of protrusion stability correlates with an increase in cell persis-

tence (Harms et al., 2005), reinforcing the possibility that stabi-

lizing pre-existing protrusions can lead to directional migration.

Our data in NC cells support the notion that chemoattractants

stabilize protrusions at the front of a cell cluster, creating an asym-

metry and leading to directional migration of the cell group.

Our results on cell-contact-dependent polarity are consistent

with our recent findings showing that activation of RhoA at

regions of NC cell contact is essential for migration during CIL

(Carmona-Fontaine et al., 2008), in which cell protrusions are

inhibited after cell-cell contact (Abercrombie and Heaysman,

1953). Here we further show that cell contacts, CIL dependent

and mediated by N-cadherin, are essential for NC chemotaxis

and that the polarization of the small GTPases by cell contact

is important for optimal response to a chemoattractant. Besides,

we have shown here that N-cadherin is required for CIL at the cell

contacts and that N-cadherin inhibition leads to an increase of

Rac1 activity at the juxtamembrane domain probably due to

a lack of RhoA activation downstream of the Wnt/PCP pathway.

The precise mechanism of interaction between N-cadherin and

Wnt/PCP during CIL remains to be investigated.

Our data also indicate that type I cadherin-mediated cell inter-

actions are essential for proper collective migration of a highly
en) in single cells (A and B) and groups (C and D), with (+) or without (�) Sdf, as

ells (E and F) and groups (G and H), with (F and H) or without (E and G) Sdf1.

ndition (n = 50 per condition). Gray bar, single cells; black bar, group of cells.

and with (O–Q) Sdf1 shows that Rac1 activity distribution is depending on cell

of an explant with (+) or without (�, n = 20) Sdf1 and inner cells with (+, n = 6) or

ells exposed to Sdf1. Circles under each bar represent different types of Rac1

igure S3.
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Figure 5. N-Cadherin-Dependent Contacts Are Required for Collective Chemotaxis

(A–F) N-cadherin expression in premigratory (A–C) and migratory (D–F) NC cells analyzed by whole mount in situ hybridization (A and D) and immunostaining (B, C,

E, and F); NC cells streams are delimited by dotted lines.

(G and H) N-cadherin loss-of-function using an antisense Morpholino (n = 87).

(I and J) Full-length N-cadherin overexpression (n = 40).

(K–S) NC cells labeled with rhodamine-dextran (RD) were grafted into unlabeled embryos and NC migration was monitored looking at the RD fluorescence.

Immunostaining on sections for N-cadherin (N and O), b-catenin (P and Q), and p120-catenin (R and S) are shown in low and high magnification. Blue, DAPI stain-

ing. Scale bar, 20 mm.

(T–V) Tracks of control cells ([J], n = 16) and NC pretreated with a control IgG ([K], n = 22) or with N-cadherin blocking antibody NCD2 ([L], n = 27) and exposed to

Sdf1 showing that N-cadherin inhibition strongly blocks chemoattraction toward Sdf1. Chemotaxis index for each condition is shown in (W). b, branchial; h, hyoid.

Error bars show standard deviation. See also Movies S7 and S8.
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Figure 6. N-Cadherin-Dependent Cell Interactions Prevent Formation of Cell Protrusions through Local Inhibition of Rac1 at Cell Contacts

(A–D) Embryos were injected with mbRFP (blue) at the 2 cell stage and with N-cadherin MO/mbGFP at the 32 cell stage to generate a mosaic expression of the

MO. Two-plane confocal image to show cell protrusions (red) and cell shape (green) in control cells (A and B) and N-cadherin MO cells (C and D), with (+) or without

(�) Sdf1, as indicated. N-cadherin loss-of-function induces formation of ectopic cell protrusions overlapping with neighboring cells ([C and D], arrowheads)

regardless of Sdf1.

(E) Size of inner cell protrusions (n = 10).

(F–G0) In vivo, confocal images of migrating NC cells labeled with mbGFP and nRFP grafted into a control embryo. Not all the cells are labeled. Region shown

equivalent to Figure 2O (middle of NC stream). Control cells (F and F0) have clear cell-cell boundaries while N-cadherin-Mo-injected cells (G and G0) have high

membrane activity and show overlapping protrusions. Labeled cells surrounded by nonlabeled cells are presented in high magnification in F0 and G0. Scale bars,

15 mm.

