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Lat GR be a commutative integral domain. Suppose that 

M=A ’ 
[ 1 C D 

is a partitioned 2n X2n matrix over 3 with n X n blocks. Further, assume 
that M is unimodular. so that it has an inverse 

with entries from % (and n X n blocks). When the blocks are scalars, i.e., 
when n = 1, the inversion rule for 2 X 2 matrices shows that 

A and S are associates, B and Q are associates, 
C and R are associates, D and P are associates. 

In this paper we first generalize this 2 X2 inversion rule to larger blocks, 
n X n blocks with arbitrary n. Next, we indicate an application of the 
resulting theorem to the least-common-left-multiple-greatestcommon-right- 
divisor theory of integral matrices. Then we consider the connection between 
our theorem and the invariant factor theory for finitely generated $&modules, 
and we shall establish this surprising fact: Our block 2 X 2 inversion theorem 
is logically equivalent to the uniqueness part of the invariant factor theorem 
for %modules. 

NOTATION. The Smith form of an C:it matrix K will be denoted by S(K). 
See [l], [2], [3], or [4] for a discussion of the Smith form. 
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THEOREM 1. When matrix M is unimodulur, with square blocks as 
above, the Smith fm of the blocks in M and in N= M-’ are related by the 
rule for inverting 2X2 matrices: 

S(A)= S(S), S(R)= S(Q)> 

S(C)= S(R), S(D)=S(P). 

Proof. Various proofs can be given; the following is as simple as any. We 
shall show that A and S have the same determinantal divisors by proving that 
each r X T minor in A is a linear combination of r X T minors from S, then 
reversing the roles of A and S; 1 G r G n. Passing to PIMP,, where P, and Pz 
are block diagonal permutation matrices, we may suppose that the r X r 
minor in question from A sits in leading position. By the well-known identity 
linking minors of M and M-‘, this leading T X T minor of A equals a unit 
multiple of the trailing (2n - r>square minor in N. Expand this latter minor 
of N by Laplace across its last n rows. Each n X n determinant A in this 
expansion formed from the last n rows of N also uses some set of columns, of 
which at most n - r lie outside S. Therefore, at least r lie inside S. Expand A 
along any set of r columns lying inside S. Doing this for each A, we find that 
the original r X T minor from A equals a linear combination of r X r minors 
from S. This proves that S(A)= S(S), and the other parts of the theorem are 
proved similarly. n 

REMARK. The theorem is false if M is not assumed to be unimodular. 

APPLICATION. If a and b are nonzero scalars (elements of a), their 
greatest common divisor (a, b) and their least common multiple (a, b) may 
always be chosen so that 

(a, b)= (aY$ * 

When A and B are invertible matrices over %, they possess a greatest 
common right divisor (A, B) and a least common left multiple (A, B). A 
natural question to ask is whether the above scalar formula extends to full size 
matrices. It does, it being always possible to choose (A, B) and (A, B) so 
that 

(A, B)= A(A, B)-‘B. 
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The proof of this interesting fact is in [5], its key step being an application of 
Theorem 1. The reader may consult [5] for details. 

We now turn to the connection with module theory, and we must first 
review some facts about finitely generated %modules [l]. Let 6% be a finitely 
generated %module, and m,, . . . ,m, a set of generators. For notational 
convenience, we form m 1 ,..., m, into a column n-tuple m=[ml ,..., m,lT. 

The symbols x, y, .a, t will denote row tuples with elements from 3. 
A (possibly rectangular) matrix M over 3 is a complete relations matrix for 

the generators mi if (i) Mm =O, (ii) xm =O implies x = yM for an appropriate 
y. A standard fact is that a complete relations matrix always exists. It is not 
unique; if U is t&modular, then UM is another. Choosing U to put M into 
triangular (Hermite) form, we find a complete relations matrix with at most n 
nonzero rows. Adding or deleting zero rows, we are entitled to assume that 
the complete relations matrix is square, and we henceforth make this restric- 
tion. If U and V are r&modular, UMV is a complete relations matrix for the 
generators in V-‘m. Choosing U, V to put M into Smith form, we deduce that 
9R is a direct sum of cyclic modules, with the order ideals of the cyclic 
generators forming a divisibility chain. These are called the invariant factors 
for Em, and a basic question is: are they unique? Conceivably, uniqueness 
could fail in either of two ways: (i) a different complete relations matrix for m 

could yield a different set of invariant factors; (ii) a different set of generators 
could lead to a different set of invariant factors. However, (i) cannot lead to 
nonuniqueness, since if M and M, are complete relations matrices for m, then 
M = XM, and M, = YM for matrices X, Y over 5%. Thus M and M, have the 
same determinantal divisors and therefore the same invariant factors. The rest 
of this paper explores point (ii). 