(H–J) FRET analysis of Rac1 activity distribution in control outer cells or outer cells treated with NCD2 antibody as indicated (n = 27). Scale bars, 10 mm.

(K) Rac1 activity at the cell contacts region (n = 18).

(L) Global Rac1 activity in outer cells (n = 29) *p < 0.05, ***p < 0.005. Error bars show standard deviation. See also Figure S4 and Movie S9.
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mesenchymal and invasive cell population such as the neural

crest. These data further support the idea proposed for cancer

cells that transient epithelial-like cell interactions do not prevent

mesenchymalization and migration (Yang and Weinberg, 2008).

Interestingly, tip-like contacts were described during chick NC
D

cells migration (Kulesa and Fraser, 2000; Teddy and Kulesa,

2004). We propose that such contacts could achieve the same

effect on cell polarity that the pseudo epithelial-like interactions

present in a migratory cohesive cell group. A possibility further

supported by data showing that these cells exhibit CIL-like
evelopmental Cell 19, 39–53, July 20, 2010 ª2010 Elsevier Inc. 49



Figure 7. N-Cadherin Is Required for CIL
(A–J) Collision assays between control (A–E) and NCD2-treated NC cells (F–J). Velocity (D–I) and acceleration (I–J) vectors for control (D and E) and NCD2-treated

cells (I–J). Note the clear change in direction of migration upon collision in control cells (p < 0.005, n = 10) is lost in NCD2-treated cells (n = 10).

(K–O) Invasion assays between control NC cells explants ([K and L], n = 36) and NCD2-treated explants (M and N, n = 47). Control explants do not invade each

other (L and O), whereas N-cadherin inhibition allows NC cells to invade each other (O).

(P–R) Model for Xenopus NC cells collective chemotaxis. The color gradient in the cytoplasm represents the levels and distribution of Rac1 (red) and RhoA

(blue, after Carmona-Fontaine et al., 2008; Matthews et al., 2008) activities. The different thicknesses and directions of the arrows indicate the relative

stabilities and orientation of protrusions, respectively. N-cadherin is represented as a green bar. Nuclei are shown as gray circles and the external gradient

of Sdf1 as shades of green. (P) NC cells clusters exhibit radial symmetry where all outer cells are polarized with protrusions toward the free edge and inner

cells are not polarized. When exposed to a gradient of Sdf1, protrusions at the front are further stabilized and the initial radial organization is broken leading

to directional migration. (Q) If cell interactions are prevented (N-cadherin inhibition, cell dissociation), Rac1 distribution no longer matches cell-cell interac-

tions and global levels are lowered thus inducing protrusions instability, loss of coordination among the cells, and the loss of directional migration. (R)

Representation of the NC cells migration in vivo where NC cells are maintained on migratory routes by inhibitory cues (shades of purple) and attracted
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behaviors during migration (Kulesa and Fraser, 2000; Teddy and

Kulesa, 2004). We show here that even invasive mesenchymal

cells can benefit from cell-cell interactions, and it would be inter-

esting to address the role of cell contacts during collective phase

of cancer cell migration.

The results presented here may lead to the reinterpretation

of recent studies. For example, inhibition of N-cadherin blocks

directional migration of cerebellar granule neurons (Rieger

et al., 2009) and LL (Kerstetter et al., 2004) consistent with our

conclusion that cell contacts are required for directional migra-

tion and suggest that these phenotypes may be due to a loss

in chemotactic response, as we have demonstrated for NC cells.

Finally our results, alongside the influence of CIL, give a more

complete view of how large populations of cells can achieve

directional migration by integrating cell interactions and external

cues. They indicate that invasive cells need to interact not only

with their local environment, but also with each other in order

to migrate efficiently, and may give new angles to better under-

stand and tackle invasive issues.

EXPERIMENTAL PROCEDURES

Neural Crest Culture

In Xenopus, cranial NC cells are never part of the neuroepithelium and are

located on the side of the neural plate. They are very cohesive at the beginning

of migration and can be easily isolated as an explant (DeSimone et al., 2005;

Sadaghiani and Thiebaud, 1987). They were dissected as described in

(DeSimone et al., 2005). In brief, the pigmented epidermal layer is first removed

then NC cells are gently taken out by microdissection. They stick to each other

but barely attach to the neural plate or the mesoderm underneath. In addition,

they can be easily distinguished from mesodermal cells that have a very strong

white color while NC cells are transparent, slightly gray, and much smaller. This

technique is easy to master and generally lead to pure NC cells culture.

Explants contaminated with other cells types (e.g., mesoderm, ectoderm, or

Rohon-Beard neurons) were ignored in this study. When needed, cell dissoci-

ation was performed by putting the NC explants in Ca2+/Mg2+-free medium for

a few minutes before transferring them to normal culture medium.

Chemotaxis Assays

A fixed beads assay was designed as an alternative for Boyden or Dunn cham-

bers. It is suitable for high-resolution time-lapse microscopy and allows the

use of a motorized stage for monitoring several explants at the same time.

A free beads assay was designed as a variation of the pipette assay and is suit-

able to check if cells can change their direction of migration to track a moving

source of chemoattractant. Both assays are easy to set up and can be adapted

to any microscopic system at no extra cost.

Preparation of Beads and Fibronectin-Coated Dishes

Heparin-acrylic beads (Sigma H5263, Adar Biotach 6024-1) were incubated

for 1hr 30min in a 1 mg/ml Sdf1 solution in PBS and used to deliver Sdf1. Fibro-

nectin (Fn, Sigma F2006) coating was done by incubating non-culture-treated

plastic dishes at 37�C with a Fn solution at 10 mg/ml for 1 hr, washed with PBS,

and incubated with PBS 0.1% BSA for a further 30 min.

Protocol for the Fixed Beads Assay

The Fn coating was done first, the PBS/BSA solution was removed, and the

dish was left to dry up for 2 min at room temperature. A line of silicone grease

(VWR, 6366082B) was added inside the Fn region using a 20 ml syringe before

adding the culture medium. A few incubated beads were placed in the dish
ventrally by chemotaxis to Sdf1. Protrusions can be seen at the border of th

cells population gets looser as migration proceeds ventrally and progress

See also Movie S10.

D

outside the Fn region. Using an eyebrow knife, beads of a similar diameter

(150–200 mm) were then moved inside the Fn region and positioned at the

border of the grease before being pushed in using tweezers. The remaining

beads were removed. The distance in between two consecutive beads was

kept around 1 mm. The NC explants were dissected, placed in front of the

beads in between 250 and 500 mm, and left to attach to the matrix for

30 min. The dish can then be filled up with an excess of culture medium and

carefully closed by putting the lead back on (without letting air bubbles in).

This is recommended if the dish has to be turned upside down to be used

on an upright microscope. On the other hand, the dish can be left open and

used with water immersion lenses or an inverted microscope. Both methods

were successfully used. Competition assays between two kinds of cells can

be easily run by putting two explants in front of the same bead. The response

of the same kind of cells to two different conditions can be tested by placing

different beads in the same dish (for instance PBS or Sdf1 beads) or by using

multi-well dishes. For the latter, each well can be filled up by a different culture

medium and sealed with a coverslip if necessary.

Protocol for the Free Beads Chemotaxis Assay

The Fn coating was done first and explants were placed on the matrix and left

to attach for 30 min. Incubated beads were added in the dish and kept outside

the Fn region. A few of them were broken in pieces using tweezers. Pieces

were selected and moved inside the Fn region using an eyebrow knife to be

positioned where desired. The remaining beads were removed. Each piece

is placed with the flat side in contact with the dish to help the beads to stay

in place. This assay can be done without breaking the beads, but they there-

fore tend to move because of the Brownian movements in the liquid.

Time Lapse, Tracking, and Cell Protrusion Analysis

Time lapse and tracking of migrating NC cells was performed as previously

described (Carmona-Fontaine et al., 2008; Matthews et al., 2008). Tracking

was made using ImageJ Manual Tracking plug-in. The tracks of each individual

cells were represented in a graph with the origin at 0, 0, using MathLab or

ImageJ Chemotaxis Tool plug-in. Cell protrusions were analyzed as described

in Carmona-Fontaine et al., (2008) and Matthews et al., (2008). In brief, cell

protrusions were defined by the positive difference in the area of a cell between

two consecutive frames. Orientation of protrusion was determined by the

vector between the centroid of the cell and the centroid of the protrusion using

ImageJ. Visualization of cell protrusions was done by overlapping two plane

focus from a confocal microscopy image (Carmona-Fontaine et al., 2008).

Red was used for the substratum focus (protrusion) and green for the focus

at the middle of the cell (cell body).