It will be convenient below to (possibly) adjoin additional zero generators 
to the m,. Then the new complete relations matrix is a direct sum of M and an 
identity matrix, the invariant factors undergo adjunction by (1)‘s and the 
cyclic decomposition of % is unaffected, only zero direct summands being 
added. 

Let finitely many elements bi of 9R be given. We adjoin zero elements to 
the bi or to the mi, as necessary, to ensure that there are the same number of 
b,asm,.Letb=[b,,..., b,] T. Since the mi generate, b = Xm for some n X n 
matrix X over 3. 

LEMMA. The elements of b generate ?JL if and only if the lej? ideal 

(X, M) in matrix n X n space equals the unit ideal (I,). 

Proof. Suppose the elements of b generate Em. Then m = Yb for some 
matrix Y, hence (I - YX)m =O, and therefore Z - YX = ZM for some matrix 
Z over 9. Thus (X, M)=(Z). The converse reverses these steps, using also 
Mm =O. H 
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THEOREM 2. Let the elements of b = Xm generate ?Jl_,, and let P be a 

unimodular 2n X 2n matrix bringing 
M 

[ 1 x to a left Hermite form H . 
[ 1 0 

, z.e., 

and n X n blocks. Set 

‘I p p12 
with P = l1 [ 1 P 21 Pzz ) 

(1) 

Qyp-l= Q11 912 
i 1 Q21 Q22 ’ 

Then: Qll is a complete relations matrix for the elements of m, and Pz2 is a 
complete relations matrix for the elements of b. 

Proof. From (1) we get H = P,,M -I- P12X and M = Q,,H, X = QzlH. 
(Also, PzlM + P,,X = 0.) Thus the left ideal (X, M) =(H). Since this ideal is 
the unit ideal, H must be unimodular, and therefore is the identity matrix, 
since it is in Hermite form. We show that P22 is a complete relations matrix 
for b. First: Pz2b = P2,Xm = - PzlMm = 0. Hence Pzz is a relations matrix. 
Suppose that tb = 0. Thus tXm = 0, hence tX = zM for some x, and thus 
(using H = I) 

o=,z,-t][;]=,z,-t,[ ;;:I. 

Hence [z, - t]Q=[O, w] for some w. But then [z, - t]=[O, w] P, so that 
- t = wP~~. Therefore Pzz is complete. The fact that Qrl is a complete 
relations matrix for b tallows from the formula M = QI1 established earlier in 
the proof. n 

We now establish the link between Theorem 1 and module theory. 

THEOREM 3. The truth of Theorem 1 is logically equivalent to the 
uniqueness part of the invariant factor theorem fm finitely generated % 
modules. 

Proof. Assume the truth of Theorem 1. Then Pz2 and Qrl have the same 
invariant factors; hence the invariant factors do not depend on the choice of 
generators m, b of the Smodule. 
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Suppose now that Theorem 1 is false. Then a unimodular matrix P would 
exist such that the blocks Pzz in P and Qrr in Q = PP ’ have different invariant 
factors. Form an R-module ?IR with rr generators mi and Qrr as a complete 
relations matrix. (This always exists: Take the ?&module Ton free generators 
m(, form the submodule S generated by the elements of Q,,m’, let % = T/S, 
and take mi to be the homomorphic image of ml.) Set X = Qzr, and put 
b = Xm. Thus, with M = &, (1) holds with H = 1. Then (X, M) is the unit 
ideal, so that the elements of b generate. By the proof of Theorem 2, Pzz is a 
complete relations matrix for these generators, and thus the nonuniqueness of 
the module invariant factors is evident. n 

The preparation of this note was partially supported by U.S. Air Force 
Grant No. 79-0127. 
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