FRET Analysis

Samples for analysis of FRET by acceptor photobleaching were imaged using

a Zeiss LSM 510 META laser scanning confocal microscope and a 633 Plan

Apochromat NA 1.4 Ph3 oil objective. The CFP and YFP channels were excited

using the 440 nm diode laser and the 514 nm argon line, respectively. The two

emission channels were split using a 545 nm dichroic mirror, which was

followed by a 475–525 nm bandpass filter for CFP and a 530 nm longpass filter

for YFP (Chroma). Pinholes were opened to give a depth of focus of 3 mm for

each channel. Scanning was performed on a sequential line-by-line basis for

each channel. The gain for each channel was set to approximately 75% of

dynamic range (12-bit, 4096 gray levels) and offsets set such that backgrounds

were zero. Time-lapse mode was used to collect one prebleach image for each

channel followed by bleaching with 50 iterations of the 514 nm argon laser line

at maximum power (to bleach YFP). A second postbleach image was then

collected for each channel. Control nonbleached areas were acquired for all

samples in the same field of view as bleached cells to confirm specificity of

FRET detection. Pre- and postbleach CFP and YFP images were then

imported into Mathematica 6 for processing. In brief, images were smoothed

using a 3 3 3 box mean filter and background subtracted, and postbleach
e group and in between the cells only when gaps are generated. The NC

ively breaks away as single cells. Error bars show standard deviation.

evelopmental Cell 19, 39–53, July 20, 2010 ª2010 Elsevier Inc. 51



Developmental Cell

Collective Chemotaxis Requires Contact Inhibition
images were fade compensated. A FRET efficiency ratio map over the whole

cell was calculated using the following formula: (CFPpostbleach � CFPpre-

bleach)/CFPpostbleach. Ratio values were then extracted from pixels falling inside

the bleach region as well as an equally sized region outside of the bleach

region and the mean ratio determined for each region and plotted on a histo-

gram. The nonbleach ratio was then subtracted from the bleach region ratio to

give a final value for the FRET efficiency ratio. Data from images were used

only if YFP bleaching efficiency was greater than 70%.

RNAs, DNAs, and Antisense Morpholinos Used for Microinjections

Antisense Morpholino were purchased from GeneTools: Cxcr4 (8ng, 50-CAA

TGCCACCAGAAAACCCGTCCAT-30), N-cadherin (8 ng) (Nandadasa et al.,

2009), Sdf1-Mo (8ng, 50-AGAGCTAGAGTCCTTATGTCCATGT-30); mRNAs:

dnCxcr4 (2 ng), Cxcr4 (500 ng) (Moepps et al., 2000), membrane-GFP (500 pg),

membrane-RFP (500 pg), nuclear-RFP (500 pg), N-cadherin-GFP for localiza-

tion (50 pg), full-length N-cadherin for overexpression (500 ng), p120 catenin-

GFP (X. T. Zhao/A. B. Reynolds, 50 pg), Sdf1 (500 ng) (Braun et al., 2002);

DNAs: Raichu-Rac1 (Itoh et al., 2002) FRET probe (75 pg). dnCxcr4 contains

a single mutation replacing the tyrosine 194 by an alanine preventing Cxcr4

from being activated.

mRNA Probes, Antibodies, and Proteins

Xenopus probes were as follows: C3 (McLin et al., 2008), Cxcr4 (Moepps et al.,

2000), Sdf1 (Braun et al., 2002), N-cadherin (NIBB clone 403), Snail2 (Mayor

et al., 1995), and Twist (Hopwood et al., 1989). Primary antibodies were as

follows: b-catenin (AbCam, ab6302, 1:500), N-cadherin for immunostaining

(DSHB, MNCD2 s, 1:2), N-cadherin for activity blocking purpose (Invitrogen,

NCD2, 100 mg/ml); secondary antibodies were as follows: anti-rat IgG-FITC

(Sigma, F6258, 1:200) and anti-rabbit IgG-FITC (Sigma F0382, 1:200). Human

stromal cell-derived factor 1 was from Calbiochem (572300, 1 mg/ml).

Histology, Immunostaining, In Situ Hybridization, FRET,

and Antibodies

Cryosections and immunostaining on sections were performed as described in

(Theveneau et al., 2007). Xenopus in situ hybridizations (ISHs) were performed

as described in (Harland, 1991).

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and ten movies and can be

found with this article online at doi:10.1016/j.devcel.2010.06.012.
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